Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 31-65

RADIATION PHYSICS, TECHNOLOGY AND DOSIMETRY

DOI: 10.12737/article_59b10998808b74.63554924

Risk of Thyroid Cancer after Exposure to 131I: Combined Analysis of Experimental and Epidemiological Data over Seven Decades. Part 2. Overview of Methods of Internal Dose Estimation and Thyroid Absorbed Dose Determination

A.N. Koterov1, L.N. Ushenkova1, E.S. Zubenkova1, A.A. Wainson1,2, A.P. Biryukov1

1. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia

A.N. Koterov – Head of Lab., Dr. Sc. Biol.; L.N. Ushenkova – Leading Researcher, PhD Biol.; E.S. Zubenkova– Leading Researcher, PhD Biol.; A.A. Wainson– Head of Group, Dr. Sc. Biol., Prof.; A.P. Biryukov– Head of Department, Dr. Sc. Med., Prof.

Abstract

The research was done in order to create check-analytical base for future data combining synthetic studies of experimental and epidemiological works on carcinogenesis in the thyroid after 131I exposure which carried out in different decades on the basis of various dosimetry and dosimetric units.

The information about the history of the origin, development, and essence of three types of internal dosimetry of incorporated radionuclides was present. The first is the ‘classic’ system, based on the main semi-empirical formula of Marinelli–Quimby–Haine (1942–1948), and further developed by Loevinger et al. (1953–1956). In 1960s the calculated systems providing various types of phantoms which simulated body and individual organs of the human – MIRD scheme (‘MIRD-formalism’, 1965; calculation of doses from medical exposure of incorporated radionuclides), and ICRP system (1960; calculation of internal doses from professional exposure to radiation with different LET) were appeared.

In details, including a retrospective personalized aspect, the calculations leading to the basic formula of the classical dosimetry of β-sources internal exposure (Dβ (∞) = 73,8EβC0Teff) and its main modifications were used among other things for the calculation of diagnostic and therapeutic doses of radioiodine to the thyroid were considered. Thoroughly the examples of formula modification from various publications mainly on treatment of hyperthyroidism were investigated. It is revealed is not explained by the authors of original works and unpredictable variations in the numerical constants of the equations, and the imparted ‘basic formula’ names of its creators and modifiers. The errors in the formula in some Russian sources were found.

The studies on comparing of 131I doses to the thyroid which were determined by several different methods (on the base ‘classic’ formula, according to MIRD-scheme, by the Monte Carlo simulation and by direct determination with thermoluminescent dosimeters) were considered; only five such studies have been found and the results were generally inconsistent.

Key words: radioiodine, thyroid, history of internal dose dosimetry, formulas of Marinelly–Quimby–Hine and Loevinger, MIRD-scheme, ICRP-system

