Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2

DOI:10.33266/1024-6177-2023-68-2-5-10

Lina Alhaddad1,2, Andreyan N. Osipov1,3, Sergey Leonov1,4

Radiation-Induced Premature Senescence of Tumor Cells

1School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

2Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus, Syria

3A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

4 Institute of Cell Biophysics, Pushchino, Russia

Contact person: Andreyan N. Osipov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

CONTENTS

Introduction

Factors and mechanisms of Stress-Associated Secretory Phenotype (SASP)

Morphological and transcriptional signatures of SASP

Radiation-induced signaling pathways associated with premature senescence

Conclusion

Keywords: ionizing radiation, premature senescence, stress, tumor cells

 

For citation: Alhaddad L, Osipov AN, Leonov S. Radiation-Induced Premature Senescence of Tumor Cells. Medical Radiology and Radiation Safety. 2023;68(2):5–10. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-5-10

 

References

1. Roninson I.B. Tumor Cell Senescence in Cancer Treatment. Cancer Research. 2003;63;11:2705-2715. 

2. Olovnikov A.M. [Principle of Marginotomy in Template Synthesis of Polynucleotides]. Doklady Akademii Nauk SSSR. 1971;201;6:1496-1499. 

3. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a. Cell. 1997;88;5:593-602. doi: 10.1016/s0092-8674(00)81902-9.

4. Fridlyanskaya I., Alekseenko L., Nikolsky N. Senescence as a General Cellular Response to Stress: A Mini-Review. Experimental Gerontology. 2015;72:124-128. doi: 10.1016/j.exger.2015.09.021.

5. Suzuki M., Boothman D.A. Stress-Induced Premature Senescence (SIPS)--Influence of SIPS on Radiotherapy. Journal of Radiation Research. 2008;49;2:105-112. doi: 10.1269/jrr.07081.

6. Aliper A.M., Bozdaganyan M.E., Orekhov P.S., Zhavoronkov A., Osipov A.N. Replicative and Radiation-Induced Aging: a Comparison of Gene Expression Profiles. Aging (Albany NY). 2019;11;8:2378-2387. doi: 10.18632/aging.101921.

7. Crompton N.E. Telomeres, Senescence and Cellular Radiation Response. Cellular and Molecular Life Sciences: CMLS. 1997;53;7:568-575. doi: 10.1007/s000180050073.

8. Sabbatinelli J., Prattichizzo F., Olivieri F., Procopio A.D., Rippo M.R., Giuliani A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Frontiers in Physiology. 2019;10:1523. doi: 10.3389/fphys.2019.01523.

9. Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., et al. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biology. 2008;6;12:2853-2868. doi: 10.1371/journal.pbio.0060301.

10. Byun H.O., Lee Y.K., Kim J.M., Yoon G. From Cell Senescence to Age-Related Diseases: Differential Mechanisms of Action of Senescence-Associated Secretory Phenotypes. BMB Reports. 2015;48;10:549-558. doi: 10.5483/bmbrep.2015.48.10.122.

11. Kuilman T., Michaloglou C., Vredeveld L.C., Douma S., van Doorn R., Desmet C.J., et al. Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network. Cell. 2008;133;6:1019-31. doi: 10.1016/j.cell.2008.03.039.

12. Acosta J.C., O’Loghlen A., Banito A., Guijarro M.V., Augert A., Raguz S., et al. Chemokine Signaling Via the CXCR2 Receptor Reinforces Senescence. Cell. 2008;133;6:1006-1018. doi: 10.1016/j.cell.2008.03.038.

13. Hornebeck W., Maquart F.X. Proteolyzed Matrix as a Template for the Regulation of Tumor Progression. Biomedicine & Pharmacotherapy. 2003;57;5-6:223-230. doi: 10.1016/s0753-3322(03)00049-0.

14. Brew K., Dinakarpandian D., Nagase H. Tissue Inhibitors of Metalloproteinases: Evolution, Structure and Function. Biochimica et Biophysica Acta. 2000;1477;1-2:267-283. doi: 10.1016/s0167-4838(99)00279-4.

