JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 5–10
D.V. Guryev1,2, O.A. Kochetkov1, V.G. Barchukov1, A.N. Osipov1,2
Biological Effects of Organic and Inorganic Compounds of the Tritium
1 A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
2 N.N. Semenov Institute of Chemical Physics, Moscow, Russia
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
The review represents comparative data on the biological effects of inorganic (HTO) and organic (OBT) compounds of tritium at the molecular, cytogenetic and system levels. The data of the relative biological effectiveness (RBE) of OBT and HTO depending on their distribution in the cells and tissues of the body are presented. Experimental studies show that the calculation of the RBE of tritium compounds at different levels of organization leads to contradictory data. Such observation is associated with the interaction both of HTO and OBT with critical biomolecules in the cells as well as the proliferative activity of different cells and tissues. The experiments revealed that the effectiveness of OBT is much higher than the HTO which is associated with their rapid inclusion in the critical biomolecules such as proteins and DNA with the further formation of a significant biological effect. Based on the recently obtained data in different laboratories on the effect of tritium compounds at the molecular and cellular levels, it is concluded that a new approach for HTO and OBT risk assessment is necessary.
Key words: tritium, organic compounds of the tritium, tritium oxide, HTO, OBT, RBE, DNA double-strand breaks, γН2АХ, 3H-thymidine, tritiated water, risk assessment
For citation: Guryev DV, Kochetkov OA, VG Barchukov, Osipov AN. Biological Effects of Organic and Inorganic Compounds of the Tritium. Medical Radiology and Radiation Safety. 2020;65(2):5-10. (In Russ.).
DOI: 10.12737/1024-6177-2020-65-2-5-10
References
1. Review of risks from tritium: report of the independent Advisory Group on Ionising Radiation. Chilton: Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards; 2007.
2. Roch-Lefevre S, Gregoire E, Martin-Bodiot C, Flegal M, Freneau A, Blimkie M, et al. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation. Oncotarget. 2018;9(44):27397-411.
3. Bannister L, Serran M, Bertrand L, Klokov D, Wyatt H, Blimkie M, et al. Environmentally Relevant Chronic Low-Dose Tritium and Gamma Exposures do not Increase Somatic Intrachromosomal Recombination in pKZ1 Mouse Spleen. Radiat Res. 2016;186(6):539-48.
4. Kim SB, Baglan N, Davis PA. Current understanding of organically bound tritium (OBT) in the environment. J Environ Radioact. 2013;126:83-91.
5. Harrison JD, Khursheed A, Lambert BE. Uncertainties in dose coefficients for intakes of tritiated water and organically bound forms of tritium by members of the public. Radiat Prot Dosimetry. 2002;98(3):299-311.
6. Chao TC, Wang CC, Li J, Li C, Tung CJ. Cellular- and micro-dosimetry of heterogeneously distributed tritium. Int J Radiat Biol. 2012;88(1-2):151-7.
7. Gerweck LE, Kozin SV. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol. 1999;50(2):135-42.
8. Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med. 1998;14 Suppl 1:1-19.
9. Снигирёва ГП, Хаймович ТИ, Нагиба ВН. Оценка относительной биологической эффективности трития по частоте хромосомных аберраций в лимфоцитах крови человека. Радиационная биология. Радиоэкология. 2010;50(6):663-71. [Snigireva GP, Khaimovich TI, Nagiba VI. Assessment of relative biological effectiveness of tritium using chromosome aberration frequency in human blood lymphocytes. Radiation Biol Radioecol. 2010;50(6):663-71. (in Russ.)].
10. Brooks AL. Chromosome damage in liver cells from low dose rate alpha, beta, and gamma irradiation: derivation of RBE. Science. 1975;190(4219):1090-2.
11. Hamby DM. Uncertainty of the tritium dose conversion factor. Health Phys. 1999;77(3):291-7.
12. Peterson SR, Davis PA. Tritium doses from chronic atmospheric releases: a new approach proposed for regulatory compliance. Health Phys. 2002;82(2):213-25.
13. Lucas JN, Hill FS, Burk CE, Cox AB, Straume T. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys. Int J Radiat Biol. 1996;70(3):309-18.
