О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2019. Том 64. № 6. С. 70–81

DOI: 10.12737/1024-6177-2019-64-6-70-81

А.В. Хмелев

Анализ состояния радионуклидного обеспечения позитронной эмиссионной томографии

Научно-исследовательский институт – Республиканский исследовательский научно-консультационный центр экспертизы Минобрнауки РФ, Москва. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

А.В. Хмелев – г.н.с., д.ф.-м.н., проф.

Содержание

Введение
1. Общие требования к ПЭТ‑радионуклидам (РН)
2. Параметры ранжирования радионуклидов для применения в ПЭТ
3. Позитронные эмиттеры для различных применений. Критерии отбора
ПЭТ‑исследования
Совместные ПЭТ‑ и ОФЭКТ-исследования
Тераностика
Специальные применения
4. Доступность позитронных эмиттеров.
4.1. Производство ПЭТ‑радионуклидов на циклотроне
Традиционные радионуклиды
Экспериментальные радионуклиды
4.2. Генераторное производство ПЭТ‑радионуклидов
5. Перспективы развития радионуклидного обеспе­чения ПЭТ
Заключение

Ключевые слова: ПЭТ, позитронные эмиттеры, активность, циклотрон, радионуклидный генератор

СПИСОК ЛИТЕРАТУРЫ

1. Townsend D.W., Carney J.P.J., Yap J.T. and Hall N.C. PET/CT today and tomorrow // J. Nucl. Med. 2004. Vol. 45. Suppl. № 1. P. 4S–14S. 2. Saha G.B. Basics of PET Imaging. Physics, chemistry and regulation. 2-nd ed. New York: Springer. 2010. 241 p.
2. Cherry S.R., Sorenson J.A., Phelps M.E. Physics in nuclear medicine. 4-th ed. Philadelphia: W.B Saunders. 2012. 523 p.
3. Хмелев А.В. Позитронная эмиссионная томография: физико-технические аспекты. М.: Изд-во “Тровант”. 2016. 336 с.
4. Chart of the nuclides. Available from: http://www.nndc.bnl.gov
5. Zimmermann R.G. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals // Nucl. Med. Biol. 2013. Vol. 40. P. 155–166.
6. Костылев В.А., Наркевич Б.Я. Медицинская физика. М.: Медицина. 2008. 460 с.
7. Azaiez F., Bracco A., Dobeš J., et al. (eds). Nuclear Physics for Medicine. Chapter III. Radioisotope production. Strasbourg: European Science Foundation. 2015. 156 p.
8. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report № 468. Vienna: IAEA. 2009.
9. Geworski L., Knoop B.O., de Cabrejas M.L., et al. Recovery correction for quantitation in emission tomography: a feasibility study // Eur. J. Nucl. Med. 2000. Vol. 27. № 2. P. 161–169.
10. Rosch F., Knapp F. F. (Russ). Radionuclide generators // In: A. Vértes, S. Nagy, Z. Klencsár, et al. (eds). Handbook of Nuclear Chemistry. V. 4. Berlin: Springer. 2011. P. 1935–1976.
11. Шимчук Гр.Г., Шимчук Г.Г., Кутузов С.Г. и соавт. Автоматизированная генераторная система клинического применения для болюсных и продолжительных инъекций хлорида Rb-82 // Медицинская физика. 2013. Т. 2. № 58. C. 67–75.
12. Miller P.W., Nicholas J. Long N.J., et al. Synthesis of 11C, 18F, 15O and 13N radiolabels for positron emission tomography // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 8998–9033.
13. Beyer G.-J., Comor J.J. The potential of PET cyclotron installations for the production of uncommon positron emitting isotopes. In: International conference on clinical PET and molecular nuclear medicine. Bangkok. 2007. P. 54–55.
14. Papash A., Alenitsky Yu. On commercial H– cyclotrons up to 30 MeV energy range for production of medicine isotopes // Problems Atomic Sci. and Technol. 2008. № 5. P. 143–145.
15. Schmor P. W. Review of cyclotrons used in the production of radioisotopes for biomedical applications. // In: Proceedings of Cyclotrons 2010, Lanzhou, China. P. 419–424.
16. Qaim S.M. Cyclotron production of medical radionuclides. In: A. Vértes, S. Nagy, Z. Klencsár, et al (eds). Handbook of nuclear chemistry. V. 4. Berlin: Springer. 2011. P. 1903–1933.
17. Кодина Г.Е. и Красикова Р.Н. Методы получения радиофармацевтических препаратов и радионуклидных генераторов для ядерной медицины. М.: Издат. дом МЭИ. 2014. 282 с.
18. Хмелев А.В. Ядерная медицина: физика, оборудование, технологии: учебное пособие. М.: НИЯУ МИФИ. 2018. 440 с.