REFERENCES

  1. Koterov A.N., Ushenkova L.N., Biryukov A.P., Uyba V.V. Risk raka shchitovidnoy zhelezy posle vozdeystviya 131I: obyedinennyy analiz eksperimentalnykh i epidemiologicheskikh dannykh za sem desyatiletiy. Soobshcheniye 1. Aktualnost problemy i postanovka zadach dlya tsikla issledovaniy. Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 6. P. 25–49. (In Russ.).
  2. Vlasov V.V. Epidemiologiya: uchebnoye posobiye. 2-e izd., ispr. Moscow: GEOTAR-Media. 2006. 464 p . (In Russ.).
  3. World Health Organization Centre for Health Development. A Glossary of terms for Community Health Care and Services for Older Persons. 2004. (For citation: «The Rulebase Foundation». https://definedterm.com/synthetic_study, accessed 11.01.2017) .
  4. Ushenkova L.N., Koterov A.N., Biryukov A.P. Obyedinennyy (pooled) analiz chastoty gennykh perestroyek RET/PTC v spontannykh i radiogennykh papillyarnykh kartsinomakh shchitovidnoy zhelezy. Radiats. biologiya. Radioekologiya. 2015. Vol. 55. No. 4. P. 355–388.
  5. Bradford Hill A. The environment and disease: association or causation? Proc. R. Soc. Med. 1965. Vol. 58. P. 295–300.
  6. Rothman K.J. Causes. Amer. J. Epidemiol. 1976. Vol. 104. No. 6. P. 587–592.
  7. Rothman K.J., Greenland S. Causation and causal inference in epidemiology. Amer. J. Public Health. 2005. Vol. 95. Suppl 1. P. S144–S150.
  8. Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Amer. J. Epidemiol. 1991. Vol. 133. No. 7. P. 635–648.
  9. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex A. Epidemiological studies of radiation and cancer. United Nations. New York. 2008. P. 17–322.
  10. Hofmann B., Holm S., Iversen J.-G. Philosophy of science. In: ‘Research methodology in the medical and biological sciences’. Ed. by P. Laake, H.B. Benestad, B.R. Olsen. Academic Press, Elsevier. 2007. P. 1–32.
  11. Marinelli L.D. Dosage Determination with Radioactive Isotopes. Amer. J. Roentgenol. 1942. Vol. 47. P. 210–216.
  12. ICRP Publication 53 (1988). Radiation dose to patients from radiopharmaceuticals. Ann. ICRP. 1988. Vol. 18. 1988.
  13. ICRP Publication 71 (1995). Age-dependent doses to members of the public from intake of radionuclides. Part 4. Inhalation dose coefficients. Ann. ICRP 25 (3–4). 1995.
  14. NCRP Report No. 164. Uncertainties in internal radiation dose assessment. National Council on Radiation Protection and Measurements. Bethesda. 2010.
  15. Radiatsionnaya dozimetriya. Khayna Dzh. & Braunella G. (eds). Transl. from engl. Guseva N.G. & Trukhanova K.A. (eds.). Moscow: Publ. In. lit., 1958. 760 p. (In Russ.).
  16. Hine G.J., Brownell G.L. (eds.). Radiation dosimetry. New York: Academic Press. 1956.
  17. Radiation Dosimetry: Vol. I: Fundamentals. Ed. by F.H. Attix, W.C. Roesch. New York: Academic Press. 1968.
  18. Radiation Dosimetry: Vol. II: Instrumentation. Ed. by F.H. Attix, W.C. Roesch. New York: Academic Press. 1966.
  19. Radiation Dosimetry: Vol. III: Sources, Fields, Measurements, and Applications. Ed. by F.H. Attix, E. Tochilin. New York: Academic Press. 1969.
  20. Atabek A.A. Radioaktivnyi iod v terapii tireotoksikozov. Moscow: Medgiz, 1959. 184 p. (In Russ).
  21. Loevinger R., Berman M. A formalism for calculation of absorbed dose from radionuclides. Phys. Med. Biol. 1968. Vol. 13. No. 2. P. 205–217.
  22. Report of ICRP Committee II on permissible dose for internal radiation (1959), with bibliography for biological, mathematical and physical data. Health. Phys. 1960. Vol. 3. P. 1–380.
  23. Moiseyev A.A., Ivanov V.I. Kratkiy spravochnik po radiatsionnoy zashchite i dozimetrii. Moscow: Atomizdat. 1964. 184 p. (In Russ).
  24. Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. Izd. 2-e. Moscow: Atomizdat. 1974. 336 p. (In Russ).
  25. Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. 3-e izd., pererab. i dop. Moscow: Atomizdat. 1984. 296 p. (In Russ).
  26. Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. 4-e izd., pererab. i dop. Moscow: Atomizdat. 1990. 252 p. (In Russ).
  27. Krongauz A.N., Lyapidevskiy V.K., Frolova A.V., Fizicheskiye osnovy klinicheskoy dozimetrii. Moscow: Atomizdat. 1969. 304 p. (In Russ).
  28. Ivanov V.I. Kurs dozimetrii. Uchebnik dlya vuzov. 4-e izd. pererab. i dop. Moscow: Energoatomizdat. 1988. 400 p. (In Russ).
  29. Golubev B.P. Dozimetriya i zashchita ot ioniziruyushchikh izlucheniy. Uchebnik dlya vuzov. In Stolyarova E.L. (ed.). 4-e izd. Moscow: Energoatomizdat. 1986. 464 p. (In Russ).
  30. Osanov D.P., Likhtarev I.A. Dozimetriya izlucheniy inkorporirovannykh radioaktivnykh veshchestv. Moscow: Atomizdat. 1977. 199 p. (In Russ).
  31. Shamov V.P. Tkanevodozimetricheskiye kharakteristiki osnovnykh radioaktivnykh izotopov. Spravochnik. Moscow: Atomizdat. 1972. 128 p. (In Russ).
  32. Narkevich B.Ya., Kostylev V.A., Levchuk A.V. et al. Radiatsionnaya bezopasnost v meditsinskoy radiologii. Chast 2. Obespecheniye radiatsionnoy bezopasnosti patsiyentov. Medical Radiology and Radiation Safety. 2009. Vol. 54. No. 9. P. 46–57. (In Russ).
  33. Narkevich B.Ya., Shiryayev S.V. Metodicheskiye osnovy radionuklidnoy terapii // Medical Radiology and Radiation Safety. 2004. Vol. 49. No. 5. P. 35–44. (In Russ).
  34. Klimanov V.A. Fizika yadernoy meditsiny. Chast 1. Fizicheskiy fundament yadernoy meditsiny. ustroystvo i osnovnyye kharakteristiki gamma-kamer i kollimatorov γ-izlucheniya. odnofotonnaya emissionnaya tomografii. rekonstruktsiya raspredeleniy radionuklidov v organizme cheloveka. polucheniye radionuklidov. Uchebnoye posobiye. Moscow: NIYaU MIFI. 2012. 308 p. (In Russ).
  35. Belyayev V.N., Klimanov V.A. Fizika yadernoy meditsiny. Chast 2. Pozitronno-emissionnyye skanery. rekonstruktsiya izobrazheniy v pozitronno-emissionnoy tomografii. kombinirovannyye sistemy PET/KT & OFEKT/PET. kinetika radiofarmpreparatov. radionuklidnaya terapiya. vnutrennyaya dozimetriya. radiatsionnaya bezopasnost. Uchebnoye posobiye. Moscow: NIYaU MIFI. 2012. 248 p. (In Russ).