14. Protection of the public in situations of prolonged radiation exposure. The application of the Commission’s system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues. Ann ICRP. 1999;29(1-2):1-109.
15. Little MP, Lambert BE. Systematic review of experimental studies on the relative biological effectiveness of tritium. Radiat Environ Biophys. 2008;47(1):71-93.
16. Gueguen Y, Priest ND, Dublineau I, Bannister L, Benderitter M, Durand C, et al. In vivo animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water. Environ Mol Mutagen. 2018;59(7):586-94.
17. Ellett WH, Braby LA. The microdosimetry of 250 kVp and 65 kVp x-rays, 60Co gamma rays, and tritium beta particles. Radiat Res. 1972;51(2):229-43.
18. Tanaka K, Sawada S, Kamada N. Relative biological effectiveness and dose rate effect of tritiated water on chromosomes in human lymphocytes and bone marrow cells. Mutat Res. 1994;323(1-2):53-61.
19. Ueno AM, Furuno-Fukushi I, Matsudaira H. Induction of cell killing, micronuclei, and mutation to 6-thioguanine resistance after exposure to low-dose-rate gamma rays and tritiated water in cultured mammalian cells (L5178Y). Radiat Res. 1982;91(3):447-56.
20. Kozlowski R, Bouffler SD, Haines JW, Harrison JD, Cox R. In utero haemopoietic sensitivity to alpha, beta or X-irradiation in CBA/H mice. Int J Radiat Biol. 2001;77(7):805-15.
21. Bocian E, Ziemb-Zak B, Rosiek O, Sablinski J. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro. Curr Top Radiat Res Q. 1978;12(1-4):168-81.
22. Kamiguchi Y, Tateno H, Mikamo K. Dose-response relationship for the induction of structural chromosome aberrations in human spermatozoa after in vitro exposure to tritium beta-rays. Mutat Res. 1990;228(2):125-31.
23. Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget. 2015;6(29):26876-85.
24. Tsvetkova A, Ozerov IV, Pustovalova M, Grekhova A, Eremin P, Vorobyeva N, et al. GammaH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget. 2017;8(38):64317-29.
25. Goodhead DT. Energy deposition stochastics and track structure: what about the target? Radiat Prot Dosimetry. 2006;122(1-4):3-15.
26. Goodhead DT. Fifth Warren K. Sinclair Keynote Address: Issues in quantifying the effects of low-level radiation. Health Phys. 2009;97(5):394-406.
27. Alloni D, Cutaia C, Mariotti L, Friedland W, Ottolenghi A. Modeling dose deposition and DNA damage due to low-energy beta(-) emitters. Radiat Res. 2014;182(3):322-30.
28. Chen J. Estimated yield of double-strand breaks from internal exposure to tritium. Radiat Environ Biophys. 2012;51(3):295-302.
29. Kotenko KV, Bushmanov AY, Ozerov IV, Guryev DV, Anchishkina NA, Smetanina NM, et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates. Int J Mol Sci. 2013;14(7):13719-26.
30. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352-5.
31. Moiseenko VV, Hamm RN, Waker AJ, Prestwich WV. Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part I: Model formulation and basic results. Radiat Environ Biophys. 2001;40(1):23-31.
32. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662-9.
33. Saintigny Y, Roche S, Meynard D, Lopez BS. Homologous recombination is involved in the repair response of mammalian cells to low doses of tritium. Radiat Res. 2008;170(2):172-83.
34. Воробьева НЮ, Уйба ВВ, Кочетков ОА и др. Влияние 3H-тимидина на индукцию двунитевых разрывов ДНК в мезенхимальных стволовых клетках человека. Медицинская радиология и радиационная безопасность. 2018;63(1):28-34 [Vorobyeva NY, Uyba V, Kochetkov OA, Astrelina TA, Pustovalova MV, Grehova AK, et al. 3H-Thymidine Influence on DNA Double Strand Breaks Induction in Cultured Human Mesenchymal Stem Cells. Medical Radiology and Radiation Safety. 2018;63(1):28-34. (in Russ.)].
