JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2024. Vol. 69. № 6
DOI:10.33266/1024-6177-2024-69-6-12-18
D.A. Shaposhnikova1, E.Yu. Moskaleva1, O.V. Vysotskaya1,
O.V. Komova2, I.V. Koshlan2, K.V. Kondratiev1
The Response of Mouse Microglia Cells SIM-A9 to γ-Radiation
1 National Research Center “Kurchatov Institute”, Moscow, Russia
2 Joint Institute for Nuclear Research, Dubna, Russia
Contact person: D.A. Shaposhnikova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Characterization of the response of mouse microglia cells of the SIM-A9 line to the γ-irradiation.
Material and methods: Irradiation of the cells in suspension was carried out using a GUT-200M installation (cobalt-60 γ-radiation source). The radiosensitivity of cells was assessed by the number of surviving cells and their clonogenic activity. The effect of γ-radiation on the phenotype and expression of colony-stimulating growth factor receptor-1 and of epidermal growth factor, which are required to stimulate microglial cells proliferation, was studied using flow cytometry after staining the cells with appropriate fluorescently labeled CD11b, CD45, TMEM119, CSF-1R и EGFR antibodies. Analysis of the relative expression of mRNA genes for the cytokines IL-1β, IL-6, and TNFα in response to γ-radiation was performed using RT-PCR. Statistical analysis was carried out using Student’s t-test in the Origin program.
Results: High radiosensitivity of SIM-A9 cells has been demonstrated. When analyzing the dependence of the clonogenic activity of cells on the radiation dose, it was shown that the D37 value for these cells was equal to 1 Gy. Irradiation caused a cell cycle block in the G0/G1 phase with a decrease in the proportion of cells in the S– and G2/M-phases. The cell death of irradiated SIM-A9 cells occurred by apoptosis. The peculiarity of SIM-A9 cells compared to brain microglia is their phenotype of activated microglia CD11b+/CD45high with an insignificant content of CD11b+/CD45-/low cells and no change in it after irradiation. An increase in the level of mRNA expression of the proinflammatory cytokine genes IL-1β, IL-6 and TNFα in response to γ-irradiation of SIM-A9 cells was shown, which reflects their activation and corresponds to the response of brain microglia cells during total mice irradiation and local cranial irradiation.
Conclusion: The obtained patterns indicate the possibility of using the SIM-A cell line in model radiobiological studies, including the study of intercellular interactions of brain cells of different types with microglia cells.
Keywords: microglia, SIM-A9 cell line, radiosensitivity, cell cycle, apoptosis, γ-radiation, gene expression, IL-1β, IL-6, TNFα
For citation: Shaposhnikova DA, Moskaleva EYu, Vysotskaya OV, Komova OV, Koshlan IV, Kondratiev KV. The Response of Mouse Microglia Cells SIM-A9 to γ-Radiation. Medical Radiology and Radiation Safety. 2024;69(6):12–18. (In Russian). DOI:10.33266/1024-6177-2024-69-6-12-18
References
1. Greene-Schloesser D., Robbins M.E. Radiation-Induced Cognitive Impairment-from Bench to Bedside. Neuro Oncol. 2012;14;4:iv37-iv44 doi:10.1093/neuonc/nos196.
2. Askew K., Li K., Olmos-Alonso A., Garcia-Moreno F., Liang Y., Richardson P., Tipton T., Chapman M.A., Riecken K., Beccari S., Sierra A., Molnár Z., Cragg M.S., Garaschuk O., Perry V.H., Gomez-Nicola D. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep. 2017;18;2:391-405. doi:10.1016/j.celrep.2016.12.041.
3. Chitu V., Gokhan Ş., Nandi S., Mehler M.F., Stanley E.R. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends Neurosci. 2016;39;6:378-393. doi:10.1016/j.tins.2016.03.005.
4. Liu Q., Huang Y., Duan M., Yang Q., Ren B., Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci. 2022;23;15:82-86. doi:10.3390/ijms23158286.
5. Kreisel T., Wolf B., Keshet E., Licht T. Unique Role for Dentate Gyrus Microglia in Neuroblast Survival and in VEGF-Induced Activation. Glia. 2019;67;4:594-618. doi:10.1002/glia.23505.
6. Legroux L., Pittet C.L., Beauseigle D., Deblois G., Prat A., Arbour N. An Optimized Method to Process Mouse CNS to Simultaneously Analyze Neural Cells and Leukocytes by Flow Cytometry. J Neurosci Methods. 2015;247:23-31. doi:10.1016/j.jneumeth.2015.03.021.
