Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2


J.M. Rozenberg, V.V. Maximov, D.V. Kuzmin, S.V. Leonov

Mechanisms of Mitochondrial Influence on Tumor Radioresistivity

Institute of Biophysics of the Future, Moscow Region, Dolgoprudny, Russia

Contact person: S.V. Leonov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.



Radiotherapy remains one of the main methods of cancer treatment. At the same time, the formation of radioresistance (RR)of cancer cells to ionizing radiation leads to a loss of therapy effectiveness. The toxicity of radiotherapy is determined by mitochondria, and the use of mitochondria or their components in combination with chemo-radio and immunotherapy can increase the effectiveness of treatment. In this review, we have reviewed new, experimental methods for using mitochondria in cancer therapy. Literature data indicate that although the physiological transport of mitochondria promotes carcinogenesis and resistance to chemotherapy, transplantation of exogenous mitochondria, on the contrary, induces radiosensitivity and inhibits tumor growth in mouse models of cancer. Therefore, inhibition of endogenous transfer of cancer mitochondria or the development of methods for the delivery of exogenous mitochondria is a promising area for the development of anti-cancer drugs.

Keywords: radioresistance, cancer, mitochondrial transfer, mitochondrial transplantation

For citation: Rozenberg JM, Maximov VV, Kuzmin DV, Leonov SV. Mechanisms of Mitochondrial Influence on Tumor Radioresisti-
vity. Medical Radiology and Radiation Safety. 2024;69(2):12–17. (In Russian). DOI:10.33266/1024-6177-2024-69-2-12-17



1. Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova, K., Svec D., Hubackova S., Endaya B., Judasova K., Bezawork-Geleta A., Kluckova K., Chatre L., Zobalova R., Novakova A., Vanova K., Ezrova Z., Maghzal G.J., Magalhaes Novais S., Olsinova M., Neuzil J. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab. 2019;29:399-416.e10. doi:10.1016/j.cmet.2018.10.014.

2. Grasso D., Medeiros H.C.D., Zampieri L.X., Bol V., Danhier P., van Gisbergen M.W., Bouzin C., Brusa D., Grégoire V., Smeets H., Stassen A.P.M., Dubois L.J., Lambin P., Dutreix M., Sonveaux P. Fitter Mitochondria Are Associated with Radioresistance in Human Head and Neck SQD9 Cancer Cells. Front. Pharmacol. 2020;11:263. doi:10.3389/fphar.2020.00263.

3. Shidara Y., Yamagata K., Kanamori T., Nakano K., Kwong J.Q., Manfredi G., Oda H., Ohta S. Positive Contribution of Pathogenic Mutations in the Mitochondrial Genome to the Promotion of Cancer by Prevention from Apoptosis. Cancer Res. 2005;65:1655–1663. doi:10.1158/0008-5472.CAN-04-2012.

4. Marquez J., Flores J., Kim A.H., Nyamaa B., Nguyen A.T.T., Park N., Han J. Rescue of TCA Cycle Dysfunction for Cancer Therapy. J. Clin. Med. 2019;8. doi:10.3390/jcm8122161.

5. Missiroli S., Perrone M., Genovese I., Pinton P., Giorgi C. Cancer Metabolism and Mitochondria: Finding Novel Mechanisms to Fight Tumours. EBioMedicine. 2020;59;102943. doi:10.1016/j.ebiom.2020.102943.

6. Pirozzi C.J., Yan H. The Implications of IDH Mutations for Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2021;18:645–661. doi:10.1038/s41571-021-00521-0.

7. Han S., Liu Y., Cai S.J., Qian M., Ding J., Larion M., Gilbert M.R., Yang C. IDH Mutation in Glioma: Molecular Mechanisms and Potential Therapeutic Targets. Br. J. Cancer 2020;122:1580–1589. doi:10.1038/s41416-020-0814-x.

8. Ekoue D.N., He C., Diamond A.M., Bonini, M.G. Manganese Superoxide Dismutase and Glutathione Peroxidase-1 Contribute to the Rise and Fall of Mitochondrial Reactive Oxygen Species which Drive Oncogenesis. Biochim. Biophys. Acta Bioenerg. 2017;1858:628–632. doi:10.1016/j.bbabio.2017.01.006.