35. Воробьева НЮ, Кочетков ОА, Пустовалова МВ и др. Сравнительные исследования образования фокусов γН2АХ в мезенхимных стволовых клетках человека при воздействии 3Н-тимидина, оксида трития и рентгеновского излучения. Клеточные технологии в биологии и медицине. 2018;3:205-8. [Vorobyeva NYu, Kochetkov OA, Pustovalova MV, Grehova AK, Blohina TM, Yashkina EI, et al. Comparative study of γH2AX foci formation in human mesenchymal stem cells exposed to 3H-thymidine, tritium oxide and X-rays. Cell Technologies in Biology and Medicine. 2018;3:205-8. (in Russ.)].
36. Korzeneva IB, Kostuyk SV, Ershova LS, Osipov AN, Zhuravleva VF, Pankratova GV, et al. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium beta-radiation. Mutat Res. 2015;779:1-15.
37. Снигирёва ГП, Хаймович ТИ, Богомазова АН и др. Цитогенетическое обследование профессионалов-атомщиков, подвергавшихся химическому воздействию β-излучения трития. Радиационная биология. Радиоэкология. 2009;49(1):60-6. [Snigireva GP, Khaimovich TI, Bogomazova AN, Gorbunova IN, Nagiba VI, Nikanorova EA, et al. Cytogenetic examination of nuclear specialists exposed to chronic beta-radiation of tritium. Radiation Biol Radioecol. 2009;49(1):60-6. (in Russ.)].
38. Milacic S. Changes in leukocytes caused by tritium contamination. Health Phys. 2004;86(5):457-9.
39. Flegal M, Blimkie M, Roch-Lefevre S, Gregoire E, Klokov D. The lack of cytotoxic effect and radioadaptive response in splenocytes of mice exposed to low level internal beta-particle irradiation through tritiated drinking water in vivo. Int J Mol Sci. 2013;14(12):23791-800.
40. Balakrishnan S, Rao BS. Cytogenetic Effects of Tritiated Water (HTO) in Human Peripheral Blood Lymphocytes in vitro. Int J Human Genetics. 2004;4(4):237-42.
41. Kiyono T. Molecular mechanisms of cellular senescence and immortalization of human cells. Expert Opinion on Therapeutic Targets. 2007;11(12):1623-37.
42. Valentin J. Protection of the public in situations of prolonged radiation exposures: the application of the Commission’s system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues. Oxford: Published for the International Commission on Radiological Protection by Pergamon, 1999; 2000.
43. Hill RL, Johnson JR. Metabolism and dosimetry of tritium. Health Phys. 1993;65(6):628-47.
44. Clement CH. Environmental protection: the concept and use of reference animals and plants. Oxford: Published for the International Commission on Radiological Protection by Elsevier; 2009.
45. Icrp. Annex D. Radiation Effects in Reference Animals and Plants. Ann ICRP. 2008;38(4):179-229.
46. Higley KA, Kocher DC, Real AG, Chambers DB. Relative biological effectiveness and radiation weighting factors in the context of animals and plants. Ann ICRP. 2012;41(3-4):233-45.
47. Priest ND, Blimkie MS, Wyatt H, Bugden M, Bannister LA, Gueguen Y, et al. Tritium (3H) Retention In Mice: Administered As HTO, DTO or as 3H-Labeled Amino-Acids. Health Phys. 2017;112(5):439-44.
48. Muller WU, Streffer C, Molls M, Gluck L. Radiotoxicities of [3H]thymidine and of [3H]arginine compared in mouse embryos in vitro. Radiat Res. 1987;110(2):192-8.
49. Clerici L, Carroll MJ, Merlini M, Vercellini L, Campagnari F. The toxicity of tritium: the effects of tritiated amino-acids on preimplanted mouse embryos. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;45(3):245-50.
50. Muller WU, Heckeley N, Streffer C. Effects of cell cycle specific exposure to 3H-thymidine or 3H-arginine on development and cell proliferation of mouse embryos. Radiat Environ Biophys. 1996;35(4):267-71.
51. Killen HM, Carroll J. The effects of tritium on embryo development: the embryotoxic effects of [3H]tryptophan. Int J Radiat Biol. 1989;56(2):139-49.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 26.11.2018.
Accepted for publication: 12.03.2020.