Medical Radiology and Radiation Safety. 2023. Vol. 68. № 4
DOI: 10.33266/1024-6177-2023-68-4-28-34
A.V. Khmelev1, 2
Radiation Sources and Doses of PET Center Staff and Patients
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
2 Federal research Center for Project Evaluation and Consulting Services, Moscow, Russia
Contact person: A.V. Khmelev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
CONTENTS
Introduction
1. Emissions in cyclotron facility and their influence on staff
2. Radiation sources of radiochemical laboratory and radiation exposure of radiochemists
3. Ionizing radiation sources in PET diagnostics division and doses of medical staff
4. Doses of PET center patients
Conclusion
Keywords: PET center, radiopharmaceuticals, radionuclide, radiation, dose, dose rate, staff, patients
For citation: Khmelev AV. Radiation Sources and Doses of PET Center Staff and Patients. Medical Radiology and Radiation Safety. 2023;68(4):28–34. (In Russian). DOI:10.33266/1024-6177-2023-68-4-28-34
References
1 Qaim S.M. Cyclotron Production of Medical Radionuclides. V. 4. Handbook of Nuclear Chemistry. Ed. Vértes A., Nagy S., Klencsár Z. Berlin, Springer, 2011. P. 1903–1933.
2. Miller P.W., Long N.J., Vilar R., Gee A.D. Synthesis of 11C, 18F, 15O and 13N Radiolabels for Positron Emission Tomography. Angew Chem. Int. Ed. Engl. 2008;47:8998-9033. DOI: 10.1002/anie.200800222.
3. Хмелев А.В. Позитронная эмиссионная томография: физико-технические аспекты. М.: Тровант. 2016. 336 с. [Khmelev А.V. Pozitronnaya Emissionnaya Tomografiya: Fiziko-Tekhnicheskiye Aspekty = Positron Emission Tomography: Physical and Technical Aspects. Мoscow, Trovant Publ., 2016. 336 p. (In Russ.)].
4. Abolaban F.A., Alawi M., Taha E., Elmoujarkach E., Banoqitah E., Alhawsawi A., et al. Estimation of Thermal & Epithermal Neutron Flux and Gamma Dose Distribution in a Medical Cyclotron Facility for Radiation Protection Purposes Using Gold Foils and Gate 9. Radiat. Prot. Dosimetry. 2021;193;1-2:176–184. DOI: 10.1093/rpd/ncab034.
5. Donmoon T., Chamroonrat W., Tuntawiroon M. Radiation Exposure to Nuclear Medicine Staffs During 18F-FDG PET/CT Procedures at Ramathibodi Hospital. Journal of Physics. Conference Series. 2016;694:012061. DOI:10.1088/1742-6596/694/1/012061.
6. Lecchi M., Malaspina S., Del Sole A. Effective and Equivalent Dose Minimization for Personnel in PET Procedures: how Far Are we from the Goal? Eur. J. Nucl. Med. Mol. Imaging. 2016;43:2279–2282. DOI.org/10.1007/s00259-016-3513-3.
7. Benatar N.A., Cronin B.F., O› Doherty M.J. Radiation Dose Rates from Patients Undergoing PET: Implications for Technologists and Waiting Areas. Eur. J. Nucl. Med. 2000;27;5:583–539. DOI: 10.1007/s002590050546.
8. Berberoglua K. External Radiation Exposure Rate after 18F-FDG PET/CT Examination. Radioprotection. 2019;54;2:113–116. DOI.org/10.1051/radiopro/2019010.
9. Hichwa R.D. Production of PET Radioisotopes and Principles of PET Imaging. Chapter 23. Nuclear Medicine. V.1. Ed. Henkin R.E., Bova D., Dillehay C.L., Halama J., Karesh S.M., Wagner R.H., et al. New York, Mosby-York Book, 1996. 1500 p.
10. Radiopharmaceuticals for Positron Emission Tomography: Methodological Aspects. Ed. Stocklin G., Pike V.W. New York, WILEY, 1993. 180 р.
11. Braccini S. Compact Cyclotrons and Their Use for Radioisotope Production and Multi-Disciplinary Research. 21st International Conference on Cyclotrons and Their Applications. Proceedings of Cyclotron 2016, 2016 Sept 11-16, Europe/Zurich. Zurich, Switzerland, 2016. P. 229-234.
12. Gonzales L., Vano E., Cordeiro C.A., Carreras J.L. Preliminary Safety Evaluation of a Cyclotron Facility for Positron Emission Tomography Imaging. Eur. J. Nucl. Med. 1999;26:894–899. DOI: 10.1007/s002590050464.
13. Iwai S., Nobuhara F., Tanaka M., Nagasawa N. Investigation of Activation Range for Self-Shielded PET Cyclotron. Progress in Nuclear Science and Technology. 2019;6:217–220. DOI: 10.15669/pnst.6.217.
14. Paans AMJ. Positron Emission Tomography. Acta. Physica. Polonica. 1999;B 30;5:1619–1628.
15. Fujibuchi T., Horitsugi G., Yamaguchi I., Eto A., Iwamoto Ya., Obara S., et al. Comparison of Neutron Fluxes in an 18-MeV Unshielded Cyclotron Room and a 16.5-MeV Self-Shielded Cyclotron Room. Radiol. Phys. Technol. 2012;5;2:156–165. DOI: 10.1007/s12194-012-0149-2.