15. Coppe J.P., Desprez P.Y., Krtolica A., Campisi J. The Senescence-Associated Secretory Phenotype: the Dark Side of Tumor Suppression. Annual Review of Pathology. 2010;5:99-118. doi: 10.1146/annurev-pathol-121808-102144.

16. d’Adda di Fagagna F., Reaper P.M., Clay-Farrace L., Fiegler H., Carr P., Von Zglinicki T., et al. A DNA Damage Checkpoint Response in Telomere-Initiated Senescence. Nature. 2003;426;6963:194-198. doi: 10.1038/nature02118.

17. Mikula-Pietrasik J., Niklas A., Uruski P., Tykarski A., Ksiazek K. Mechanisms and Significance of Therapy-Induced and Spontaneous Senescence of Cancer Cells. Cellular and Molecular Life Sciences: CMLS. 2020;77;2:213-229. doi: 10.1007/s00018-019-03261-8.

18. Coppe J.P., Kauser K., Campisi J., Beausejour C.M. Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence. The Journal of Biological Chemistry. 2006;281;40:29568-2956874. doi: 10.1074/jbc.M603307200.

19. Taddei M.L., Cavallini L., Comito G., Giannoni E., Folini M., Marini A., et al. Senescent Stroma Promotes Prostate Cancer Progression: the Role of miR-210. Molecular Oncology. 2014;8;8:1729-1746. doi: 10.1016/j.molonc.2014.07.009.

20. Kuo P.L., Shen K.H., Hung S.H., Hsu Y.L. CXCL1/GROalpha Increases Cell Migration and Invasion of Prostate Cancer by Decreasing Fibulin-1 Expression Through NF-kappaB/HDAC1 Epigenetic Regulation. Carcinogenesis. 2012;33;12:2477-87. doi: 10.1093/carcin/bgs299.

21 Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Raza S.R., et al. Persistent DNA damage Signalling Triggers Senescence-Associated Inflammatory Cytokine Secretion. Nature Cell Biology. 2009;11;8:973-979. doi: 10.1038/ncb1909.

22. Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A. Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts that Supports Cancer Progression. Cancer Research. 2012;72;9:2251-2261. doi: 10.1158/0008-5472.CAN-11-3386.

23. Castillo V., Valenzuela R., Huidobro C., Contreras H.R., Castellon E.A. Functional Characteristics of Cancer Stem Cells and Their Role in Drug Resistance of Prostate Cancer. International Journal of Oncology. 2014;45;3:985-994. doi:
10.3892/ijo.2014.2529.

24. Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., et al. MTOR Regulates the Pro-Tumorigenic Senescence-Associated Secretory Phenotype by Promoting IL1A Translation. Nature Cell Biology. 2015;17;8:1049-1061. doi: 10.1038/ncb3195.

25. Herranz N., Gallage S., Mellone M., Wuestefeld T., Klotz S., Hanley C.J., et al. mTOR Regulates MAPKAPK2 Translation to Control the Senescence-Associated Secretory Phenotype. Nature Cell Biology. 2015;17;9:1205-1217. doi: 10.1038/ncb3225.

26. Narita M., Young A.R., Arakawa S., Samarajiwa S.A., Nakashima T., Yoshida S., et al. Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science. 2011;332;6032:966-970. doi: 10.1126/science.1205407.

27. Chien Y., Scuoppo C., Wang X., Fang X., Balgley B., Bolden J.E., et al. Control of the Senescence-Associated Secretory Phenotype by NF-kappaB Promotes Senescence and Enhances Chemosensitivity. Genes & Development. 2011;25;20:2125-2136. doi: 10.1101/gad.17276711.

28. Wiley C.D., Velarde M.C., Lecot P., Liu S., Sarnoski E.A., Freund A., et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metabolism. 2016;23;2:303-314. doi: 10.1016/j.cmet.2015.11.011.

29. Ksiazek K., Korybalska K., Jorres A., Witowski J. Accelerated Senescence of Human Peritoneal Mesothelial Cells Exposed to High Glucose: the Role of TGF-beta1. Laboratory Investigation; a Journal of Technical Methods and Pathology. 2007;87;4:345-356. doi: 10.1038/labinvest.3700519.