  36. Stabin M.G. Demystifying internal dose calculations. The RADAR site. (www.doseinfo-radar.com/demystify.doc; accessed 12.12.2016).
  37. Stabin M.G., Siegel J.A. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003. Vol. 85. No. 3. P. 294–310.
  38. Stabin M. Nuclear medicine dosimetry. Phys. Med. Biol. 2006. Vol. 51. No. 13. P. R187–R202.
  39. Stabin M.G. Radiation protection and dosimetry. An introduction to Health Physics. New York: Springer-Verlag. 2007. 384 p.
  40. Stabin M.G., Brill A.B. State of the art in nuclear medicine dose assessment. Semin. Nucl. Med. 2008. Vol. 38. No. 5. P. 308–320.
  41. Stabin M.G. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 1996. Vol. 37. No. 3. P. 538–546.
  42. Stabin M.G., Sparks R.B. MIRDOSE4 does not exist. J. Nucl. Med. 1996. Vol. 40. Suppl. P. 306.
  43. Stabin M.G., da Luz P.L. New decay data for internal and external dose assessment. Health Phys. 2002. Vol. 83. No. 4. P. 471–475.
  44. Stabin M.G. Fundamental of nuclear medicine dosimetry. New York. 2008. Springer.
  45. Klimanov V.A., Kramer-Ageyev E.A., Smirnov V.V. Radiatsionnaya dozimetriya. Chast 1. Peredacha i pogloshcheniye energii ioniziruyushchikh izlucheniy v veshchestve. Teoreticheskiy fundament radiatsionnoy dozimetrii. Interpritatsiya pokazaniy detektorov. Metody rascheta doz ot vneshnikh istochnikov. Pod red. V.A. Klimanova. Moscow: NIYaU MIFI. 2014. 286 p. (In Russ.).
  46. Klimanov V.A., Kramer-Ageyev E.A., Smirnov V.V. Radiatsionnaya dozimetriya. Chast 2. Metody dozimetrii fotonov. zaryazhennykh chastits i neytronov. Kalibrovka puchkov ioniziruyushchikh izlucheniy. Dozimetriya v luchevoy terapii i yadernoy meditsine. Pod red. V.A. Klimanova. Mosc ow: NIYaU MIFI. 2014. 320 p. (In Russ.).
  47. Bolch W.E., Eckerman K.F., Sgouros G., Thomas S.R. MIRD Pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J. Nucl. Med. 2009. Vol. 50. P. 477–484.
  48. Marinelli L.D. Dosage determination in the use of radioactive isotopes. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt 1. P. 1271–1280.
  49. Conard R.A., Rall J.E., Sutow W.W. Thyroid nodules as a late sequela of radioactive fallout in a Marshall Island population exposed in 1954. New Eng. J. Med. 1966. Vol. 274. No. 25. 1391–1399.
  50. Garner R.J., Sansom B.F., Jones H.G., West L.C. Fission products and the dairy cow. 5. The radiotoxicity of iodine-131. J. Comp. Pathol. 1961. Vol. 71. P. 71–84.
  51. Gilbert E.S., Huang L., Bouville A. et al. Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests: an update. Radiat. Res. 2010. Vol. 173. No. 5. P. 659–664.
  52. Shinkarev S.M., Kotenko K.V., Granovskaya E.O. et al. Estimation of the contribution of short-lived radioiodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident. Radiat. Prot. Dosimetry. 2015. Vol. 164. No. (1–2). P. 51–56.
  53. Gavrilin Y.I., Khrouch V.T., Shinkarev S.M. et al. Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus. Health Phys. 1999. Vol. 76. No. 2. P. 105–119.
  54. Drozdovitch V., Minenko V., Khrouch V. et al. Thyroid dose estimates for a cohort of Belarusian children exposed to radiation from the Chernobyl accident. Radiat. Res. 2013. Vol. 179. No. 5. P. 597–609.
  55. Likhtarov I., Kovgan L., Vavilov S. et al. Post-Chornobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid doses. Radiat. Res. 2005. Vol. 163. No. 2. P. 125–136.
  56. Kereiakes J.G., Wellman H.N., Tieman J., Saenger E.L. Radiopharmaceutical dosimetry in pediatrics. Radiology. 1968. Vol. 90. No. 5. P. 925–930.
  57. Jacob P., Bogdanova T., Buglova E. et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat. Res. 2006. Vol. 165. No. 1. P. 1–8.
  58. Bustad L.K., George L.A. Jr, Marks S. Biological effects of 131I continuously administered to sheep. Radiat. Res. 1957. Vol. 6. No. 3. P. 380–413.
  59. Peterson M.E., Kintzer P.P., Hurley J.R., Becker D.V. Radioactive iodine treatment of a functional thyroid carcinoma producing hyperthyroidism in a dog. J. Vet. Intern. Med. 1989. Vol. 3. No. 1. P. 20–25.
  60. Shvedov V.L. Pogloshcheniye radioaktivnogo yoda shchitovidnoy zhelezoy i narusheniye eye funktsii v usloviyakh khronicheskogo eksperimenta. Med. radiologiya. 1961. Vol. 6. No. 6. P. 38–41. (In Russ.).
  61. Walinder G., Sjoden A.M. Effect of irradiation on thyroid growth in mouse foetuses and goitrogen challenged adult mice. Acta Radiol. Ther. Phys. Biol. 1971. Vol. 10. No. 6. P. 579–592.
  62. Book S.A., McNeill D.A., Parks N.J., Spangler W.L. Comparative effects of iodine-132 and iodine-131 in rat thyroid glands. Radiat. Res. 1980. Vol. 81. No. 2. P. 246–253.
  63. Moore W., Colvin M. The effect of 131I on the aberration-rate of chromosomes from Chinese hamster thyroids. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1966. Vol. 10. No. 4. P. 391–401.
  64. Book S.A., McNeill D.A., Spangler W.L. Age and its influence on effects of iodine-131 in guinea pig thyroid glands. Radiat. Res. 1980. Vol. 81. No. 2. P. 254–261.
  65. Prakash P., St Clair L.E., Romack F.E. Localization of radioiodine in the tissues of swine: an autoradiographic study. Acta Histochem. 1976. Vol. 57. No. 2. P. 282–290.
  66. Loevinger R. The dosimetry of beta sources in tissue. The point-source function. Radiology. 1956. Vol. 66. No. 1. P. 55–62.
  67. Van Nostrand D., Atkins F., Yeganeh F. et al. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002. Vol. 12. No. 2. P. 121–134.
  68. Loevinger R, Berman M. A schema for absorbed-dose calculations for biologically-distributed radionuclides. MIRD Pamphlet No. 1. New York, NY: Society of Nuclear Medicine, 1968.
  69. Lee W., Shleien B., Telles N.C. Chiacchierini R.P. An accurate method of 131I dosimetry in the rat thyroid. Radiat. Res. 1979. Vol. 79. No. 1. P. 55–62.
  70. Spetz J., Rudqvist N., Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother. Radiopharm. 2013. Vol. 28. No. 9. P. 657–664.
  71. Rudqvist N., Schuler E., Parris T.Z. et al. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl. Med. Biol. 2015. Vol. 42. No. 3. P. 263–268.
