Медицинская радиология и радиационная безопасность. 2024. Том 69. № 6
DOI:10.33266/1024-6177-2024-69-6-87-93
Г.Г. Шимчук, А.В. Скобляков, А.А. Голубев, А.В. Канцырев, Гр.Г. Шимчук
ОЦЕНКА ВОЗМОЖНОСТИ ВЕРИФИКАЦИИ ДОЗОВЫХ РАСПРЕДЕЛЕНИЙ ПРОТОНОВ МЕТОДОМ НАВЕДЕННОЙ ПОЗИТРОННОЙ АКТИВНОСТИ В ТКАНЯХ ЧЕЛОВЕКА
Национальный исследовательский центр «Курчатовский институт»
Контактное лицо: Геннадий Григорьевич Шимчук, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
РЕФЕРАТ
Выполнена расчетная оценка возможности верификации дозовых распределений протонов методом ПЭТ-визуализации наведенной позитронной активности в тканях человека, которая образовалась в результате протонной лучевой терапии. Для сравнения дозового распределения модулированного по энергии частиц пучка протонов диаметром 10 мм с начальной энергией частиц 100 МэВ, обеспечивающего равномерное облучение мишени в 13 мм зоне (на уровне 90 % дозы облучения) в конце пробега частиц, с картой наведенной активности от радинуклидов 11C, 13N и 15O были выполнены численные расчеты методом Монте-Карло с использованием программы моделирования Geant 4. В процессе моделирования был использован объем с размерами 50 × 50 × 100 мм, имитирующий мягкие ткани тела человека плотностью 1 г/см3, состоящий из атомов водорода (62 %), углерода (12 %), кислорода (24 %) и азота (1,1 %). Выполнен расчет сечений образования радионуклидов 11C, 13N и 15O в реакциях 12C(p, pn)11C, 14N(p, α)11C, 16O(p, αpn)11C, 14N(p, pn)13N, 16O(p, α)13N, 16O(p, pn)15O, с использованием которых выполнялись расчеты распределений позитронной активности в облучаемом объеме. Принимая во внимание малые периоды полураспада рассматриваемых радионуклидов
(в первую очередь кислорода-15), были выполнены расчеты изоактивностей и глубинных распределений наработанных радиоактивностей для различных временных интервалов времени после облучения.
Выполненное расчетное моделирование распределений активностей радионуклидов 11C, 13N и 15O при прохождении модулированного пучка протонов с учетом распада наработанных радионуклидов после облучения показывают, что с помощью регистрации в течение 15 мин наведенной активности радионуклидов через 2 мин после облучения представляется возможным получение данных о соответствии запланированного и выполненного облучения новообразований при протонной терапии. Однако небольшие уровни нарабатываемой активности (при уровне 2 Гр для мелкофракционированных облучений) требуют аппаратуры с высокой эффективностью регистрации аннигиляционного излучения и высоким пространственным разрешением на уровне 1,5–2,0 мм.
Ключевые слова: протонная лучевая терапия, радионуклиды, наведенная активность, ПЭТ-визуализация, дозовые поля, верификация
Для цитирования: Шимчук Г.Г., Скобляков А.В., Голубев А.А., Канцырев А.В., Шимчук Гр.Г. Оценка возможности верификации дозовых распределений протонов методом наведенной позитронной активности в тканях человека // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 6. С. 87–93. DOI:10.33266/1024-6177-2024-69-6-87-93
Список литературы
1.Goitein M. Radiation Oncology –A Physicist’s Eye View. New York, Springer, 2008.
2.Koehler AM, Schneider RJ, Sisterson JM. Flattening of Proton Dose Distributions for Large-Field Radiotherapy. Med. Phys. 1977;4:297–301.
3.Grusell E, et al. A general Solution to Charged Particle Beam Flattening Using an Optimized Dual-Scattering-Foil Technique, with Application to Proton Therapy Beams. Phys. Med. Biol. 1994;39:2201–16.
4.Kanai T, et al. Spot Scanning System for Proton Radiotherapy. Med. Phys. 1980;7:365–9.
5.Pedroni E, et al. The 200-MeV Proton Therapy Project at the Paul Scherrer Institute: Conceptual Design and Practical Realization. Med. Phys. 1995;22:37–53
6.Kraft G. Tumortherapy with Ion Beams. Nucl. Instrum. and Methods Phys. Res. A. 2000;454:1–10.
7.Zenklusen S, Pedroni E, Meer D. A Study on Repainting Strategies for Treating Moderately Moving Targets with Proton Pencil Beam Scanning for the New Gantry 2 at PSI. Phys. Med. Biol. 2010;55:5103–21.
8.Geant 4: User’s Guide for Application Developers. URL: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/fo/BookForApplicationDevelopers.pdf
9.Wen Luo, Hao-yang Lan, Yi Xu, Dimiter L. Balabanski. Implementation of the n-Body Monte-Carlo Event Generator into the Geant4 toolkit for Photonuclear Studies. Nuclear Instruments and Methods in Physics Research A. 2017;849:49-54. doi: 10.1016/j.nima.2017.01.010
10.Jae Won Shin. A Data-Based Photonuclear Reaction Model for GEANT4. Nuclear Instruments and Methods in Physics Research B. 2015;358:194-200.
11.TALYS. URL: https://www-nds.iaea.org/talys/
12.Geant 4: Physics List Guide. URL: https://geant4- userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/fo/ PhysicsListGuide.pdf
13.Geant 4: User’s Guide for Toolkit Developers. URL: https://geant4userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/fo/BookForToolkitDeveloper.pdf
14.Geant 4 Physics: Physics Reference Manual. URL: https://geant4- userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/fo/ PhysicsReferenceManual.pdf
15.LibInterpolate. URL: https://github.com/CD3/libInterpolate.
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Работа проведена в рамках выполнении государственного задания НИЦ «Курчатовский институт».
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.07.2024. Принята к публикации: 25.09.2024.