30. Chondrogianni N., Stratford F.L., Trougakos I.P., Friguet B., Rivett A.J., Gonos E.S. Central Role of the Proteasome in Senescence and Survival of Human Fibroblasts: Induction of a Senescence-Like Phenotype Upon Its Inhibition and Resistance to Stress Upon Its Activation. The Journal of Biological Chemistry. 2003;278;30:28026-28037. doi: 10.1074/jbc.M301048200.

31. Keyes W.M., Wu Y., Vogel H., Guo X., Lowe S.W., Mills A.A. p63 Deficiency Activates a Program of Cellular Senescence and Leads to Accelerated Aging. Genes & Development. 2005;19;17:1986-1999. doi: 10.1101/gad.342305.

32. Stein G.H., Drullinger L.F., Soulard A., Dulic V. Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts. Mol. Cell. Biol. 1999;19;3:2109-2117. doi: 10.1128/MCB.19.3.2109.

33. Macip S., Igarashi M., Fang L., Chen A., Pan Z.Q., Lee S.W., et al. Inhibition of p21-Mediated ROS Accumulation Can Rescue p21-Induced Senescence. EMBO J. 2002;21;9:2180-2188. doi: 10.1093/emboj/21.9.2180.

34. Bae G.U., Seo D.W., Kwon H.K., Lee H.Y., Hong S., Lee Z.W., et al. Hydrogen Peroxide Activates p70(S6k) Signaling Pathway. The Journal of Biological Chemistry. 1999;274;46:32596-32602. doi: 10.1074/jbc.274.46.32596.

35. Radisavljevic Z.M., Gonzalez-Flecha B. TOR Kinase and Ran Are Downstream from PI3K/Akt in H2O2-Induced Mitosis. Journal of Cellular Biochemistry. 2004;91;6:1293-1300. doi: 10.1002/jcb.20037.

36. Krouwer V.J., Hekking L.H., Langelaar-Makkinje M., Regan-Klapisz E., Post J.A. Endothelial Cell Senescence is Associated with Disrupted Cell-Cell Junctions and Increased Monolayer Permeability. Vascular Cell. 2012;4;1:12. doi: 10.1186/2045-824X-4-12.

37. Ksiazek K., Piatek K., Witowski J. Impaired Response to Oxidative Stress in Senescent Cells May Lead to Accumulation of DNA Damage in Mesothelial Cells from Aged Donors. Biochemical and Biophysical Research Communications. 2008;373;2:335-339. doi: 10.1016/j.bbrc.2008.06.026.

38. Sidler C., Kovalchuk O., Kovalchuk I. Epigenetic Regulation of Cellular Senescence and Aging. Frontiers in Genetics. 2017;8:138. doi: 10.3389/fgene.2017.00138.

39. Calio A., Zamo A., Ponzoni M., Zanolin M.E., Ferreri A.J., Pedron S., et al. Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21;22:5164-5172. doi: 10.1158/1078-0432.CCR-15-0508.

40. Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179;4:813-827. doi: 10.1016/j.cell.2019.10.005.

41. Evangelou K., Lougiakis N., Rizou S.V., Kotsinas A., Kletsas D., Munoz-Espin D., et al. Robust, Universal Biomarker Assay to Detect Senescent Cells in Biological Specimens. Aging Cell. 2017;16;1:192-197. doi: 10.1111/acel.12545.

42. Hansel C., Jendrossek V., Klein D. Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. International Journal of Molecular Sciences. 2020;21;9. doi: 10.3390/ijms21093279.

43. Gire V., Roux P., Wynford-Thomas D., Brondello J.M., Dulic V. DNA Damage Checkpoint Kinase Chk2 Triggers Replicative Senescence. The EMBO Journal. 2004;23;13:2554-2563. doi: 10.1038/sj.emboj.7600259.

44. Naka K., Tachibana A., Ikeda K., Motoyama N. Stress-Induced Premature Senescence in hTERT-Expressing Ataxia Telangiectasia Fibroblasts. The Journal of Biological Chemistry. 2004;279;3:2030-2037. doi: 10.1074/jbc.M309457200.