16. Biegała M., Jakubowska T. Levels of Exposure to Ionizing Radiation among the Personnel Engaged in Cyclotron Operational and Personnel Engaged in the Production of Radiopharmaceuticals Based on Radiation Monitoring System. Radiat. Prot. Dosimetry. 2020;189;1:56–62. DOI:10.1093/rpd/ncaa012.
17. Schober O., Lottes G. Positron Emission Tomography and Radiation Exposure. Nuklearmedizin. 1994;33;5:174–177.
18. Brown T.F., Yasillo N.J. Radiation Safety Consideration for PET Center. J. Nucl. Med. Technol. 1997;25:96–102.
19. Boellaard R., O›Doherty M.J., Weber W.A., Mottaghy F.M., Lonsdale M.N., Stroobants S.G., et al. FDG PET and PET/CT: EANM Procedure Guidelines for Tumour PET Imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2010;37;1:181–200. DOI: 10.1007/s00259-009-1297-4.
20. Leide-Svegborn S. Radiation Exposure of Patients and Personnel from a PET/CT Procedure with 18F-FDG. Radiat. Prot. Dosimetry. 2010;139;1-3: 208–213. DOI: 10.1093/rpd/ncq026.
21. Anderson J.A. and Mathews D. Site Planning and Radiation Safety in the PET Facility Department of Radiology, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9071. URL: https://www.aapm.org.meeting.
22. Radiation Protection in Newer Medical Imaging Techniques: PET/CT. Safety Reports Series. № 58. Vienna, IAEA, 2008.
23. Gunes B.Y., Erez O., Gündoğan C., Ergü N. The Evaluation of External Dose Rate Measurements of Patients During and after F-18 FDG PET/CT Imaging and Appropriate Discharge Time from PET/CT Department. İstanbul Med. J. 2019;20;3:188–192. DOI:10.4274/imj.galenos.2018.85698.
24. Тарутин И.Г., Барановский О.А., Емельяненко Е.В. Аспекты радиационной безопасности ПЭТ-КТ диагностики. Электронный ресурс: https://elib.bsu.by/handle/123456789/171735. [Tarutin I.G., Baranovskiy O.A., Emelyanenko E.V. Radiation Safety Aspects of PET Diagnostics. URL: https://elib.bsu.by/handle/123456789/171735 (In Russ.)].
25. Peet D.J., Hussein M., Alsafi K., Spyrou N. Radiation Protection in Fixed PET/CT Facilities ‒ Design and Operation. Br. J. Radiol. 2012;85;1013:643–646. DOI: 10.1259/bjr/32969351.
26. Seierstad T., Stranden E., Bjering K., Evensen M., Holt A., Michalsen H.M., et al. Doses to Nuclear Technicians in a Dedicated PET/CT Centre Utilizing 18F Fluorodeoxyglucose (FDG). Radiat. Prot. Dosimetry. 2007;123;2:246–249. DOI: 10.1093/rpd/ncl141.
27. Linemann H., Will E., Beuthien-Baumann B. Investigations of Radiation Exposure of the Medical Personnel During F-18-FDG PET Studies. Nuklearmedizin. 2000;39;3:77–81.
28. Roberts F.O., Gunawardana D.H., Pathmaraj K., Wallace A., Lu P., Mi T., et al. Radiation Dose to PET Technologists and Strategies to Lower Occupational Exposure. J. Nucl. Med. Technol. 2005;33;1:44–47.
29. Guilett B., Quentin P., Waultier S., Bourrelly M., Pisano P., Mundler O. Technologist Radiation Exposure in Routine Clinical Practice with 18-FDG PET. J. Nucl. Med. Technol. 2005;33:175–179.
30. Alenezi A., Soliman K. Trends in Radiation Protection of Positron Emission Tomography/ Computed Tomography Imaging. ICRP 2013 Proceedings. 2013. P. 259–275.
31. Чипига Л.А., Звонова И.А., Рыжкова Д.В., Меньков М.А., Долгушин М.Б. Уровни облучения пациентов и возможные пути оптимизации ПЭТ-диагностики в России // Радиационная гигиена. 2017. Т.10, № 4. С. 31–43. DOI: 10.21514/1998-426Х-2017-10-4-31-43. [Chipiga L.A., Zvonova I.A., Ryzhkova D.V., Menkov M.A., Dolgushin M.B. Levels of Patient Irradiation and Possible Ways of PET Diagnostics Optimization in Russia. Radiatsionnaya Gigiyena = Radiation Hygiene. 2017;10;4:31–43 (In Russ.)].
32. Khamwan K., Krisanachinda A., Pasawang P. The Determination of Patient Dose from 18F-FDG PET/CT Examination. Radiat. Prot. Dosimetry. 2010;141;1:50–55. DOI: 10.1093/rpd/ncq140.
33. ICRP Radiation Dose to Patients from Radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann. ICRP. 2008;38;1-2:1–197.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The author declare no conflict of interest.
Financing. The research is performed with the support of the Ministry of Science and Higher Education of the Russian Federation within State Assignment as of 2023 № 075-01590-23-00-22-00 and prospected period as of 2024‒2025.
Contribution. Article was prepared with one participation of the authors.
Article received: 20.02.2022. Accepted for publication: 27.03.2023.