  72. ICRP Publication 60 (1990). New York: Pergamon Press. 1991.
  73. Lyra M., Phinou P. Internal dosimetry in Nuclear Medicine: a summary of its development, applications and current limitations. RSO Magazine. 2000. Vol. 5. No. 2. P. 17–30.
  74. Seidlin S.M., Marinelli L.D., Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J. Amer. Med. Assoc. (JAMA). 1946. Vol. 132. No. 14. P. 838–847.
  75. NCRP Report No. 83. The experimental basis for absorbed-dose calculations in medical uses of radionuclides. National Council on Radiation Protection and Measurements, Bethesda. 1985. 109 p.
  76. Svegborn S.L. Experimental studies of the biokinetics of 111In-DTPA-D-Phe1-octreotide, 99mTc-MIBI, 14C-triolein and 14C-urea and development of dosimetric models. Doct. Diss. Dep. Radiat. Phys, Malmö. Lund University. Malmo University Hospital. Malmo, 1999. 70 p. (http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/018/30018803.pdf; acessed 16.01.2017).
  77. Schlafke-Stelson A.T., Watson E.E., Cloutier R.J. A history of medical internal dosimetry. Health Phys. 1995. Vol. 69. No. 5. P. 766–782.
  78. Zanzonico P.B. Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. J. Nucl. Med. 2000. Vol. 41. No. 2. P. 297–308.
  79. Potter C.A. Internal dosimetry–a review. Health Phys. 2004. Vol. 87. No. 5. P. 455–468; Health Phys. 2005. Vol. 88. No. 6. P. 565–578.
  80. Mattsson S., Johansson L., Jonsson H., Nosslin B. Radioactive iodine in thyroid medicine–how it started in Sweden and some of today’s challenges. Acta Oncol. 2006. Vol. 45. No. 8. P. 1031–1036.
  81. McParland B.J. Nuclear Medicine Radiation Dosimetry. Advanced Theoretical Principles. London: Springer-Verlag. 2010. 610 p.
  82. Saenger E.L., Seltzer R.A., Sterling T.D., Kereiakes J.G. Carcinogenic effects of 131I compared with X-irradiation – a review. Health Phys. 1963. Vol. 9. P. 1371–1384.
  83. Greig W.R., Smith J.F., Orr J.S., Foster C.J. Comparative survivals of rat thyroid cells in vivo after 131I, 125I and X irradiations. Brit. J. Radiol. 1970. Vol. 43. No. 512. P. 542–548.
  84. Read C.H. Jr1, Tansey M.J., Menda Y. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J. Clin. Endocrinol. Metab. 2004. Vol. 89. No. 9. P. 4229–4233.
  85. Kita T., Yokoyama K., Kinuya S. Single dose planning for radioiodine-131 therapy of Graves’ disease. Ann. Nucl. Med. 2004. Vol. 18. No. 2. P. 151–155.
  86. Traino A.C., Di Martino F., Lazzeri M. A dosimetric approach to patient-specific radioiodine treatment of Graves’ disease with incorporation of treatment-induced changes in thyroid mass. Med. Phys. 2004. Vol. 31. No. 7. P. 2121–2127.
  87. Nakajo M., Tsuchimochi Sh., Tanabe H. et al. Three basic patterns of changes in serum thyroid hormone levels in Graves’ disease during the one-year period after radioiodine therapy. Ann. Nucl. Med. 2005. Vol. 19. No. 4. P. 297–308.
  88. Regalbuto C., Marturano I., Condorelli A. et al. Radiometabolic treatment of hyperthyroidism with a calculated dose of 131-iodine: Results of one-year follow-up. J. Endocrinol. Invest. 2009. Vol. 32. No. 2. P. 134–138.
  89. Goldsmith S.J. Nuclear Endocrinology. Board Review. Presentation. SNM Annual Meeting. New York Presbyterian-Weill Cornell Medical Center. New York. 2009. 68 slides. (http://apps.snm.org/docs/CME/PresenterItems/EventID_85/PresenterItemTypeID_1/2.; accessed 23.01.2017).
  90. Nakatake N., Fukata S., Tajiri J. Prediction of post-treatment hypothyroidism using changes in thyroid volume after radioactive iodine therapy in adolescent patients with Graves’ disease. Int. J. Pediatr. Endocrinol. 2011. Vol. 2011. No. 14. 6 p. (http://www.ijpeonline.com/content/2011/1/14; accessed 26.01.2017).
  91. Szumowski P., Rogowski F., Abdelrazek S. et al. Iodine isotope ¹³¹I therapy for toxic nodular goitre: treatment efficacy parameters. Nucl. Med. Rev. Cent. East. Eur. 2012. Vol. 15. No. 1. P. 7–13.
  92. Loevinger R., Holt J.G., Hine J.G. Chapter 17. Internally administered radioisotopes. In: Hine G.J, Brownell G.L. (eds.) Radiation dosimetry. New York: Academic Press. 1956. P. 803–875.
  93. Klimanov V.A. Dozimetricheskoye planirovaniye luchevoy terapii. Chast 2. Distantsionnaya luchevaya terapiya puchkami zaryazhennykh chastits i neytronov. Brakhiterapiya i radionuklidnaya terapiya. Uchebnoye posobiye. Moscow: MIFI. 2008. 328 p. (In Russ.).
  94. Marinelli L.D., Hill R.F. Radiation dosimetry in the treatment of functional thyroid carcinoma with 131I. Radiology. 1950. Vol. 55. No. 4. P. 494–501.
  95. Sawin C.T., Becker D.V. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997. Vol. 7. No. 2. P. 163–176.
  96. Chapman E.M., Evans R.D. The treatment of hyperthyroidism with radioactive iodine. J. Amer. Med. Assoc. (JAMA). 1946. Vol. 131. P. 86–91.
  97. Hertz S. Roberts A. Means J.H., Evans R.D. Radioactive iodine as an indicator in thyroid physiology: II. Iodine collection by normal and hyperplastic thyroids in rabbits. Trans. Amer. A. Study Goiter. 1939. P. 260.
  98. Hertz S., Roberts A., Means J.H., Evans R.D. Radioactive iodine as an indicator in thyroid physiology. II. Iodine collection by normal and hyperplastic thyroids in rabbits. Amer. J. Physiol. 1940. Vol. 128. P. 565–576.
  99. Morgan K.Z. The use of the roentgen equivalent physical (rep). Oak Ridge National Laboratory. Health Physics Division. Contract No W-7405-Eng-26. Report Number; ORNL-783. Oak Ridge. Tennessee. 1950. 8 p. (http://web.ornl.gov/info/reports/1950/3445603608004.pdf; accessed 24.01.2017).
  100. Parker H.M. Health physics, instrumentation and radiation protection. Health Physics. 1980. Vol. 38. No. 6. P. 957–996.
  101. Parker H.M. Health-physics, instrumentation, and radiation protection. Adv. Biol. Med. Phys. 1948. Vol. 1. P. 223–285.
  102. Swallow A.J. Radiation chemistry of organic compounds: international series of monographs on radiation effects in materials. Pergamon Press. Oxford. London. New York. Paris. 1960. 380 p.