45. Sikora E., Czarnecka-Herok J., Bojko A., Sunderland P. Therapy-Induced Polyploidization and Senescence: Coincidence or Interconnection? Seminars in Cancer Biology. 2022;81:83-95. doi: 10.1016/j.semcancer.2020.11.015.

46. Wang Q., Wu P.C., Dong D.Z., Ivanova I., Chu E., Zeliadt S., et al. Polyploidy Road to Therapy-Induced Cellular Senescence and Escape. International Journal of Cancer. 2013;132;7:1505-1515. doi: 10.1002/ijc.27810.

47. Leong W.F., Chau J.F., Li B. p53 Deficiency Leads to Compensatory Up-Regulation of p16INK4a. Molecular Cancer Research: MCR. 2009;7;3:354-360. doi: 10.1158/1541-7786.MCR-08-0373.

48. Han Z., Wei W., Dunaway S., Darnowski J.W., Calabresi P., Sedivy J., et al. Role of p21 in Apoptosis and Senescence of Human Colon Cancer Cells Treated with Camptothecin. The Journal of Biological Chemistry. 2002;277;19:17154-17160. doi: 10.1074/jbc.M112401200.

49. Alani R.M., Young A.Z., Shifflett C.B. Id1 Regulation of Cellular Senescence Through Transcriptional Repression of p16/Ink4a. Proceedings of the National Academy of Sciences of the United States of America. 2001;98;14:7812-7816. doi: 10.1073/pnas.141235398.

50. Liu D., Hornsby P.J. Senescent Human Fibroblasts Increase the Early Growth of Xenograft Tumors Via Matrix Metalloproteinase Secretion. Cancer Research. 2007;67;7:3117-3126. doi: 10.1158/0008-5472.CAN-06-3452.

51. Mikula-Pietrasik J., Sosinska P., Maksin K., Kucinska M.G., Piotrowska H., Murias M., et al. Colorectal Cancer-Promoting Activity of the Senescent Peritoneal Mesothelium. Oncotarget. 2015;6;30:29178-29195. doi: 10.18632/oncotarget.4932.

52. Wang T., Notta F., Navab R., Joseph J., Ibrahimov E., Xu J., et al. Senescent Carcinoma-Associated Fibroblasts Upregulate IL8 to Enhance Prometastatic Phenotypes. Molecular Cancer Research: MCR. 2017;15;1:3-14. doi: 10.1158/1541-7786.MCR-16-0192.

53. Mikula-Pietrasik J., Sosinska P., Naumowicz E., Maksin K., Piotrowska H., Wozniak A., et al. Senescent Peritoneal Mesothelium Induces a Pro-Angiogenic Phenotype in Ovarian Cancer Cells in Vitro and in a Mouse Xenograft Model in Vivo. Clinical & Experimental Metastasis. 2016;33;1:15-27. doi: 10.1007/s10585-015-9753-y.

54. Ruhland M.K., Loza A.J., Capietto A.H., Luo X., Knolhoff B.L., Flanagan K.C., et al. Stromal Senescence Establishes an Immunosuppressive Microenvironment that Drives Tumorigenesis. Nature Communications. 2016;7:11762. doi: 10.1038/ncomms11762.

55. Rovillain E., Mansfield L., Caetano C., Alvarez-Fernandez M., Caballero O.L., Medema R.H., et al. Activation of Nuclear Factor-Kappa B Signalling Promotes Cellular Senescence. Oncogene. 2011;30;20:2356-2366. doi: 10.1038/onc.2010.611.

56. Mirzayans R., Andrais B., Kumar P., Murray D. Significance of Wild-Type p53 Signaling in Suppressing Apoptosis in Response to Chemical Genotoxic Agents: Impact on Chemotherapy Outcome. International Journal of Molecular Sciences. 2017;18;5. doi: 10.3390/ijms18050928.

57. Schmitt C.A. Cellular Senescence and Cancer Treatment. Biochimica et Biophysica Acta. 2007;1775;1:5-20. doi: 10.1016/j.bbcan.2006.08.005.