9. Wang X., Gerdes H.H. Transfer of Mitochondria Via Tunneling Nanotubes Rescues Apoptotic PC12 Cells. Cell. Death Differ. 2015;22:1181–1191. doi:10.1038/cdd.2014.211.

10. Yang F., Zhang Y., Liu S., Xiao J., He Y., Shao Z., Zhang Y., Cai X., Xiong L. Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. Oxid. Med. Cell. Longev. 2022;2022:3613319. doi:10.1155/2022/3613319.

11. Khattar K.E., Safi J., Rodriguez A.-M., Vignais M.-L. Intercellular Communication in the Brain Through Tunneling Nanotubes. Cancers (Basel). 2022;14. doi:10.3390/cancers14051207.

12. Dong L.-F., Rohlena J., Zobalova R., Nahacka Z., Rodriguez A.-M., Berridge M.V., Neuzil J. Mitochondria on the Move: Horizontal Mitochondrial Transfer in Disease and Health. J. Cell Biol. 2023;222. doi:10.1083/jcb.202211044.

13. Morrison T.J., Jackson M.V., Cunningham E.K., Kissenpfennig A., McAuley D.F., O’Kane C.M., Krasnodembskaya A.D. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am. J. Respir. Crit. Care Med. 2017;196:1275–1286. doi:10.1164/rccm.201701-0170OC.

14. O’Brien C.G., Ozen M.O., Ikeda G., Vaskova E., Jung J.H., Bayardo N., Santoso M.R., Shi L., Wahlquist C., Jiang Z., Jung Y., Zeng Y., Egan E., Sinclair R., Gee A., Witteles R., Mercola M., Svensson K.J., Demirci U., Yang P.C. Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes from Doxorubicin Injury: Insights into the SENECA Trial. JACC CardioOncol. 2021;3:428–440. doi:10.1016/j.jaccao.2021.05.006.

15. Liang W., Sagar S., Ravindran R., Najor R.H., Quiles J.M., Chi L., Diao R.Y., Woodall B.P., Leon L.J., Zumaya E., Duran J., Cauvi D.M., De Maio A., Adler E.D., Gustafsson Å.B. Mitochondria Are Secreted in Extracellular Vesicles when Lysosomal Function Is Impaired. Nat. Commun. 2023;14:5031. doi:10.1038/s41467-023-40680-5.

16. Yang J., Liu L., Oda Y., Wada K., Ago M., Matsuda S., Hattori M., Goto T., Ishibashi S., Kawashima-Sonoyama Y., Matsuzaki Y., Taketani T. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. Int. J. Mol. Sci. 2023;24. doi:10.3390/ijms241210294.

17. Guo R., Davis D., Fang Y. Intercellular Transfer of Mitochondria Rescues Virus-Induced Cell Death But Facilitates Cell-to-Cell Spreading of Porcine Reproductive and Respiratory Syndrome Virus. Virology. 2018;517:122–134. doi:10.1016/j.virol.2017.12.018.

18. Liu D., Gao Y., Liu J., Huang Y., Yin J., Feng Y., Shi L., Meloni B.P., Zhang C., Zheng M., Gao J. Intercellular Mitochondrial Transfer as a Means of Tissue Revitalization. Signal Transduct. Target. Ther. 2021;6;65. doi:10.1038/s41392-020-00440-z.

19. Alexander J.F., Seua A.V., Arroyo L.D., Ray P.R., Wangzhou A., Heiβ-Lückemann L., Schedlowski M., Price T.J., Kavelaars A., Heijnen C.J. Nasal Administration of Mitochondria Reverses Chemotherapy-Induced Cognitive Deficits. Theranostics. 2021;11:3109–3130. doi:10.7150/thno.53474.

20. Marlein C.R., Zaitseva L., Piddock R.E., Robinson S.D., Edwards D.R., Shafat M.S., Zhou Z., Lawes M., Bowles K.M., Rushworth S.A. NADPH Oxidase-2 Derived Superoxide Drives Mitochondrial Transfer from Bone Marrow Stromal Cells to Leukemic Blasts. Blood. 2017;130:1649–1660. doi:10.1182/blood-2017-03-772939.

21. Rozenberg J.M., Zvereva S., Dalina A., Blatov I., Zubarev I., Luppov D., Bessmertnyi A., Romanishin A., Alsoulaiman L., Kumeiko V., Kagansky A., Melino G., Ganini C., Barlev N.A. The p53 Family Member p73 in the Regulation of Cell Stress Response. Biol. Direct. 2021;16;23. doi:10.1186/s13062-021-00307-5.