  103. Yarmonenko S.P. Radiobiologiya cheloveka i zhivotnykh. Moscow: «Vyssh. shkola». 1977. 368 p. (In Russ.).
  104. NCRP Report No. 156. Development of a Biokinetic Model for Radionuclide-contaminated Wounds for their Assessment, Dosimetry and Treatment. National Council on Radiation Protection and Measurements. Bethesda. 2008.
  105. Rem. Unit of measurement. Encyclopaedia Britannica. (https://www.britannica.com/science/rem-unit-of-measurement; дaccessed 26.01.2017).
  106. Grebenyuk A.N., Strelova O.Yu., Legeza V.I., Stepanova E.N. Osnovy radiobiologii i radiatsionnoy meditsiny. Saint Petersburg: OOO «Izdatelstvo FOLIANT». 2012. 232 p. (In Riss.).
  107. Dozimetricheskoye planirovaniye radionuklidnoy terapii // Sayt Endokrinologicheskogo nauchnogo tsentra. Otdel radionuklidnoy diagnostiki i terapii. (https://www.orndt.ru/innovation/26/djozimetricheskoe-planirovanie-radjionuklidjnoj-terapii-1; accessed 27.01.2017. (In Riss.).
  108. Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes I. Fundamental dosage formulae. Nucleonics. 1948. Vol. 2. No. 4. P. 56.
  109. Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes II. Practical considerations in therapy and protection. Nucleonics. 1948. Vol. 2. No. 5. PT. 1. P. 44–49.
  110. Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes. II. Practical considerations in therapy and protection. Amer. J. Roentgenol. Radiol. Ther. 1948. Vol. 59. No. 2. P. 260–280.
  111. Nickson J.J. Dosimetric and protective considerations for radioactive iodine. J. Clin. Endocrinol. 1948. Vol. 8. No. 9. P. 721–731.
  112. Frank H., Gray S.J. The determination of plasma volume in man with radioactive chromic chloride. J. Clin. Invest. 1953. Vol. 32. No. 10. P. 991–999.
  113. Conversion factor. In: English Living Oxford Dictionaries. (https://en.oxforddictionaries.com/definition/conversion_factor; accessed 06.01.2017).
  114. Soley M.H., Foreman N. Radioiodine therapy in Graves’ disease; a review. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt. 1. P. 1367–1374.
  115. Hertz S., Roberts A. Radioactive iodine in the study of thyroid physiology, VII: the use of radioactive iodine therapy in hyperthyroidism. J. Amer. Med. Assoc. (JAMA) 1946. Vol. 131. P. 81–86.
  116. Rumyantsev P.O., Korenev S.V. Istoriya poyavleniya terapii radioaktivnym yodom. Klinicheskaya i eksperimentalnaya tireoidologiya. 2015. Vol. 11. No. 4. P. 55–55. (In Russ.).
  117. Skanse B.N. The biologic effect of irradiation by radioactive iodine. J. Clin. Endocrinol. Metab. 1948. Vol. 8. No. 9. P. 707–716.
  118. Budarkov V.A. Vliyaniye 131 I na shchitovidnuyu zhelezu kur i ikh potomkov. Radiats. biologiya. Radioekologiya. 2015. Vol. 55. No. 2. P. 180–196. (In Russ.).
  119. Brues A.M. Biological hazards in toxicity of radioactive isotopes. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt. 1. P. 286–296.
  120. Maloof F., Dobyns B.M., Vickery A.L. The effect of various doses of radioactive iodine on the function and structure of the thyroid of the rat. Endocrinology. 1952. Vol. 50. No. 6. P. 612–638.
  121. Doniach I. The effect of radioactive iodine alone and in combination with methylthiouracil upon tumour production in the rat’s thyroid gland. Brit. J. Cancer. 1953. Vol. 7. No. 2. P. 181–202.
  122. Evans R.D. Tissue dosage in radio-isotope therapy. Amer. J. Roentgenol. Radium. Ther. 1947. Vol. 58. No. 6. P. 754–756.
  123. Hertz B. A daughter’s efforts to preserve her physician father’s extraordinary legacy (Saul Hertz). Site EMPOWER. (http://www.empoweryourhealth.org/magazine/vol6_issue1/a_daughters_efforts_to_preserve_her_physician_fathers_extraordinary_legacy; accessed 06.02.2017).
  124. Quimby E.H. Dosimetry of internally administered radioactive isotopes. In: A Manual of artificial radioisotope therapy. New York: Academic Press. 1951. P. 36–52.
  125. Quimby E.H., McCune D.J. Uptake of radioactive iodine by the normal and disordered thyroid gland in children. Radiology. 1947. Vol. 49. No. 2. P. 201–205.
  126. Quimby E.H., McCune D.J. Uptake of radioactive iodine by the normal and by the disordered thyroid gland in children. Amer. J. Dis. Child. 1948. Vol. 75. No. 3. P. 440.
  127. Quimby E.H., Werner S.C., Schmidt C. Influence of age, sex, and season upon radioiodine uptake by the human thyroid. Proc. Soc. Exp. Biol. Med. 1950. Vol. 75. No. 2. P. 537–540.
  128. Quimby E.H. Radioactive isotopes in clinical diagnosis. In: Advances in Biological and Medical Physics: Vol. 2. Ed. by J.H. Lawrence, J.G. Hamilton. New York: Academic Press. 1951. P. 243–267.
  129. Loevinger R. Calculation of radiation dosage in internal therapy with 131I. In: Radioisotopes in Medicine. OSAEC Conference, Sept. 1953. ORO-125. Oak Ridge TN. Washington, Atomic Energy Commission. 1955. P. 91–102.
  130. Loevinger R., Japha E., Brownell G. Chapter 16. Discrete radiosotope processes. In: Hine G.J, Brownell G.L. (eds) Radiation dosimetry. New York: Academic Press. 1956. P. 694–802.
  131. Berger M.J. Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. MIRD Pamphlet No. 7. J. Nucl. Med. 1971. Suppl. 5. P. 5–23.
  132. Loevinger R., Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides. MIRD Pamphlet No. 1. Revised ed. New York, NY: Society of Nuclear Medicine. 1976.
  133. Berger M. Energy deposition in water by photons from point isotropic sources. MIRD Pamphlet No. 2. J. Nucl. Med. 1968. Vol. 9. Suppl. 1. P. 15–25.
  134. Howell R.W. Wessels B.W., Loevinger R. et al. The MIRD perspective 1999. J. Nucl. Med. 1999. Vol. 40. No. 1. P. 3S–10S.
  135. Wessels B.W. Loevinger-Berman Award presented to Brownell. J. Nucl. Med. 2006. Vol. 47. No. 9. P. 20N.
  136. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam – New York: Elsevier. 2007. 329 p.
  137. Yarmonenko S.P., Vaynson A.A. Radiobiologiya cheloveka i zhivotnykh. – M.: Vysshaya shkola 2004. 549 p. (In Russ.).
  138. ICRP Publication 2 (1959). Report of committee II on permissible dose for internal radiation. Pergamon Press: Oxford. 1959.
