Medical Radiology and Radiation Safety. 2023. Vol. 68. № 5


S.M. Minin, Zh.Zh. Anashbayev, E.A. Samoylova, A.A. Zheravin,
W.Yu. Ussov, S.E. Krasilnikov, A.M. Cherniavsky

SPECT/CT with 99mTc-Technetryl in Staging, Planning of External Radiotherapy and Follow-up in Lung Cancer: a Clinical Case and Case – Addressed Review of Literature

E.N. Meshalkin National Medical Research Center, Novosibirsk, Russia

Contact person: W.Yu. Ussov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.



The case of a patient with newly diagnosed peripheral cancer of the right lung, involving the pleura, in whom the local extent of the process initially detected by X-ray CT was significantly extended from the data of the SPECT with 99mTc-technetryl. In particular, with SPECT/CT before the start of radiation therapy (RT), involved lymph nodes were detected both in the lower edge of the root of the right lung, and in paraaortic and paratracheal location. The SPECT/CT with 99mTc-technetryl was carried out with dual-detector gamma-camera GE Discovery NM/CT 670 DR (GE Medical) in a quantitative mode, with calibration and calculation of indexes of standardized uptake values (SUV) and % uptake of the administered activity by the primary tumor and metastatically involved lymph nodes. The values of the volume of tumor tissue were, respectively, for the tumor and the largest proximal metastatically involved lymph node 154.2 cm3 and 12.9 cm3, % of the activity absorbed by the tumor tissue − 0.498 and 0.030 %, and SVP ‒ 2.19 and 2.5.With subsequent external radiation therapy (in total 40 Gy, 2 Gy 5−6 times a week) the irradiation fields were planned in such a way that all affected lymph nodes were within their borders.
A control SPECT/CT study carried out immediately after the RT showed a decrease in the volume of tumor tissue in the primary node down to 58 cm3, % of the activity absorbed by the tumor tissue to 0.090 %, and SVP ‒ to 1.15. Reliable imaging of lymph nodes after LT was not observed. After 6.5 months, no evidencies  for relapse or continued tumor growth were detected with a control X-ray CT performed on an outpatient visit with contrast enhancement.

Thus, SPECT/CT with 99mTc-technetryl in lung cancer is a vital method for clarifying the diagnosis and assessment of the extent of the tumor process, as well as monitoring the patient. A broad inter-center assessment of abilities of the SPECT/CT with 99mTc-technetryl in lung cancer is advisable, especially when planning RT.

Keywords: lung cancer, radiation therapy, dosimetric planning, SPECT/CT, 99mTc-technetryl

For citation: Minin SM, Anashbayev ZhZh, Samoylova EA, Zheravin AA, Ussov WYu, Krasilnikov SE, Cherniavsky AM. SPECT/CT with 99mTc-technetryl in Staging, Planning of External Radiotherapy and Follow-up in Lung Cancer: a Clinical Case and Case – Addressed Review of Literature. Medical Radiology and Radiation Safety. 2023;68(5):96–104. (In Russian). DOI:10.33266/1024-6177-2023-68-5-96-104



1. Malignant Tumors in Russia in 2018 (Morbidity and Mortality). Ed. Kaprin A.D., Starinskiy V.V., Petrova G.V. Moscow Publ., 2019. 250 p. (In Russ.).

2. Merabishvili V.M., Yurkova Yu.P., Levchenko E.P., Shcherbakov A.M., Krotov N.E. The State of Cancercare in Russia: Lung Cancer, Patient Survival (Population Study at the Federal District Level). Problems of Oncology. 2021;67;4:492-500 (In Russ.).

3. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68;6:394-424. doi: 10.3322/caac.21492. 

4. Solodkiy V.A., Panshin G.A. Modern Radiotherapy for Inoperable Non-Small Cell Lung Cancer. Bulletin of the Russian Scientific Center of Radiology. 2020;20;2:74-98 (In Russ.).

5. Arsenyev A.I., Kanayev S.V., Novikov S.N., Barchuk A.A., Barchuk F.E. Current Trends in the Use of Radiation Therapy in the Treatment of Locally Advanced (Stage IIIA / N2) and Early Forms (Stage I - II) of Non-Small Cell Lung Cancer, or the Role of Radiation Therapy in the Treatment of Non-Small Cell Lung Cancer at the Present Stage. Malignant Tumors. 2017;7;3:26-34. doi: 10.18027/2224-5057-2017-7-3s1-26-34 (In Russ.).