22. Wei M.C., Zong W.X., Cheng E.H., Lindsten T., Panoutsakopoulou V., Ross A.J., Roth K.A., MacGregor G.R., Thompson C.B., Korsmeyer S.J. Proapoptotic BAX and BAK: a Requisite Gateway to Mitochondrial Dysfunction and Death. Science. 2001;292:727–730. doi:10.1126/science.1059108.

23. Julien O., Wells J.A. Caspases and Their Substrates. Cell. Death Differ. 2017;24:1380–1389. doi:10.1038/cdd.2017.44.

24. Cao X., Wen P., Fu Y., Gao Y., Qi X., Chen B., Tao Y., Wu L., Xu A., Lu H., Zhao G. Radiation Induces Apoptosis Primarily Through the Intrinsic Pathway in Mammalian Cells. Cell. Signal. 2019;62:109337. doi:10.1016/j.cellsig.2019.06.002.

25. Wang C., Youle R.J. The Role of Mitochondria in Apoptosis*. Annu. Rev. Genet. 2009;43:95–118. doi:10.1146/annurev-genet-102108-134850.

26. Xia P., Gou W., Wang J., Niu Z., Chen S., Takano Y., Zheng H. Distinct Radiosensitivity of Lung Carcinoma Stem-Like Side Population and Main Population Cells. Cancer Biother. Radiopharm. 2013;28:471–478. doi:10.1089/cbr.2012.1388.

27. Tigano M., Vargas D.C., Tremblay-Belzile S., Fu Y., Sfeir A. Nuclear Sensing of Breaks in Mitochondrial DNA Enhances Immune Surveillance. Nature. 2021;591:477–481. doi:10.1038/s41586-021-03269-w.

28. West A.P., Khoury-Hanold W., Staron M., Tal M.C., Pineda C.M., Lang S.M., Bestwick M., Duguay B.A., Raimundo N., MacDuff D.A., Kaech S.M., Smiley J.R., Means R.E., Iwasaki A., Shadel G.S. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response. Nature. 2015;520:553–557. doi:10.1038/nature14156.

29. Guan H., Zhang W., Xie D., Nie Y., Chen S., Sun X., Zhao H., Liu X., Wang H., Huang X., Bai C., Huang B., Zhou P., Gao S. Cytosolic Release of Mitochondrial DNA and Associated cGAS Signaling Mediates Radiation-Induced Hematopoietic Injury of Mice. Int. J. Mol. Sci. 2023;24. doi:10.3390/ijms24044020.

30. Cruz-Gregorio A., Aranda-Rivera A.K., Amador-Martinez I., Maycotte P. Mitochondrial Transplantation Strategies in Multifaceted Induction of Cancer Cell Death. Life Sci. 2023;332:122098. doi:10.1016/j.lfs.2023.122098.

31. Zhou W., Zhao Z., Yu Z., Hou Y., Keerthiga R., Fu A. Mitochondrial Transplantation Therapy Inhibits the Proliferation of Malignant Hepatocellular Carcinoma and Its Mechanism. Mitochondrion. 2022;65:11–22. doi:10.1016/j.mito.2022.04.004.

32. Yu Z., Hou Y., Zhou W., Zhao Z., Liu Z., Fu A. The Effect of Mitochondrial Transplantation Therapy from Different Gender on Inhibiting Cell Proliferation of Malignant Melanoma. Int. J. Biol. Sci. 2021;17:2021–2033. doi:10.7150/ijbs.59581.

33. Chang J.-C., Chang H.-S., Wu Y.-C., Cheng W.-L., Lin T.-T., Chang H.-J., Kuo S.-J., Chen S.-T., Liu C.-S. Mitochondrial Transplantation Regulates Antitumour Activity, Chemoresistance and Mitochondrial Dynamics in Breast Cancer. J. Exp. Clin. Cancer Res. 2019;38;30. doi:10.1186/s13046-019-1028-z.

34. Sun C., Liu X., Wang B., Wang Z., Liu Y., Di C., Si J., Li H., Wu Q., Xu D., Li J., Li G., Wang Y., Wang F., Zhang H. Endocytosis-Mediated Mitochondrial Transplantation: Transferring Normal Human Astrocytic Mitochondria into Glioma Cells Rescues Aerobic Respiration and Enhances Radiosensitivity. Theranostics. 2019;9:3595–3607. doi:10.7150/thno.33100.