  139. ICRP Publication 23 (1975). Report of the task group on reference man. Pergamon Press. Oxford. 1975.
  140. ICRP Publication 30 (1979). Limits for intakes of radionuclides by workers. Part 1. Pergamon Press: Oxford. 1979.
  141. ICRP Publication 56 (1990). Age-dependent doses to members of the public from intake of Radionuclides. Part 1. Ann. ICRP. 1990. Vol. 20. No. 2.
  142. ICRP Publication 67 (1993). Age-dependent doses to members of the public from intake of radionuclides. Part 2. Ingestion Dose Coefficients. Ann. ICRP. 1993. Vol. 23. No. 3–4.
  143. ICRP Publication 80 (2000). Radiation dose to patients from radiopharmaceuticals. New York: Pergamon. Press. 2000.
  144. Stepanenko V.F., Skvortsov V.G., Orlov M.Yu., Sokolov V.A., Tsyb A.F. Dozimetricheskoye soprovozhdeniye sozdaniya radiofarmatsevticheskikh preparatov dlya radionuklidnoy diagnostiki i terapii: uchebnoye posobiye po kursu «Osnovy fizicheskoy dozimetrii v radiologii i radiobiologii». Obninsk: IATE NIYaU MIFI. 2013. 28 p. (http://studopedia.org/3-16987.html; accessed 31.01.2017).
  145. Abramova N.A., Aleksandrov A.A., Andreyeva E.N. et al. Endokrinologiya. Natsionalnoye rukovodstvo. Pod red. I.I. Dedova. G.I. Melnichenko. Moscow: GEOTAR-Media. 2009. 1072 p. (Kratkoye izdaniye (752 p.): http://fs1.socmedica.com/e2a8d6e140001015a52f92997f4f44df/Endokrinologiya.pdf; accessed 02.02.2017).
  146. Audia G., Bersillon O., Blachot J., Wapstra A.H. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A. 2003. Vol. 729. P. 3–128.
  147. ICRP Publication 56 (1989). Age-dependent doses to members of the public from intake of radionuclides. Part 1. Ann. ICRP. 1989. Vol. 20. P. 1–122.
  148. UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes. Biological mechanism of radiation action at low doses. New York. 2012. 35 p.
  149. BEIR VII Report 2006. Phase 2. Health Risks from Exposure to Low Levels of Ionizing Radiation. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, – National Research Council. (http://www.nap.edu/catalog/11340.html; https://www.nap.edu/read/11340/chapter/1; accessed 11.01.2017).
  150. Koterov A.N. Malyye dozy i malyye moshchnosti doz ioniziruyushchey radiatsii: reglamentatsiya diapazonov. kriterii ikh formirovaniya i realii XXI veka .Medical Radiology and Radiation Safety. 2009. Vol. 54. 3. P. 5–26. (In Russ.).
  151. Koterov A.N. Ot ochen malykh do ochen bolshikh doz radiatsii: novyye dannyye po ustanovleniyu diapazonov i ikh eksperimentalno-epidemiologicheskiye obosnovaniya. Medical Radiology and Radiation Safety. 2013. Vol. 58. 2. P. 5–21. (In Russ.).
  152. Koterov A.N., Vaynson A.A. Biologicheskiye i meditsinskiye effekty izlucheniya s nizkoy LPE dlya razlichnykh diapazonov doz .Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 3. P. 5–31. (In Russ.).
  153. Quimby E.H. Calculation of dosage in radioiodine therapy. In: Brookhaven Conf. Rep., BNL-C-5, July 1948. P. 43.
  154. Masalova N.N., Zakharenko R.V. Effektivnost radioyodterapii tireotoksikoza metodom dvukhetapnogo kursa s ispolzovaniyem standartnoy aktivnosti 131I. Dalnevostochnyy meditsinskiy zhurnal. 2010. No. 3. P. 87–89. (In Russ.).
  155. Semenov D.Yu., Boriskova M.E., Farafonova U.V. et al.Prognosticheskoye znacheniye ekspressii natriy-yodnogo simportera dlya vysokodifferentsirovannogo raka shchitovidnoy zhelezy // Klin. i eksperiment. tireoidologiya. 2015. Vol. 11. No. 1. P. 50–58. (In Russ.).
  156. Shestakova G.V., Efimov A.S., Strongin L.G. Prediktory iskhodov radioyodterapii bolezni Greyvsa // Klin. i eksperiment. tireoidologiya. 2010. Vol. 6. No. 3. P. 48–53. (In Russ.).
  157. Hertz S., Roberts A., Evans R.D. Radioactive iodine as an indicator in the study of thyroid physiology. Proc. Soc. Exper. Biol. Med. 1938. Vol. 38. P. 510–513.
  158. Hertz S., Roberts A., Salter W.T. Radioactive iodine as an indicator in thyroid physiology, IV: the metabolism of iodine in Graves’ disease. J. Clin. Invest. 1942. Vol. 21. No. 1. P. 25–29.
  159. Hertz S., Roberts A. Radioactive iodine as indicator in thyroid physiology. Vol. The use of radioactive iodine in the differential diagnosis of two types of Graves’ disease. J. Clin. Invest. 1942. Vol. 21. No. 1. P. 31–32.
  160. Hamilton J.G. The rates of absorption of the radioactive isotopes of sodium, potassium, chlorine, bromine, and iodine in normal human subjects. Amer. J. Physiol. 1938. Vol. 124. P. 667–678.
  161. Hamilton G.J., Soley M.H., Relly W.A., Eichorn K.B. Radioactive iodine studies in childhood hypothyroidism. Amer. J. Dis. Child. 1943. Vol. 66. No. 5. P. 495–502.
  162. Vanderlaan W.P., Bissell A. Effects of propylthiouracil and of potassium thiocyanate on the uptake of iodine by the thyroid gland of the rat. Endocrinology. 1946. Vol. 39. P. 157–160.
  163. Skanse B.N. Radioactive iodine. Its use in studying the urinary excretion of iodine by human in various states of the thyroid function. Acta Medica Scand. 1948. Vol. 131. No. 3. P. 251–268.
  164. Werner S.C., Quimby E.H., Schmidt C. Clinical experience in diagnosis and treatment of thyroid disorders with radioactive iodine; 8-day half-life. Radiology. 1948. Vol. 51. No. 4. P. 564–581.
  165. Werner S.C., Quimby E.H., Schmidt C. Radioactive iodine, 131I in the treatment of hyperthyroidism. Amer. J. Med. 1949. Vol. 7. No. 6. P. 731–740.
  166. Sanchez M.A., de Miliani Y.Z., de Valeri M.P. et al. Evaluacion del tratamiento con radioyodo en el hipertiroidismo. Rev. Venez. Endocrinol. Metab. 2005. Vol. 3. No. 1. P. 25–31. (http://docplayer.es/11967180-Evaluacion-del-tratamiento-con-radioyodo-en-el-hipertiroidismo.html; accessed 29.01.2017).
  167. Walinder G. Determination of the 131I dose to the mouse thyroid. Acta Radiol. Ther. Phys. Biol. 1971. Vol. 10. No. 6. P. 558–578.
  168. Holm L.-E. Thyroid cancer after exposure to radioactive 131I. Acta Oncol. 2006. Vol. 45. No. 8. P. 1037–1040.