19. Antoni G., Kihlberg T., Langstrom B. 11C: labeling chemistry and labeled compounds // In: A. Vértes, S. Nagy, Z. Klencsár, et al (eds). Handbook of Nuclear Chemistry. Vol. 4. Berlin: Springer. 2011. P. 1977–2021.
20. Ross T. L., Wester H. J. 18F: labeling chemistry and labeled compounds // In: A. Vértes, S. Nagy, Z. Klencsár, et al (eds). Handbook of Nuclear Chemistry. Vol. 4. Berlin: Springer. 2011. P. 2022–2071.
21. Kilian K. 68Ga-DOTA and analogs: current status and future perspectives // Rep. Pract. Oncol. Radiother. 2014. Vol.19. Supp. L. P. S13–S21.
22. Velikyan I. Positron emitting [68Ga]Ga-based imaging agents: chemistry and diversity // Med. Chem. 2011. Vol. 7. № 5. P. 345–379.
23. Davidson C. D., Phenix C. P., Tai T. C., et al. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation // Am. J. Nucl. Med. Mol. Imaging. 2018. Vol. 8. № 3. P. 200–227.
24. Severin G.W., Engle J.W., Nickles R.J., Barnhart T.E. 89Zr Radiochemistry for PET // Med. Chem. 2011. Vol. 7. № 5. P. 389–394.
25. Walther M., Gebhardt P., Grosse-Gehling P., et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT // Appl. Rad. Isot. 2011. Vol. 69. P. 852–857.
26. Koehler L., Gagnon K., McQuarrie S., Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry // Molecules. 2010. Vol. 15. P. 2686–2718.
27. Stocklin G., Pike V.W. Radiopharmaceuticals for positron emission tomography: methodological aspects. New York: Kluwer. 1993. 178 c.
28. Дмитриев С.Н., Зайцева Н.Г., Очкин А.В. Радионуклиды для ядерной медицины и экологии. Дубна: ОИЯИ. 2001. 103 с.
29. Chopra D. Radiolabeled nanoparticles for diagnosis and treatment of cancer // In: N. Singh (ed.) Radioisotopes – applications in bio-medical science. Chapter 11. 2011: available from: http: //www.intechopen.com/books/radioisotopes-applications-in-bio-medical-science/radiolabeled-nanoparticles-for-diagnosis-and-treatment-of-cancer.
30. Веревкин А.А., Стервоедов Н.Г., Ковтун Г.П. Получение и применение короткоживущих и ультракороткоживущих изотопов в медицине // Вестник харьковского университета. 2006. № 746. С. 54–64.
31. Куренков Н.В., Шубин Ю.Н. Радионуклиды в ядерной медицине // Медицинская радиология. 1996. Т. 41. № 5. C. 54–63.
32. Наркевич Б.Я. Однофотонная эмиссионная компьютерная томография с позитронно-излучающими радиофармпрепаратами: современное состояние и направление развития // Мед. радиология и радиационная безопасность. 2000. Т. 45. № 6. С. 56–63.
33. Rosch F., Baum R.B. Generator-based PET radiopharmaceuticals for molecular imaging of tumors: on the way to theranostics // Dalton Transactions. 2011. Vol. 40. № 23. P. 6104–6111.
34. Werner R. A., Bluemel C., Allen-Auerbach M. S., et al. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs // Ann. Nucl. Med. 2015. Vol. 29. P. 1–7.
35. Rosch F., Riss P. The Renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry // Curr. Top. Med. Chem. 2010. Vol. 10. №16. Р.1633–1668.
36. Ellison P.A., Chenb F., Barnharta T.E., et al. Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents // In: WTTC15 Proceedings. Prague: 2014. P. 110–111.
37. Wooten A.L., Lewis B.C., Laforest R., et al. Cyclotron production and PET/MRI imaging of 52Mn // In: WTTC15 Proceedings. Prague: 2014. P. 97–99.
38. Xing Y., Zhao J., Shi X., et al. Recent development of radiolabeled nanoparticles for PET imaging // Austin J. Nanomed. Nanotechnol. 2014. Vol. 2, Issue. 2. P. 1016–1025.
39. Богданов П.В., Ворогушин М.Ф., Ламзин Е.А. и соавт. Создание компактных циклотронов СС-18/9, СС-12 и МСС-30/15 для производства медицинских радиоизотопов // Журнал технической физики. 2011. Т. 81. вып. 10. C. 68–83.
40. Wolf A.P., Jones W.B. Cyclotrons for biomedical radioisotope production // Radiochimica Acta. 1983. Vol. 34. № 1/2. P. 1-7.
41. Pagani M., Stone-Elander S., Larsson S.A. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications // Eur. J. Nucl. Med. 1997. Vol. 24. № 10. P. 1301–1327.
42. Synowiecki M.A., Perk L.R., Nijsen J. F. W. Production of novel diagnostic radionuclides in small medical cyclotrons // EJNMMI Radiopharm. Chem. 2018. Vol. 3. № 1. P. 35–46.