35. Valko Z., Megyesfalvi Z., Schwendenwein A., Lang C., Paku S., Barany N., Ferencz B., Horvath-Rozsas A., Kovacs I., Schlegl E., Pozonec V., Boettiger K., Rezeli M., Marko-Varga G., Renyi-Vamos F., Hoda M.A., Klikovits T., Hoetzenecker K., Grusch M., Laszlo V., Schelch K. Dual Targeting of BCL-2 and MCL-1 in the Presence of BAX Breaks Venetoclax Resistance in Human Small Cell Lung Cancer. Br. J. Cancer. 2023;128:1850–1861. doi:10.1038/s41416-023-02219-9.

36. Lochmann T.L., Floros K.V., Naseri M., Powell K.M., Cook W., March R.J., Stein G.T., Greninger P., Maves Y.K., Saunders L.R., Dylla S.J., Costa C., Boikos S.A., Leverson J.D., Souers A.J., Krystal G.W., Harada H., Benes C.H., Faber A.C. Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clin. Cancer Res. 2018;24:360–369. doi:10.1158/1078-0432.CCR-17-1606.

37. Kapoor I., Bodo J., Hill B.T., Hsi E.D., Almasan A. Targeting BCL-2 in B-Cell Malignancies and Overcoming Therapeutic Resistance. Cell. Death Dis. 2020;11;941. doi:10.1038/s41419-020-03144-y.

38. Sharma A., Gaidamakova E.K., Grichenko O., Matrosova V.Y., Hoeke V., Klimenkova P., Conze I.H., Volpe R.P., Tkavc R., Gostinčar C., Gunde-Cimerman N., DiRuggiero J., Shuryak I., Ozarowski A., Hoffman B.M., Daly M.J. Across the Tree of Life, Radiation Resistance Is Governed by Antioxidant Mn2+, Gauged by Paramagnetic Resonance. Proc. Natl. Acad. Sci. USA. 2017;114:E9253–E9260. doi:10.1073/pnas.1713608114.

39. Gaidamakova E.K., Sharma A., Matrosova V.Y., Grichenko O., Volpe R.P., Tkavc R., Conze I.H., Klimenkova P., Balygina I., Horne W.H., Gostinčar C., Chen X., Makarova K.S., Shuryak I., Srinivasan C., Jackson-Thompson B., Hoffman B.M., Daly M.J. Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. MBio. 2022:e0339421. doi:10.1128/mbio.03394-21.

40. Culotta V.C., Daly M.J. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast. Antioxid. Redox Signal. 2013;19:933–944. doi:10.1089/ars.2012.5093.

41. Gunter T.E., Gavin C.E., Gunter K.K. The Case for Manganese Interaction with Mitochondria. Neurotoxicology. 2009;30:727–729. doi:10.1016/j.neuro.2009.05.003.

42. Rozenberg J.M., Kamynina M., Sorokin M., Zolotovskaia M., Koroleva E., Kremenchutckaya K., Gudkov A., Buzdin A., Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines. 2022;10. doi:10.3390/biomedicines10051072.

43. Daly M.J., Gaidamakova E.K., Matrosova V.Y., Vasilenko A., Zhai M., Venkateswaran A., Hess M., Omelchenko M.V., Kostanda-
rithes H.M., Makarova K.S., Wackett L.P., Fredrickson J.K., Ghosal D. Accumulation of Mn(II) in Deinococcus Radiodurans Facilitates Gamma-Radiation Resistance. Science. 2004;306:1025–1028. doi:10.1126/science.1103185.

44. Lu C.-L., Qin L., Liu H.-C., Candas D., Fan M., Li J.J. Tumor Cells Switch to Mitochondrial Oxidative Phosphorylation under Radiation Via mTOR-Mediated Hexokinase II Inhibition--a Warburg-Reversing Effect. PLoS ONE. 2015;10:e0121046. doi:10.1371/journal.pone.0121046.

45. Krysztofiak A., Szymonowicz K., Hlouschek J., Xiang K., Waterkamp C., Larafa S., Goetting I., Vega-Rubin-de-Celis S., Theiss C., Matschke V., Hoffmann D., Jendrossek V., Matschke J. Metabolism of Cancer Cells Commonly Responds to Irradiation by a Transient Early Mitochondrial Shutdown. iScience. 2021;24:103366. doi:10.1016/j.isci.2021.103366.