  169. Seltzer R.A., James G. Kereiakes J.G. et al. Radiation exposure from radioiodine compounds in pediatrics. Radiology. 1964. Vol. 82. P. 486–494.
  170. UNSCEAR 2008. Report to the General Assembly, with Scientific Annexes. Volume I. Annex A. Medical radiation exposures. – United Nations. New York. 2010. P. 23–220.
  171. Goldberg R.C., Chaikoff I.L., Lindsay S.T., Feller D.D. Histopathological changes induced in the normal thyroid and other tissues of the rat by internal radiation with various doses of radioactive iodine. Endocrinology. 1950. Vol. 46. No. 1. P. 72–90.
  172. Shoshina R.R., Lavrentyeva G.V., Synzynys B.I. Primeneniye kontseptualnoy modeli zonalnosti khronicheskogo deystviya ioniziruyushchey radiatsii pri izuchenii povedeniya radiostrontsiya v sukhoputnykh ekosistemakh. Izvestiya VUZov. Yadernaya energetika. 2015. No. 2. P. 143–148. (In Russ.).
  173. Vasilyeva A.N. Ekologo-tekhnicheskaya otsenka sostoyaniya khranilishcha radioaktivnykh otkhodov na primere regionalnogo obyekta v basseyne reki Protva na severe Kaluzhskoy oblasti. Avtoref. dis. … kand. tekhn. nauk. Gosudarstvennyy nauchnyy tsentr RF – Fiziko-energeticheskiy institut im. A.I. Leypunskogo. Moscow: 2007. 18 p. (In Russ.).
  174. Gross W.G. Empirical expression for beta ray point source dose distribution. Radiat. Protect. Dosimetry. 1997. Vol. 69. No. 2. P. 85–96.
  175. Swietaszczyk C., Pilecki S.E. Approximation of time-uptake curve to a modified Bateman equation based on three uptake tests–potential value for dosimetry of corpuscular radiation. Nucl. Med. Rev. Cent. East. Eur. 2015. Vol. 18. No. 1. P. 42–45.
  176. Swietaszczyk C. Calculation of the dosis of radioiodine (or another radionuclide) with the Marinelli-formula. Nuclear Medicine. Calculator. 2013. (http://www.nuk.org.pl/index.php?la=en&go=kal&kalk=tar_mar#proc; accessed 06.01.2017).
  177. Aktolun C., Urhan M. Radioiodine therapy of benign thyroid disease: Grave’s disease, Plummer’s disease, non-toxic goiter an nodules. In: Nuclear Medicine Therapy. Principles and Clinical Application. Ed. by C. Aktolun, S. Goldsmith. New York: Springer. 2013. P. 281–314.
  178. Berg G.B., Michanek M.K. Holmberg E.C.V., Fink M. Iodine-131 treatment of hyperthyroidism: significance of effective half-life measurements. J. Nucl. Med. 1996. Vol. 37. No. 2. P. 228–232.
  179. Labhart A. Clinical Endocrinology. Theory and practice. Berlin. Heidelberg. New York: Springer-Verlag. 1974. 1092 p.
  180. Oeser H. On the roentgen diagnosis of operable lung diseases. Dtsch. Med. J. 1961. Vol. 12. P. 441–442.
  181. Volkert W.A., Hoffman T.J. Therapeutic radiopharmaceuticals. Chem. Rev. 1999. Vol. 99. No. 9. P. 2269–2292.
  182. Snyder W., Ford M., Warner G., Watson S. ‘S’ absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. New York. NY: Society of Nuclear Medicine. 1975. P. 1–257.
  183. Livergant Yu.E. Vybor terapevticheskoy dozy pri lechenii tireotoksikoza 131I. Med. radiologiya. 1967. Vol. 12. 3. P. 48–55. (In Russ.).
  184. Burykina L.N., Karadzhiyev G.D. Zavisimost yodpoglotitelnoy funktsii shchitovidnoy zhelezy ot vozrasta zhivotnykh. V kn.: Materialy po toksikologii radioaktivnykh veshchestv. In: Letaveta A.A., Burykinoy L.N. (eds.). Vyp. 8: 131I. Moscow: Meditsina. 1972. P. 12–23. (In Russ.).
  185. Burykina L.N., Smirnova E.I., Kurnayeva V.P., Kapitonenko I.P. Embriotoksicheskoye deystviye 131I pri odnokratnom ego vvedenii. V kn.: Materialy po toksikologii radioaktivnykh veshchestv. In: Letaveta A.A., Burykinoy L.N. (eds.). Vyp. 8: 131I. Moscow: Meditsina. 1972. P. 175–202. (In Russ.).
  186. Vlasova O.P. Metod identifikatsii parametrov metabolizma yoda i raschet pogloshchennykh doz pri radionuklidnoy terapii shchitovidnoy zhelezy s 131I. Avtoref. dis. … kand. biol. nauk. IATE filial NIYaU MIFI. Obninsk. Moscow: 2010. 22 p. (In Russ.).
  187. Vlasova O.P., Matusevich E.S., Klepov A.N. et al.Stsintigrafiya s yodom-123 dlya dozimetricheskogo planirovaniya radioyodterapii zabolevaniy shchitovidnoy zhelezy. Med. radiol. i radiats. bezopasnost. 2007. Vol. 52. 4. P. 53–61. (In Russ.).
  188. Vlasova O.P., Klepov A.N., Garbuzov P.I. et al.Zavisimost «doza–effekt» pri radionuklidnoy terapii 131I patsiyentov s zabolevaniyami shchitovidnoy zhelezy // Med. radiol. i radiats. bezopasnost. 2009. Vol. 54. No. 1. P. 47–55. (In Russ.).
  189. Matveyev A.V., Noskovets D.Yu. Farmakokineticheskoye modelirovaniye i dozimetricheskoye planirovaniye radioyodterapii tireotoksikoza , Vestn. Om. un-ta. 2014. No. 4. P. 57–64. (In Russ.).
  190. Organisation Intergouvernementale de la Convention du Metre. The International System of Units (SI). 8th edition. 2006. 88 p.
  191. UNSCEAR 1977. Report to the General Assembly, with Scientific Annexes. Annex A. Concepts and quantities in the assessment of human exposures. United Nations. New York. 1977. P. 1–34.
  192. Hahn K., Schnell-Inderst P. Grosche B., Holm L.E. Thyroid cancer after diagnostic administration of iodine-131 in childhood. Radiat. Res. 2001. Vol. 156. No. 1. P. 61–70.
  193. Quimby E., Feitelberg S. Radioactive isotopes in medicine and biology. Philadelphia. Pennsylvania: Lea and Febiger, 2d. 1963. P. 123.
  194. Dumont J.G., Malone J.F., Van Herle A.J. Irradiation and thyroid disease: dosimetric, clinical and carcinogenic aspects. Commission of the European Communities. Medicine. EUR 6713 EN. ECSC-EEC-EAEC, Brussels and Luxembourg. 1980. 258 p. (http://aei.pitt.edu/43416/; accessed 29.03.2017).
  195. Beierwaltes W.H., Crane H.R., Wegst A. et al. Radioactive iodine concentration in the fetal human thyroid gland from fall-out. J. Amer. Med. Assoc. (JAMA). 1960. Vol. 173. No. 17. P. 1895–1902.
  196. Marks S., Dockum N.L., Bustad L.K. Histopathology of the thyroid gland of sheep in prolonged administration of 131I. Amer. J. Pathol. 1957. Vol. 33. No. 2. P. 219–249.
  197. Marks S., George L.A. Jr., Bustad L.K. Fibrosarcoma involving the thyroid gland of a sheep given 131I daily. Cancer. 1957. Vol. 10. No. 3. P. 587–591.