43. Bakhtiari M., Enferadi M., Sadeghi M. Accelerator production of the positron emitter 89Zr // Annals of Nuclear Energy. 2012. Vol. 41. P. 93–107.
44. Holland J.P., Sheh Y., Lewis J.S. Standardized methods for the production of high specific-activity zirconium-89 // Nucl. Med. Biol. 2009. Vol. 36. № 7. Р. 729–739.
45. McCarthy D.W., Shefer R.E., Klinkowstein R.E., et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron //Nucl. Med. Biol. 1997.Vol 24. P. 35–49.
46. Pandey M. K., Byrne J. F., Jiang H., et al. Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution // Am. J. Nucl. Med. Mol. Imaging. 2014. Vol. 4. № 4. P. 303–310.
47. Walczak R., Krajewski S., Szkliniarz K., et al. Cyclotron production of 43Sc for PET imaging // EJNMMI Phys. 2015. Vol. 2. P. 33–43. 49. Qaim M. Development of cyclotron radionuclides for medical applications: from fundamental nuclear data to sophisticated production technology // In: WTTC15 Proceedings. Prague: 2014. P. 18–20.
48. Pillai M.R.A., Dash A., Knapp F.F. (Russ) Jr. Radionuclide generator: ready source diagnostic and therapeutic radionuclides for nuclear medicine applications // In: R. Santos-Oliveria (ed.) Radiopharmaceuticals: application, insights and future. Lambert Academic Publishing. 2016. P. 63–118.
49. Filosofov D. V., Loktionova N. S., Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals // Radiochim. Acta. 2010. Vol. 98. Issue. 3. P. 149–156.
50. Jalilian A.R. The application of unconventional PET tracers in nuclear medicine // Iran J. Nucl. Med. 2009. Vol. 17. №1. P. 1–11. 53. Pagou M., Zerizer I., Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? // Hell. J. Nucl. Med. 2009. Vol. 12. № 2. P. 102–105.
51. Тлостанова М.С., Ходжибекова М.М., Панфиленко А.А. и соавт. Возможности совмещенной позитронно-эмиссионной и компьютерной томографии в диагностике нейроэндокринных опухолей: первый опыт использования отечественного модуля синтеза 68Ga-DOTA-TATE // СТМ. 2016. Т. 8. № 4. С. 51–58.
52. Severin G.W., Fonslet J., Jensen A.I., Zhuravlev F. Hydroliticaly stable titanium-45 // In: WTTC15 Proceedings. Prague: 2014. P. 103–106.
53. Weineisen M., Schottelius M., Simecek J., et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies // J. Nucl. Med. 2015. Vol. 56. № 8. P. 1169–1176.
54. Devillet F.G., Courtyn J., Geets J.-M., et al. New conical shaped niobium [18O] water targets // In: Cyclotrons 2013 Proceedings. Vancouver: 2013. P. 406–408.
55. Zeisler S.K., Becker D.W. Pavan R.A., et al. A water-cooled spherical niobium target for the production of [18F] fluoride // Appl. Radiat. Isot. 2000. Vol. 53. № 3. P. 449–453.
56. Smith S.V., Jones M., Holmes V. Production and selection of metal PET radioisotopes for molecular imaging // In: N. Singh (ed.). Radioisotopes – applications in bio-medical science. Chapter 10. 2011: available from: http: //www.intechopen. com/books/radioisotopes-applications-in-bio-medical-science/production-and-selection-of-metal-pet-radioisotopes-for-moleculal imaging.
57. Hoehr C., Oehlke E., Hou H. et al. Production of radiometals in liquid target // In: WTTC15 Proceedings. Prague: 2014. P. 41–42.
58. Saha GB. Basics of PET Imaging. Physics, chemistry and regulation. 2-nd ed. New York: Springer; 2010. 241 p.
59. Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.
60. Qaim M. Development of cyclotron radionuclides for medical applications: from fundamental nuclear data to sophisticated production technology. In: Proc of 15th Int Workshop on targetry and target chemistry. Prague: 2014. 18-20.
61. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
62. Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.

Для цитирования: Хмелев А.В. Анализ состояния радионуклидного обеспечения позитронной эмиссионной томографии // Медицинская радиология и радиационная безопасность. 2019. Т. 64. № 6. С. 70–81.

DOI: 10.12737/1024-6177-2019-64-6-70-81

PDF (RUS) Полная версия статьи

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2762428
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
2793
2366
20812
18409
70171
75709
2762428

Прогноз на сегодня
4776


Ваш IP:216.73.216.238