46. Sun C., Wang Z., Liu Y., Liu Y., Li H., Di C., Wu Z., Gan L., Zhang H. Carbon Ion Beams Induce Hepatoma Cell Death by NADPH Oxidase-Mediated Mitochondrial Damage. J. Cell. Physiol. 2014;229:100–107. doi:10.1002/jcp.24424.

47. Cloos C.R., Daniels D.H., Kalen A., Matthews K., Du J., Goswami P.C., Cullen J.J. Mitochondrial DNA Depletion Induces Radioresistance by Suppressing G2 Checkpoint Activation in Human Pancreatic Cancer Cells. Radiat. Res. 2009;171:581–587. doi:10.1667/RR1395.1.

48. Wei Y., Chen L., Xu H., Xie C., Zhou Y., Zhou F. Mitochondrial Dysfunctions Regulated Radioresistance through Mitochondria-to-Nucleus Retrograde Signaling Pathway of NF-κB/PI3K/AKT2/mTOR. Radiat. Res. 2018;190:204–215. doi:10.1667/RR15021.1.

49. Chen S., Liao Z., Xu P. Mitochondrial Control of Innate Immune Responses. Front. Immunol. 2023;14:1166214. doi:10.3389/fimmu.2023.1166214.

50. Zhu M., Barbas A.S., Lin L., Scheuermann U., Bishawi M., Brennan T.V. Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses. Immunohorizons. 2018;2:384–397. doi:10.4049/immunohorizons.1800063.

51. Trishna S., Lavon A., Shteinfer-Kuzmine A., Dafa-Berger A., Shoshan-Barmatz V. Overexpression of the Mitochondrial Anti-Viral Signaling Protein, MAVS, in Cancers Is Associated with Cell Survival and Inflammation. Mol. Ther. Nucleic Acids. 2023;33:713–732. doi:10.1016/j.omtn.2023.07.008.

52. Du Y., Pan D., Jia R., Chen Y., Jia C., Wang J., Hu B. The Reduced Oligomerization of MAVS Mediated by ROS Enhances the Cellular Radioresistance. Oxid. Med. Cell. Longev. 2020;2020:2167129. doi:10.1155/2020/2167129.

53. Norris R.P. Transfer of Mitochondria and Endosomes between Cells by Gap Junction Internalization. Traffic. 2021;22:174–179. doi:10.1111/tra.12786.

54. Hayashida K., Takegawa R., Endo Y., Yin T., Choudhary R.C., Aoki T., Nishikimi M., Murao A., Nakamura E., Shoaib M., Kuschner C., Miyara S.J., Kim J., Shinozaki K., Wang P., Becker L.B. Exogenous Mitochondrial Transplantation Improves Survival and Neurological Outcomes after Resuscitation from Cardiac Arrest. BMC Med. 2023;21:56. doi:10.1186/s12916-023-02759-0.

55. Tang L.-X., Wei B., Jiang L.-Y., Ying Y.-Y., Li K., Chen T.-X., Huang R.-F., Shi M.-J., Xu H. Intercellular Mitochondrial Transfer as a Means of revitalizing Injured Glomerular Endothelial Cells. World J. Stem Cells. 2022;14:729–743. doi:10.4252/wjsc.v14.i9.729.

56. Guo Y., Chi X., Wang Y., Heng B.C., Wei Y., Zhang X., Zhao H., Yin Y., Deng X. Mitochondria Transfer Enhances Proliferation, Migration, and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cell and Promotes Bone Defect Healing. Stem Cell. Res. Ther. 2020;11:245. doi:10.1186/s13287-020-01704-9.

57. Saito K., Zhang Q., Yang H., Yamatani K., Ai T., Ruvolo V., Baran N., Cai T., Ma H., Jacamo R., Kuruvilla V., Imoto J., Kinjo S., Ikeo K., Moriya K., Suzuki K., Miida T., Kim Y.-M., Vellano C.P., Andreeff M., Konopleva M. Exogenous Mitochondrial Transfer and Endogenous Mitochondrial Fission Facilitate AML Resistance to OxPhos Inhibition. Blood Adv. 2021;5:4233–4255. doi:10.1182/bloodadvances.2020003661.