  198. Marks S.; Bustad L.K. Thyroid neoplasms in sheep fed radioiodine. J. Nat. Cancer Inst. 1963. Vol. 30. No. 4. P. 661–673.
  199. Seltzer R.A., Kereiakis J.G., Saenger E.L. Radiation exposure from radioisotopes in pediatrics. N. Engl. J. Med. 1964. Vol. 271. P. 84–90.
  200. Streltsova V.I. Moskalev Yu.I. Otdalennyye posledstviya pri porazhenii131I. Med. radiol. 1968. Vol. 13. No. 6. P. 17–27. (In Russ.).
  201. Pilch B.Z., Kahn C.R., Ketcham A.S., Henson D. Thyroid cancer after radioactive iodine diagnostic procedures in childhood. Pediatrics. 1973. Vol. 51. No. 5. P. 898–902.
  202. Listewnik M.H. Analysis of factors affecting treatment results for toxic goiter with radioactive 131I. Ann. Acad. Med. Stetin. 2000. Vol. 46. P. 109–121 (на польском).
  203. Pirnat E., Zaletel K., Gaberscek S. et al. Measured and calculated absorbed dose of 131I in Graves’ patients trated with fixed activity of 550 MBq 131I. The twenty three years experience of the radionuclide synovectomy. 2005. Vol. 10. No. 15. (http://www.cigota.rs/en/medicinski-glasnik/vol-10-iss-15?page=10&header=&footer=&layout=; accessed 06.01.2017).
  204. Danilova L.I., Valuyevich V.V. Radioyodterapiya funktsionalnoy avtonomii shchitovidnoy zhelezy // Ministerstvo zdravookhraneniya Respubliki Belarus. Instruktsiya po primeneniyu. Registratsionnyy 122-1005. 27 dekabrya 2005 g. 9 p. (http://med.by/methods/pdf/122-1005.pdf; accessed 17.01.2017). (In Russ.).
  205. Bernard D., Desrueta M.D., Wolf M. et al. Radioiodine therapy in benign thyroid disorders. Evaluation of French nuclear medicine practices. Annales d’Endocrinologie. 2014. Vol. 75. P. 241–246.
  206. Merrill S., Horowitz J., Traino A.C. et al. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys. Med. Biol. 2011. Vol. 56. No. 3. P. 557–571.
  207. Krohn T., Hanscheid H., Muller B. et al. Maximum dose rate is a determinant of hypothyroidism after 131I therapy of Graves’ disease but the total thyroid absorbed dose is not. J. Clin. Endocrinol. Metab. 2014. Vol. 99. No. 11. P. 4109–4015.
  208. Zare M., Lewis D., Richardson M. Robustness of male treatment failure with 131I in hyperthyroidism. J. Nucl. Med. 2016. Vol. 57. Suppl. 2. P. 1707
  209. Sukarochana K., Parenzan L., Thakurdas N., Kiesewetter W.B. Red cell mass determinations in infancy and childhood, with the use of radioactive chromium. J. Pediatr. 1961. Vol. 59. P. 903–908.
  210. Reddy A.R. Dosimetry of internal emitters: past, present and future. Def. Sci. J. 1990. Vol. 40. No. 4. P. 389–399.
  211. Noskovets D.Yu. Matematicheskoye modelirovaniye i dozimetricheskoye planirovaniye radioyodterapii tireotoksikoza. Mater. 53-y mezhd. nauchn. stud. konfer. «Fizicheskiye metody v estestvennykh naukakh». Novosibirsk. 11–17 aprelya 2015 g. Novosibirsk. 2015. P. 83 (In Russ.).
  212. Quimby E.H., Feitelberg S. Radioactive isotopes in medicine and biology. In: Quimby E.H., Feitelberg S., eds. Basic physics and instrumentation. Philadelphia: Lea and Febiger. 1961. P. 104–128.
  213. Endo S., Nitta Y., Ohtaki M. et al. Estimation of dose absorbed fraction for 131I-beta rays in rat thyroid. J. Radiati. Res. 1998. Vol. 39. No. 3. P. 223–230.
  214. Bauer A.J. Approach to the pediatric patient with Graves’ disease: when is definitive therapy warranted?. J. Clin. Endocrinol. Metab. 2011. Vol. 96. No. 3. P. 580–588.
  215. Poste J., Weiss I.A., Mozzor M.H. et al. Clinical outcomes after calculated activity of radioiodine for the treatment of benign hyperthyroid disease at Westchester Medical Center: a retrospective analysis. In: Endocrine Society’s 97th Annual Meeting and Expo, San Diego, March 5–8. 2015. Poster Board THR-192. (https://endo.confex.com/endo/2015endo/webprogram/Paper20044.html; accessed 23.01.2017).
  216. Mizokami T., Hamada K., Maruta T. et al. Painful radiation thyroiditis after 131I therapy for Graves’ hyperthyroidism: clinical features and ultrasonographic findings in five cases. Eur. Thyroid J. 2016. Vol. 5. No. 3. P. 201–206.
  217. Waterstram-Rich K.M., Gilmor D. Nuclear medicine and PET/CT. Technology and techniques. Eight edition. Elsevier. 2017. 696 p.
  218. Quimby E.H., Feitelberg S., Gross W. Chapter 16. Radioactive nuclides in medicine and biology. In: Radionuclides in Medicine and Biology. Philadelphia: Lea & Febiger. 1970.
  219. Loevinger R. Distributed radionuclide sources. In: Radiation dosimetry (2nd ed., Vol. 3). Attix F.H. & Tochilin E. (Eds.). New York: Academic Press. 1969. P. 51–89.
  220. Glants S. Mediko-biologicheskaya statistika. Transl. from engl. Yu.A. Danilova. In: Buzikashvili N.E. & Samoylova D.V. (eds.) . Moscow: Praktika. 1998. 459 p. (In Russ.).
  221. Van Best J.A. Dose calculations for 123I, 124I, 125I and 131I in the thyroid gland of the mouse, rat and man and comparison with thyroid function for mice and rats. Phys. Med. Biol. 1981. Vol. 26. No. 6. P. 1035–1053.
  222. Van Best J.A. Comparison of thyroid function in mice after various injected activities of 123I, 125I and 131I. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1982. Vol. 42. No. 5. P. 545–557.
  223. Shahbazi-Gahrouei D., Ayat S. Comparison of three mMethods of calculation, experimental and Monte Carlo Simulation in investigation of organ doses (thyroid, sternum, cervical vertebra) in radioiodine therapy. J. Med. Signals Sens. 2012. Vol. 2. No. 3. P. 149–152.
  224. Chen D.-G., Peace K.E. Applied meta-analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton – London – New York: CRC Press. 2013. 314 p.

For citation: Koterov AN, Ushenkova LN, Zubenkova ES, Wainson AA, Biryukov AP. Risk of Thyroid Cancer after Exposure to 131I: Combined Analysis of Experimental and Epidemiological Data over Seven Decades. Part 2. Overview of Methods of Internal Dose Estimation and Thyroid Absorbed Dose Determination. Medical Radiology and Radiation Safety. 2017;62(4):31-65. Russian.DOI: 10.12737/article_59b10998808b74.63554924

PDF (RUS) Full-text article (in Russian)