7. Blasi E., Barluzzi R., Bocchini V., Mazzolla R., Bistoni F. Immortalization of Murine Microglial Cells by a V-Raf/V-Myc Carrying Retrovirus. J Neuroimmunol. 1990;27;2-3:229-237. doi:10.1016/0165-5728(90)90073-v.
8. Stansley B., Post J., Hensley K.A Comparative Review of Cell Culture Systems for the Study of Microglial Biology in Alzheimer’s Disease. J Neuroinflammation. 2012;9:115. doi:10.1186/1742-2094-9-115.
9. Nagamoto-Combs K., Kulas J., Combs C.K. A Novel Cell Line from Spontaneously Immortalized Murine Microglia. J Neurosci Methods. 2014;.233:187-198. doi:10.1016/j.jneumeth.2014.05.021.
10. Franken N.A., Rodermond H.M., Stap J., Haveman J., van Bree C. Clonogenic Assay of Cells in Vitro. Nat Protoc. 2006;1;5:2315-2319. doi:10.1038/nprot.2006.339.
11. Rodina A.V., Semochkina Y.P., Vysotskaya O.V., Parfenova A.A., Moskaleva E.Y. Radiation-Induced Neuroinflammation Monitoring by the Level of Peripheral Blood Monocytes with High Expression of Translocator Protein. Int J Radiat Biol. 2023;99;9:1364-1377. doi:10.1080/09553002.2023.2177765.
12. Шапошникова Д.А., Москалева Е.Ю., Сёмочкина Ю.П., Высоцкая О.В., Комова О.В., Насонова Е.А., Кошлань И.В. Характеристика клеток микроглии линии SIM-A9 – новые данные // Цитология. 2023.Т.65. №3. С. 259-272 [Shaposhnikova D.A., Moskaleva Ye.Yu., Somochkina Yu.P., Vysotskaya O.V., Komova O.V., Nasonova Ye.A., Koshlan’ I.V. Characteristics of SIM-A9 Microglial Cells – New Data. Tsitologiya = Tsitology. 2023;65;3:259-272 (In Russ.)]. doi: 10.1134/S1990519X23050127.
13. Родина А.В., Семочкина Ю.П., Ратушняк М.Г., Шуватова В.Г., Посыпанова Г.А., Москалёва Е.Ю. Анализ ориентировочно-исследовательской активности и уровня микроглии у мышей, подвергшихся воздействию γ-излучения в сублетальных дозах // Радиационная биология. Радиоэкология. 2019. Т.59. №6. С.575-584 [Rodina A.V., Semochkina Yu.P., Ratushnyak M.G., Shuvatova V.G., Posypanova G.A., Moskalova Ye.Yu. Analysis of Exploratory Activity and Microglia Levels in Mice Exposed to Sublethal Doses of Γ-Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2019;59;6:575-584 (In Russ.)]. doi: 10.1134/S0869803119060092.
14. Родина А.В., Семочкина Ю.П., Ратушняк М.Г., Москалева Е.Ю. Динамика изменения субпопуляций клеток микроглии после γ-облучения головы мышей // Вестник ВИТ «ЭРА». 2020. Т.1. №1. С.30-33 [Rodina A.V., Semochkina Yu.P., Ratushnyak M.G., Moskaleva E.Yu. Dynamics of Changes in Microglial Cell Subpopulations after Γ-Irradiation of The Mouse Head. Vestnik VIT «ERA» = Vestnik VIT “ERA”. 2020;1;1:30-33 (In Russ.)].
15. Жирник А.С., Смирнова О.Д., Сёмочкина Ю.П., Шибаева К.Д., Родина А.В., Ратушняк М.Г., Москалева Е.Ю. Нарушение когнитивных функций и развитие нейровоспаления в отдаленный период после однократного γ-облучения головы мышей // Радиационная биология. Радиоэкология. 2021. Т.61. №1. С.32–43 [Zhirnik A.S., Smirnova O.D., Somochkina Yu.P., Shibayeva K.D., Rodina A.V., Ratushnyak M.G., Moskaleva Ye.Yu. Impairment Of Cognitive Functions and the Development of Neuroinflammation in the Late Period after a Single Γ-Irradiation of the Head of Mice. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2021;61;1:32–43 (In Russ.)]. doi: 10.31857/S0869803121010112.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was carried out as part of the fulfillment of the state task of the Kurchatov Institute Research Center.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.07.2024. Accepted for publication: 25.09.2024.