Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2

DOI: 10.33266/1024-6177-2023-68-2-11-15

N.Yu. Vorobyeva1,2, T.A. Astrelina1, E.I. Yashkina1,2, A.K. Chigasova3,
A.A. Osipov2, D.Yu. Usupzhanova1, I.V. Kobzeva1, Yu.B. Suchkova1,
V.A. Brunchukov1, A.A. Rastorgueva1, Yu.A. Fedotov1,2, A.S. Samoilov1,
A.N. Osipov1,2

Effect of a Humic-Fulvic Acid Preparation on the Quantitative Yield of Residual γH2AX Foci and Proliferative Activity in Irradiated Human Mesenchymal Stromal Cells

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia

3 Institute of Biochemical Physics, Moscow, Russia

Contact person: N.Yu. Vorobyeva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: To evaluate the influence of a humic-fulvic acid substance on the quantitative yield of residual foci of the DNA double-strand break (DSB) repair protein-marker - phosphorylated histone H2AX (γH2AX) and proliferation activity in a culture of human mesenchymal stromal cells (MSCs) 24, 48, and 72 h after exposure to X-ray radiation at doses of 2, 4 and 10 Gy.

Material and methods: Through 24 hours after incubation of MSCs with a substance of humic-fulvic acids (Humic Complex, OOO Sistema-BioTechnologies, Russia) at a dilution of 1/1000. Cells were irradiated on an X-ray biological device RUB RUST-M1 at a voltage of 200 kV, beam current 2×5 mA, aluminum filter 1.5 mm, absorbed dose rate 0.85 Gy/min. Immunocytochemical staining was used to quantify the residual γH2AX foci and the percentage of proliferating cells using antibodies to γH2AX and Ki-67 (a marker protein for cell proliferation), respectively. Statistical analysis of the obtained data was carried out using the statistical software package Statistica 8.0 (StatSoft). To assess the significance of differences between samples, Student’s t-test was used.

Results and conclusion: The conducted studies showed that on the cell model used and under the above experimental conditions, the humic-fulvic acid substance does not affect the efficiency of repair of radiation-induced DNA DSBs, however, it significantly reduces the proliferation activity of both irradiated and non-irradiated MSCs. It is advisable to conduct detailed studies of the molecular and cellular mechanisms of the antiproliferative effect of humic and fulvic acids.

Keywords: mesenchymal stromal cells, X-ray radiation, γH2AX, residual foci, DNA double-strand breaks, cell proliferation, humic acids, fulvic acids

 

For citation: Vorobyeva NYu, Astrelina TA, Yashkina EI, Chigasova AK, Osipov AA, Usupzhanova DYu, Kobzeva IV, Suchkova YuB, Brunchukov VA, Rastorgueva AA, Fedotov YuA, Samoilov AS, Osipov AN. Effect of a Humic-Fulvic Acid Preparation on the Quantitative Yield of Residual γH2AX Foci and Proliferative Activity in Irradiated Human Mesenchymal Stromal Cells. Medical Radiology and Radiation Safety. 2023;68(2):11–15. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-11-15

 

References

 

1. Nardi S., Schiavon M., Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules. 2021;26;8. doi: 10.3390/molecules26082256.

2. Klucakova M. Size and Charge Evaluation of Standard Humic and Fulvic Acids as Crucial Factors to Determine Their Environmental Behavior and Impact. Front Chem. 2018;6:235. doi: 10.3389/fchem.2018.00235.

3. Benderskii N.S., Kudelina O.M., Gantsgorn E.V., Safronenko A.V. Fulvic Acid: an Active Food Additive or Medication? Kuban Scientific Medical Bulletin. 2020;27;3:78-91. doi: 10.25207/1608-6228-2020-27-3-78-91.

4. Buzlama A.V., Chernov Iu N. [Humic Substances: Pharmacological Properties, Mechanisms of Action, and Prospects for Use in Medicine]. Eksp Klin Farmakol. 2010;73;9:43-48. 

5. van Rensburg C.E. The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytother Res. 2015;29;6:791-795. doi: 10.1002/ptr.5319.

6. Pustovalova M., Astrelina Т.A., Grekhova A., Vorobyeva N., Tsvetkova A., Blokhina T., et al. Residual γH2AX Foci Induced by Low Dose X-Ray Radiation in Bone Marrow Mesenchymal Stem Cells Do Not Cause Accelerated Senescence in the Progeny of Irradiated Cells. Aging. 2017;9;11:2397-2410. doi: 10.18632/aging.101327.

7. Tsvetkova A., Ozerov I.V., Pustovalova M., Grekhova A., Eremin P., Vorobyeva N., et al. γH2AX, 53BP1 and Rad51 Protein Foci Changes in Mesenchymal Stem Cells During Prolonged X-ray irradiation. Oncotarget. 2017;8;38:64317-64329. doi: 10.18632/oncotarget.19203.