6. Nudnov N.V., Sotnikov V.M., Ledenev V.V., Baryshnikova D.V. Quantitative Estimation of Radiation-Induced Lung Damage by CT. Medical Visualization. 2016;20;3:85-94. (In Russ.).

7. Meshcheryakova N.A., Dolgushin M.B., Davydov M.M., Laktionov K.K., Odzharova A.A., Nevzorov D.I., Eremin N.V. The Role of Positron Emission Tomography Combined with Computed Tomography in the Diagnosis and Evaluation of Treatment Effectiveness of Non-Small Cell Lung Cancer. Russian Journal of Oncology. 2016;21;3:160–164 (In Russ.). doi: 10.18821/1028-9984-2016-21-3-160-164 

8. Stukanov S.L., Ussov W.Yu., Kolomiets S.A., Ryannel’ Yu.E., Velichko S.A., Zyryanov B.N. Single-Photon Emission Computer-Aided Tomography with 99mTc-Technetryl in Lung Cancer. Мedical Radiology and Radiation Safety. 1996;41;6:11-15. 

9. Aktolun C., Bayhan H., Kir M. Clinical Experience with Tc-99m MIBI Imaging in Patients with Malignant Tumors. Preliminary results and comparison with Tl-201. Clin. Nucl. Med. 1992;17;3:171-176. doi: 10.1097/00003072-199203000-00003. 

10. Aktolun C., Bayhan H., Pabuccu Y., Bilgic H., Acar H., Koylu R. Assessment of Tumour Necrosis and Detection of Mediastinal Lymph Node Metastasis in Bronchial Carcinoma with Technetium-99m Sestamibi Imaging: Comparison with CT Scan. Eur. J. Nucl. Med. 1994;21;9:973-979. doi: 10.1007/BF00238122. 

11. Chipiga L.A., Ladanova E.R., Vodovatov A.V., Zvonova L.A., Mosunov A.A., Naurzbayeva L.T., Ryzhov S.A. Trends in the Development of Nuclear Medicine in the Russian Federation for 2015 – 2020. Radiation Hygiene. 2022;15;4:122-133. doi: 10.21514/1998-426X-2022-15-4-122-133 (In Russ.).

12. Lugano R., Ramachandran M., Dimberg A. Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cell. Mol. Life Sci. 2020;77;9:1745-1770. doi: 10.1007/s00018-019-03351-7. 

13. Ussov W.Y., Riannel J.E., Slonimskaya E.M., Velichko S.A., Mihailovic J.M.F., Scopinaro F. Quantification of Breast Cancer Blood Flow in Absolute Units Using Gjedde-Rutland-Patlak Analysis of 99mTc-MIBI Uptake. Nucl. Med. Rev. Cent. East. Eur. 1999;2;1:4-9.

14. Nikolov N.A. Kinetics of 99mTc-MIBI in Breast Cancer According to the Results of Mathematical Modelling. Electronics and Communications. 2013;1:38-44 (In Russ.).

15. Santini M., Fiorello A., Mansi L., Rambaldi P.F., Vicidomini G., Busiello L., Messina G., Nargi P. The Role of Technetium-99m Hexakis-2-Methoxyisobutyl Isonitrile in the Detection of Neoplastic Lung Lesions. Eur. J. Cardiothorac Surg. 2009;35;2:325-331. doi: 10.1016/j.ejcts.2008.09.033. 

16. Nikoletic K., Lucic S., Peter A., Kolarov V., Zeravica R., Srbovan D. Lung 99mTc-MIBI Scintigraphy: Impact on Diagnosis of Solitary Pulmonary Nodule. Bosnian J. Basic Med. Sci. 2011;11;3:174-179. doi: 10.17305/bjbms.2011.2570. 

17. Nikoletić K., Mihailović J., Srbovan D., Kolarov V., Zeravica R. Lung Tumors: Early and Delayed Ratio of 99mTc-Methoxy-2-Isobutylisonitrile Accumulation. Vojnosanit Pregl. 2014;71;5:438-445.  

18. Ussov W.Yu., Obradovich V., Kostenikov N.A. Mammoscintigraphy: a Brief Review of Modern Clinical Application. Radiology — Practice. 2001;2;3:10–27 (In Russ.).