58. Salaud C., Alvarez-Arenas A., Geraldo F., Belmonte-Beitia J., Calvo G.F., Gratas C., Pecqueur C., Garnier D., Pérez-Garcià V., Vallette F.M., Oliver L. Mitochondria Transfer from Tumor-Activated Stromal Cells (TASC) to Primary Glioblastoma Cells. Biochem. Biophys. Res. Commun. 2020;533:139–147. doi:10.1016/j.bbrc.2020.08.101.

59. Nakhle J., Khattar K., Özkan T., Boughlita A., Abba Moussa, D., Darlix A., Lorcy F., Rigau V., Bauchet L., Gerbal-Chaloin S., Daujat-Chavanieu M., Bellvert F., Turchi L., Virolle T., Hugnot J.-P., Buisine N., Galloni M., Dardalhon V., Rodriguez A.-M., Vignais M.-L. Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring. Cancer Res. Commun. 2023;3:1041–1056. doi:10.1158/2767-9764.CRC-23-0144.

60. Watson D.C., Bayik D., Storevik S., Moreino S.S., Sprowls S.A., Han J., Augustsson M.T., Lauko A., Sravya P., Røsland G.V., Troike K., Tronstad K.J., Wang S., Sarnow K., Kay K., Lunavat T.R., Silver D.J., Dayal S., Joseph J.V., Mulkearns-Hubert E., Lathia J.D. GAP43-Dependent Mitochondria Transfer from Astrocytes Enhances Glioblastoma Tumorigenicity. Nat. Cancer. 2023;4:648–664. doi:10.1038/s43018-023-00556-5.

61. Cho Y.M., Kim J.H., Kim M., Park S.J., Koh S.H., Ahn H.S., Kang G.H., Lee J.-B., Park K.S., Lee H.K. Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually no Mitochondrial Function But Not with Pathogenic mtDNA Mutations. PLoS ONE. 2012;7:e32778. doi:10.1371/journal.pone.0032778.

62. Lee S.-E., Kang Y.C., Kim Y., Kim S., Yu S.-H., Park J.H., Kim I.-H., Kim H.-Y., Han K., Lee H.K., Kim S.-H., Kim C.-H. Preferred Migration of Mitochondria Toward Cells and Tissues with Mitochondrial Damage. Int. J. Mol. Sci. 2022;23. doi:10.3390/ijms232415734.

63. Golan K., Singh A.K., Kollet O., Bertagna M., Althoff M.J., Khatib-Massalha E., Petrovich-Kopitman E., Wellendorf A.M., Massalha H., Levin-Zaidman S., Dadosh T., Bohan B., V Gawali M., Dasgupta B., Lapidot T., Cancelas J.A. Bone Marrow Regeneration Requires Mitochondrial Transfer from Donor Cx43-Expressing Hematopoietic Progenitors to Stroma. Blood. 2020;136:2607–2619. doi:10.1182/blood.2020005399.

64. Pisani F., Castagnola V., Simone L., Loiacono F., Svelto M., Benfenati F. Role of Pericytes in Blood-Brain Barrier Preservation During Ischemia Through Tunneling Nanotubes. Cell. Death Dis. 2022;13:582. doi:10.1038/s41419-022-05025-y.

65. Crisan M., Yap S., Casteilla L., Chen C.-W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P.-N., Traas J., Schugar R., Deasy B.M., Badylak S., Buhring H.-J., Giacobino J.-P., Lazzari L., Huard J., Péault B. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell. Stem. Cell. 2008;3:301–313. doi:10.1016/j.stem.2008.07.003.

66. Betzer O., Perets N., Angel A., Motiei M., Sadan T., Yadid G., Offen D., Popovtzer R. In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles. ACS Nano. 2017;11:10883–10893. doi:10.1021/acsnano.7b04495.

67. Perets N., Betzer O., Shapira R., Brenstein S., Angel A., Sadan T., Ashery U., Popovtzer R., Offen D. Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. Nano Lett. 2019;19:3422–3431. doi:10.1021/acs.nanolett.8b04148.

68. Naaldijk Y., Sherman L.S., Turrini N., Kenfack Y., Ratajczak M.Z., Souayah N., Rameshwar P., Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages During Inflammatory Responses. Stem. Cell. Rev. and Rep. 2023. doi:10.1007/s12015-023-10612-3.