8. Ulyanenko S., Pustovalova M., Koryakin S., Beketov E., Lychagin A., Ulyanenko L., et al. Formation of γH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. International Journal of Molecular Sciences. 2019;20;11:2645. doi: 10.3390/ijms20112645.

9. Krenning L., van den Berg J., Medema R.H. Life or Death after a Break: What Determines the Choice? Molecular cell. 2019;76;2:346-358. doi: 10.1016/j.molcel.2019.08.023.

10. Aliper A.M., Bozdaganyan M.E., Orekhov P.S., Zhavoronkov A., Osipov A.N. Replicative and Radiation-Induced Aging: a Comparison of Gene Expression Profiles. Aging. 2019;11;8:2378-2387. doi: 10.18632/aging.101921.

11. Ulyanenko S., Pustovalova M., Koryakin S., Beketov E., Lychagin A., Ulyanenko L., et al. Formation of GammaH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. International Journal of Molecular Sciences. 2019;20;11:2645. doi: 10.3390/ijms20112645.

12. Vorob’eva N.Y., Kochetkov O.A., Pustovalova M.V., Grekhova A.K., Blokhina T.M., Yashkina E.I., et al. Comparative Analysis of the Formation of gammaH2AX Foci in Human Mesenchymal Stem Cells Exposed to (3)H-Thymidine, Tritium Oxide, and X-Rays Irradiation. Bull. Exp. Biol. Med. 2018;166;1:178-181. doi: 10.1007/s10517-018-4309-1.

13. Grekhova A.K., Pustovalova M.V., Eremin P.S., Ozerov I.V., Maksimova O.A., Gordeev A.V., et al. Evaluation of the Contribution of Homologous Recombination in DNA Double-Strand Break Repair in Human Fibroblasts after Exposure to Low and Intermediate Doses of X-ray Radiation. Biology Bulletin. 2020;46;11:1496-1502. doi: 10.1134/s1062359019110037.

14. Bushmanov A., Vorobyeva N., Molodtsova D., Osipov A.N. Utilization of DNA Double-Strand Breaks for Biodosimetry of Ionizing Radiation Exposure. Environmental Advances. 2022;8. doi: 10.1016/j.envadv.2022.100207.

15. Banath J.P., Klokov D., MacPhail S.H., Banuelos C.A., Olive P.L. Residual GammaH2AX Foci as an Indication of Lethal DNA Lesions. BMC Cancer. 2010;10:4. doi: 10.1186/1471-2407-10-4.

16. Vorobyeva N.Y., Babayan N.S., Grigoryan B.A., Sargsyan A.A., Khondkaryan L.G., Apresyan L.S., et al. Increased Yield of Residual γH2AX Foci in p53-Deficient Human Lung Carcinoma Cells Exposed to Subpicosecond Beams of Accelerated Electrons. Bulletin of Experimental Biology and Medicine. 2022;172;6:756-759. doi: 10.1007/s10517-022-05472-9.

17. Babayan N.S., Guryev D.V., Vorobyeva N.Y., Grigoryan B.A., Tadevosyan G.L., Apresyan L.S., et al. Colony-Forming Ability and Residual Foci of DNA Repair Proteins in Human Lung Fibroblasts Irradiated with Subpicosecond Beams of Accelerated Electrons. Bulletin of Experimental Biology and Medicine. 2021;172;1:22-25. doi: 10.1007/s10517-021-05323-z.

18. Hseu Y.C., Lin E., Chen J.Y., Liua Y.R., Huang C.Y., Lu F.J., et al. Humic Acid Induces G1 Phase Arrest and Apoptosis in Cultured Vascular Smooth Muscle Cells. Environ Toxicol. 2009;24;3:243-258. doi: 10.1002/tox.20426.

19. Salehi M., Piri H., Farasat A., Pakbin B., Gheibi N. Activation of Apoptosis and G0/G1 Cell Cycle Arrest Along with Inhibition of Melanogenesis by Humic Acid and Fulvic Acid: BAX/BCL-2 and Tyr Genes Expression and Evaluation of Nanomechanical Properties in A375 Human Melanoma Cell Line. Iran J. Basic Med. Sci. 2022;25;4:489-496. doi: 10.22038/IJBMS.2022.60651.13444.

20. Yang H.L., Huang P.J., Chen S.C., Cho H.J., Kumar K.J., Lu F.J., et al. Induction of Macrophage Cell-Cycle Arrest and Apoptosis by Humic Acid. Environ Mol. Mutagen. 2014;55;9:741-750. doi: 10.1002/em.21897.

 

 

 PDF (RUS) Full-text article (in Russian)

 
Conflict of interest. The authors declare no conflict of interest.

Financing. The analysis of residual foci was carried out with the support of the RNF (project No. 22-2400490).

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2022. Accepted for publication: 25.01.2023.