19. Crișan G., Moldovean-Cioroianu N.S., Timaru D.G., Andrieș G., Căinap C., Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int. J. Mol. Sci. 2022;23;9:5023. doi: 10.3390/ijms23095023. 

20. Ergün E.L., Kara P.O., Gedik G.K., Kars A., Türker A., Caner B. The Role of Tc-99m (V) DMSA Scintigraphy in the Diagnosis and Follow-up of Lung Cancer Lesions. Ann. Nucl. Med. 2007;21;5:275-283. doi: 10.1007/s12149-007-0017-z. 

21. Berk F., Demir H., Aktolun C. Thallium-201 Imaging in the Assessment of Tumor Response to Anti-Tumor Treatments. Q. J. Nucl. Med. 2003;47;1:63-74. 

22. Borodin O.Yu., Karpov E.N., Lishmanov Yu.B., Skuridin V.S., Ignatovich I.A., Ussov W.Yu. First Experience of SPECT-CT with the Radiopharmaceutical Thallium-199 Chloride in Diagnosis and Assessment of the Metastatic Spread of Lung Cancer. Medical Visualization. 2022;26;1:84–93 (In Russ.). doi: 10.24835/1607-0763-1016.  

23. de Barros A.L., Cardoso V.N., Mota L.d., Leite E.A., Oliveira M.C., Alves R.J. Synthesis and Biological Evaluation of Technetium-Labeled D-Glucose-MAG3 Derivative as Agent for Tumor Diagnosis. Bioorg. Med. Chem. Lett. 2009;19;9:2497-2499. doi: 10.1016/j.bmcl.2009.03.059. 

24. Nadeem Q., Khan I., Javed M., Mahmood Z., Dar U.K., Ali M., Hyder S.W., Murad S. Synthesis, Characterization and Bioevaluation of Technetium-99m Labeled N-(2-Hydroxybenzyl)-2-Amino-2-Deoxy-D-Glucose as a Tumor Imaging Agent. Pak. J. Pharm. Sci. 2013;26;2:353-357. 

25. Lindner T., Altmann A., Krämer S., Kleist C., Loktev A., Kratochwil C., Giesel F., Mier W., Marme F., Debus J., Haberkorn U. Design and Development of 99mTc-Labeled FAPI Tracers for SPECT Imaging and 188Re Therapy. J. Nucl. Med. 2020;61;10:1507-1513. doi: 10.2967/jnumed.119.239731. 

26. Minai O.A., Raja S., Mehta A.C., Sullivan E.J., Khan S.U., Dasgupta A., Arroliga A.C. Role of Tc-99m MIBI in the Evaluation of Single Pulmonary Nodules: a Preliminary Report. Thorax. 2000;55;1:60-62. doi: 10.1136/thorax.55.1.60. 

27. Zhang S., Liu Y. Diagnostic Performances of 99mTc-Methoxy Isobutyl Isonitrile Scan in Predicting the Malignancy of Lung Lesions: A Meta-Analysis. Medicine (Baltimore). 2016;95;18:e3571. doi: 10.1097/MD.0000000000003571. 

28. Miziara J.M., da Rocha E.T., Miziara J.E., Garcia G.F., Simões M.I., Lopes M.A., Kerr L.M., Buchpiguel C.A. Preoperative Nodal Staging of Non-Small Cell Lung Cancer Using 99mTc-Sestamibi Spect/Ct Imaging. Clinics (Sao Paulo). 2011;66;11:1901-1909. doi: 10.1590/s1807-59322011001100009.

29. Sathekge M., Maes A., D›Asseler Y., Vorster M., Van de Wiele C. Nuclear Medicine Imaging in Tuberculosis Using Commercially Available Radiopharmaceuticals. Nucl. Med. Commun. 2012;33;6:581-90. doi: 10.1097/MNM.0b013e3283528a7c. 

30. Monostori Z. Novelties and New Possibilities in Radiological Diagnostics of Lung Cancer. Hungarian Oncology. 2015;59:37–43. 

31. Arsenyev A.I., Novikov S.N., Barchuk A.S., Kanayev S.V., Barchuk A.A., Tarkov S., Nefedov A.O., Kostitsin K.A., Gagua K.E., Nefedova A.V., Aristidov N.Yu. Lung Cancer Diagnosis: Non-Invasive and Invasive Methods. Problems in oncology. 2020;66;1:42-49 (In Russ.).



 PDF (RUS) Full-text article (in Russian)


Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.04.2023. Accepted for publication: 27.05.2023.