69. Huang T., Lin R., Su Y., Sun H., Zheng X., Zhang J., Lu X., Zhao B., Jiang X., Huang L., Li N., Shi J., Fan X., Xu D., Zhang T., Gao J. Efficient Intervention for Pulmonary Fibrosis Via Mitochondrial Transfer Promoted by Mitochondrial Biogenesis. Nat. Commun. 2023;14:5781. doi:10.1038/s41467-023-41529-7.

70. Luz-Crawford P., Hernandez J., Djouad F., Luque-Campos N., Caicedo A., Carrère-Kremer S., Brondello J.-M., Vignais M.-L., Pène J., Jorgensen C. Mesenchymal Stem Cell Repression of Th17 Cells Is Triggered by Mitochondrial Transfer. Stem Cell. Res. Ther. 2019;10:232. doi:10.1186/s13287-019-1307-9.

71. Pinto G., Saenz-de-Santa-Maria I., Chastagner P., Perthame E., Delmas C., Toulas C., Moyal-Jonathan-Cohen E., Brou C., Zurzolo C. Patient-Derived Glioblastoma Stem Cells Transfer Mitochondria Through Tunneling Nanotubes in Tumor Organoids. Biochem. J. 2021;478:21–39. doi:10.1042/BCJ20200710.

72. Elliott R., Barnett B. Ultrastructural Observation of Mitochondria in Human Breast Carcinoma Cells. Microsc. Microanal. 2011;7:194–195. doi:10.1017/S143192761100184X.

73. Chang J.-C., Chang H.-S., Wu Y.-C., Cheng W.-L., Lin T.-T., Chang H.-J., Chen S.-T., Liu C.-S. Antitumor Actions of Intratumoral Delivery of Membrane-Fused Mitochondria in a Mouse Model of Triple-Negative Breast Cancers. Onco. Targets. Ther. 2020;13:5241–5255. doi:10.2147/OTT.S238143.

74. Chang J.-C., Chang H.-S., Yeh C.-Y., Chang H.-J., Cheng W.-L., Lin T.-T., Liu C.-S., Chen S.-T. Regulation of Mitochondrial Fusion and Mitophagy by Intra-Tumoral Delivery of Membrane-Fused Mitochondria or Midiv-1 Enhances Sensitivity to Doxorubicin in Triple-Negative Breast Cancer. Biomed. Pharmacother. 2022;153:113484. doi:10.1016/j.biopha.2022.113484.

75. Vaupel P., Multhoff G. Revisiting the Warburg Effect: Historical Dogma Versus Current Understanding. J. Physiol. (Lond). 2021;599:1745–1757. doi:10.1113/JP278810.

76. Drozdov A.S., Nikitin P.I., Rozenberg J.M. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int. J. Mol. Sci. 2021;22. doi:10.3390/ijms222313011.

77. Chartouni A., Mouawad A., Boutros M., Attieh F., Medawar N., Kourie H.R. Mesenchymal Stem Cells: a Trojan Horse to Treat Glioblastoma. Invest. New Drugs. 2023;41:240–250. doi:10.1007/s10637-023-01352-9.

78. Zhang W., Zhou H., Li H., Mou H., Yinwang E., Xue Y., Wang S., Zhang Y., Wang Z., Chen T., Sun H., Wang F., Zhang J., Chai X., Chen S., Li B., Zhang C., Gao J., Ye Z. Cancer Cells Reprogram to Metastatic State Through the Acquisition of Platelet Mitochondria. Cell. Rep. 2023;42:113147. doi:10.1016/j.celrep.2023.113147.

79. Takenaga K., Koshikawa N., Nagase H. Intercellular Transfer of Mitochondrial DNA Carrying Metastasis-Enhancing Pathogenic Mutations from High- to Low-Metastatic Tumor Cells and Stromal Cells Via Extracellular Vesicles. BMC Mol. and Cell. Biol. 2021;22:52. doi:10.1186/s12860-021-00391-5.

80. Harutyunyan T. The Known Unknowns of Mitochondrial Carcinogenesis: de Novo NUMTs and Intercellular Mitochondrial Transfer. Mutagenesis. 2023. doi:10.1093/mutage/gead031.



 PDF (RUS) Full-text article (in Russian)


Conflict of interest. The authors declare no conflict of interest.

Financing. The research was carried out with the financial support of a grant from the Russian Science Foundation (No. 23–14–00220).

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.