JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 6. P. 70–81
DOI: 10.12737/1024-6177-2019-64-6-70-81
A.V. Khmelev
Analysis of Positron Emission Tomography Providing with Radionuclides
Federal Research Center for Project Evaluation and Consulting Services, Moscow, Russia.
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
A.V. Khmelev – Cheif Researcher, Dr. Sci. Phys.-Math., Prof.
Content
Introduction
1. General requirements to PET-radionuclides
2. Parameters of radionuclide ranging for application in PET
3. Positron emitters for different applications. Selection criteria
PET-studies
Joint PET- and SPECT-studies
Theranostics
Special applications
4. Availability of positron emitters
4.1. Cyclotron production of PET-radionuclides
Conventional radionuclides
Radionuclides under development
4.2. Production of PET-radionuclides on radionuclide generators
5. Future development of PET providing with radionuclides
Conclusion
Key words: PET, positron emitters, activity, cyclotron, radionuclide generator
REFERENCES
1. Townsend DW, Carney JPJ, Yap JT and Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(1):4S-14S.
2. Saha GB. Basics of PET Imaging. Physics, chemistry and regulation. 2nd ed. New York: Springer; 2010. 241 p.
3. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: WB Saunders; 2012. 523 p.
4. Khmelev V. Positron emission tomography: physical and technical aspects. Moscow: Trovant; 2016. 336 p. (In Russian).
5. Chart of the Nuclides. Available from: http://www.nndc.bnl.gov
6. Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40:155-66.
7. Kostylev VA, Narkevich BYa. Medical Physics. Moscow: Meditsina; 2008. 460 p. (In Russian).
8. Nuclear Physics for Medicine. Chapter III. Radioisotope production. Ed. by F Azaiez, A Bracco, J Dobeš, A Jokinen, G-E Körner, A Maj, A Murphy, P Van Duppen. Strasbourg: European Science Foundation. 2015. 156 p.
9. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report № 468. Vienna: IAEA. 2009.
10. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161-9.
11. Rosch F, Knapp FF (Russ). Radionuclide generators. In: Handbook of Nuclear Chemistry. V.4. Ed. by A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011: 1935-76.
12. Shimchuk GrG, Shimchuk GG, Kutuzov SG, et. al. Automatized generator system of clinical application for bolus and long-term injections of chloride 82Rb. Medical Physics. 2013;(2):67-75. (In Russian).
13. Miller PW, Nicholas J, Long NJ, Gee AD. Synthesis of 11C, 18F, 15O and 13N radiolabels for positron emission tomography. Angew Chem Int Ed. 2008;47(47):8998-9033.
14. Beyer G-J, Comor JJ. The potential of PET cyclotron installations for the production of uncommon positron emitting isotopes. In: Int Conf Clin PET and Molecular Nucl Med. 2007 Nov 10–14; Bangkok: 2007; 54-55.
15. Papash A, Alenitsky Yu. On commercial H– cyclotrons up to 30 MeV energy range for production of medicine isotopes. Problems Atomic Sci. and Technol. 2008;(5):143-5.
16. Schmor PW. Review of cyclotrons used in the production of radioisotopes for biomedical applications. In: Proceedings of Cyclotrons 2010. Lanzhou: 2010. 419-24.
17. Qaim SM. Cyclotron production of medical radionuclides. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1903-1933.
18. Kodina GE, Krasikova RN. Methods of production of radiopharmaceuticals and radionuclide generators for nuclear medicine. Moscow: MEI Publishing House; 2014. 282 p. (In Russian).
19. Khmelev AV. Nuclear medicine: physics, equipment, technologies. Moscow: NRNU MEPhI; 2018. 440 p. (In Russian).
20. Antoni G, Kihlberg T, Langstrom B. 11C: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1977-2021.
21. Ross TL, Wester HJ. 18F: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 2022-71.
22. Kilian K. 68Ga‑DOTA and analogs: current status and future perspectives. Rep Pract Oncol Radiother. 2014;19(L):S13-S21.
23. Velikyan I. Positron emitting [68Ga]Ga‑based imaging agents: chemistry and diversity. Med Chem. 2011;7(5):345-79.
24. Davidson CD, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200-27.
25. Severin GW, Engle JW, Nickles RJ, Barnhart TE. 89Zr radiochemistry for PET. Med Chem. 2011;7(5):389-94.
26. Walther M, Gebhardt P, Grosse-Gehling P, et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl Rad Isot. 2011;69:852-7.
27. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686-718.
28. Stocklin G, Pike VW. Radiopharmaceuticals for positron emission tomography: methodological aspects. New York; 1993. 178 p.
29. Dmitriev SN, Zaitseva NG, Ochkin AV. Radionuclides for nuclear medicine and ecology. Dubna UINR; 2001. 103 p. (In Russian).
30. Chopra D. Radiolabeled nanoparticles for diagnosis and treatment of cancer. In: Radioisotopes – applications in bio-medical science. Chapter 11. Ed. N. Singh. 2011: available from: http: //www.intechopen.com/books/radioisotopes-applications-in-bio-medical-science/radiolabeled-nanoparticles-for-diagnosis-and-treatment-of-cancer.