58. Бородкина А., Дерябин П., Грюкова А., Никольский Н. “Социальная жизнь” стареющих клеток: что такое SASP и зачем его изучать? // Acta Naturae. 2018. Т.10, № 1. С. 4-15. [Borodkina A., Deryabin P., Gryukova A., Nikolskiy N.»Social Life» of Senescent Cells: what Is SASP and why Study It? Acta Naturae. 2018;10;1:4-15 (In Russ.)].

59. Yahyapour R., Salajegheh A., Safari A., Amini P., Rezaeyan A.., Amraee A, et al. Radiation-Induced Non-Targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. Journal of Biomedical Physics & Engineering. 2018;8;4:435-446. 

60. Luo H., Yount C., Lang H., Yang A., Riemer E.C., Lyons K., et al. Activation of p53 with Nutlin-3a Radiosensitizes Lung Cancer Cells Via Enhancing Radiation-Induced Premature Senescence. Lung Cancer. 2013;81;2:167-173. doi: 10.1016/j.lungcan.2013.04.017.

61. He X., Yang A., McDonald D.G., Riemer E.C., Vanek K.N., Schulte B.A., et al. MiR-34a Modulates Ionizing Radiation-Induced Senescence In Lung Cancer Cells. Oncotarget. 2017;8;41:69797-69807. doi: 10.18632/oncotarget.19267.

62. Mirzayans R., Scott A., Cameron M., Murray D. Induction of Accelerated Senescence by Gamma Radiation In Human Solid Tumor-Derived Cell Lines Expressing Wild-Type TP53. Radiation Research. 2005;163;1:53-62. doi: 10.1667/rr3280.

63. Mirzayans R., Andrais B., Scott A., Wang Y.W., Kumar P., Murray D. Multinucleated Giant Cancer Cells Produced in Response to Ionizing Radiation Retain Viability and Replicate Their Genome. International Journal of Molecular Sciences. 2017;18;2. doi: 10.3390/ijms18020360.

64. Liao E.C., Hsu Y.T., Chuah Q.Y., Lee Y.J., Hu J.Y., Huang T.C., et al. Radiation Induces Senescence and a Bystander Effect Through Metabolic Alterations. Cell Death & Disease. 2014;5:e1255. doi: 10.1038/cddis.2014.220.

65. Xu J., Patel N.H., Saleh T., Cudjoe E.K., Jr., Alotaibi M., Wu Y., et al. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiation Research. 2018;190;5:538-557. doi: 10.1667/RR15099.1.

66. Jallepalli P.V., Waizenegger I.C., Bunz F., Langer S., Speicher M.R., Peters J.M., et al. Securin is Required for Chromosomal Stability in Human Cells. Cell. 2001;105;4:445-457. doi: 10.1016/s0092-8674(01)00340-3.

67. Tfelt-Hansen J., Kanuparthi D., Chattopadhyay N. The Emerging Role of Pituitary Tumor Transforming Gene in Tumorigenesis. Clinical Medicine & Research. 2006;4;2:130-137. doi: 10.3121/cmr.4.2.130.

68. Jeon H.Y., Kim J.K., Ham S.W., Oh S.Y., Kim J., Park J.B., et al. Irradiation Induces Glioblastoma Cell Senescence and Senescence-Associated Secretory Phenotype. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Me-
dicine. 2016;37;5:5857-5867. doi: 10.1007/s13277-015-4439-2.

69. Lee J.J., Kim B.C., Park M.J., Lee Y.S., Kim Y.N., Lee B.L., et al. PTEN Status Switches Cell Fate between Premature Senescence and Apoptosis in Glioma Exposed to Ionizing Radiation. Cell Death and Differentiation. 2011;18;4:666-677. doi: 10.1038/cdd.2010.139.

 

 PDF (RUS) Full-text article (in Russian)

 
Conflict of interest. The authors declare no conflict of interest.

Financing. The work was carried out with the financial support of RFBR grant No. 20-34-90035.

Contribution. L. Alkhaddad – collection and analysis of literary material, writing the text. A.N. Osipov and S.V. Leonov – concept development and scientific editing.

Article received: 20.11.2022. Accepted for publication: 25.01.2023.