31. Veryevkin AA, Stervoedov NG, Kovtun GP. Production and application short lived and ultra-short lived isotopes in medicine. Reporter of Kharkiv University. 2006;(746):54-64. (In Russian).
32. Kurenkov NV, Shubin YN. Radionuclides in nuclear medicine. Medical Radiology. 1996;41(5):54-63. (In Russian).
33. Narkevich BYa. Single photon emission computer tomography with positron emitting radioparmaceuticals: status and growth area. Medical Radiology and Radiation Safety. 2000;45(6):56-63. (In Russian).
34. Rosch F, Baum RB. Generator-based PET radiopharmaceuticals for molecular imaging of tumors: on the way to theranostics. Dalton Transactions. 2011; 40(23):6104-11.
35. Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.
36. Rosch F, Riss P. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633-68.
37. Ellison PA, Chenb F, Barnharta TE, Nickles RJ, Caia W, De Jesus OT. Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents. In: WTTC15 Proc. Prague: 2014. 110-1.
38. Wooten AL, Lewis BC, Laforest R, Smith SV, Lapi SE. Cyclotron production and PET/MRI imaging of 52Mn. In: WTTC15 Proc. Prague: 2014. 97-9.
39. Xing Y, Zhao J, Shi X, Conti P.S, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol. 2014;2(2):1016-25.
40. Bogdanov PV, Vorogushin MF, Lamzin EA, et al. Development of compact cyclotrons CC-18/9, CC-12 and MCC-30/15 for production of medical radionuclides. J Tech Phys. 2011;81(10):68-83. (In Russian).
41. Wolf AP, Jones WB. Cyclotrons for biomedical radioisotope production. Radiochimica Acta. 1983;34(1/2):1-7.
42. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301-27.
43. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018; 3(1):35-46.
44. Bakhtiari M, Enferadi M, Sadeghi M. Accelerator production of the positron emitter 89Zr. Annals of Nuclear Energy. 2012; 41:93-107.
45. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009; 36(7):729-39.
46. McCarthy DW, Shefer RE, Klinkowstein RE, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997; 24:35-49.
47. Pandey MK, Byrne JF, Jiang H, Packard AB, De Grado TR. Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging. 2014;4(4):303-10.
48. Walczak R, Krajewski S, Szkliniarz K, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys. 2015; 2:33-43.
49. Qaim M. Development of cyclotron radionuclides for medical applications: from fundamental nuclear data to sophisticated production technology. In: Proc of 15th Int Workshop on targetry and target chemistry. Prague: 2014. 18-20.
50. Pillai MRA, Dash A, Knapp FFJr. Radionuclide generator: ready source diagnostic and therapeutic radionuclides for nuclear medicine applications. In: Radiopharmaceuticals: application, insights and future. Ed. by R Santos-Oliveria. Lambert Academic Publishing. 2016. 63-118.
51. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010; 98(3):149-56.
52. Jalilian AR. The application of unconventional PET tracers in nuclear medicine. Iran J Nucl Med. 2009; 17(1):1-11.
53. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
54. Tlostanova MS, Khodjibekova MM, Panfilenko AA, et al. Capabilities of combined positron emission and computer tomography in diagnosis of neuroendocrine tumors: first experience of using of native synthesis module 68Ga‑DOTA-TATE. STM. 2016; 8(4):51-8. (In Russian).
55. Severin GW, Fonslet J, Jensen AI, Zhuravlev F. Hydroliticaly stable titanium-45. In: WTTC15 Proc. Prague: 2014. 103-6.
56. Weineisen M, Schottelius M, Simecek J, et al. 68Ga‑ and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostics concept and first proof-of-concept human studies. J Nucl Med. 2015; 56(8):1169-76.
57. Devillet FG, Geets J-M, Ghyoot M, et al. Performance of IBA new conical shaped niobium [18O] water targets. In: Cyclotrons 2013 Proc. Vancouver: 2013. 406-8.
58. Zeisler SK, Becker DW, Pavan RA, et al. A water-cooled spherical niobium target for the production of [18F] fluoride. Appl Radiat Isot. 2000; 53(3):449-53.
59. Smith SV, Jones M, Holmes V. Production and selection of metal PET radioisotopes for molecular imaging. In: Radioisotopes – applications in biomedical science. Chapter 10. Ed. N. Singh. 2011: available from: http: //www.intechopen. com/books/radioisotopes-applications-in-bio-medical-science/production-and-selection-of-metal-pet-radioisotopes-for-molecular imaging.
60. Hoehr C, Oehlke E, Hou H, et al. Production of radiometals in liquid target. In: WTTC15 Proc. Prague: 2014. P. 41-2.
For citation: Khmelev AV. Analysis of Positron Emission Tomography Providing with Radionuclides. Medical Radiology and Radiation Safety. 2019;64(6):70–81. (in Russian).