JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 4. P. 36–42

E.A. Blinova1,2, A.I. Kotikova1, М.А. Yanishevskaya1,2, A.V. Akleyev1,2

Apoptosis of Lymphocytes and Polymorphisms of Apoptosis Regulation Genes in Individuals Exposed to Chronic Radiation Exposure

1 Urals Research Center for Radiation Medicine, Chelyabinsk, Russa
2 Chelyabinsk State University, Chelyabinsk, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: Study the apoptotic death of peripheral blood lymphocytes in long-term period in persons exposed to chronic radiation exposure, and analysis of association of the polymorphic regions rs4645878, rs2279115, rs28362491, rs664677, rs1042522, rs1801270, rs2279744 of the BAX, BCL2, NFkB, ATM, TP53, CDKN1A, MDM2 genes with apoptotic lymphocytes frequency in residents of the coastal villages of the Techa River.

Material and methods: The study of apoptosis and genotyping was conducted in 390 persons exposed to chronic radiation exposure as a result of Mayak PA radioactive waste releases into the Techa–Iset–Tobol river system. The early stage of apoptosis was assessed on a flow cytometer by the presence of phosphatidylserine on the surface of the cell membranes using the Annexin V Apoptosis Detection Kit I and the late stage of apoptosis using the TUNEL method. Real-time PCR genotyping was performed of allelic variations of rs4645878, rs2279115, rs28362491, rs664677, rs1042522, rs1801270, rs2279744 of BAX, BCL2, NFkB, ATM, TP53, CDKN1A, MDM2 genes in a group of irradiated individuals.

Results: The number of cells at the early stage of apoptosis is statistically significantly increased in individuals whose irradiation began during the period of intrauterine development and continued in the postnatal period compared to individuals exposed only in the postnatal period. At the same time, the number of lymphocytes at the stage of DNA fragmentation in the group irradiated in utero is lower than in the group irradiated postnatally and non-irradiated individuals. Also, a weak negative correlation between intrauterine doses of RBM irradiation and the doses of thymus and peripheral lymphoid organs with the number of cells in the late stage of apoptosis in individuals irradiated in utero. The influence of allelic variation rs4645878 of the BAX gene was established on the number of lymphocytes at the early stage of apoptosis in residents of coastal villages of the Techa River. A statistically significant decrease in the number of cells at an early stage of apoptosis is observed in C/C genotype carriers according to the allelic variation rs4645878 of the BAX gene compared with carriers of the T/T and T/C genotypes.

Conclusion: Residents of coastal villages of the Techa River exposed to radiation during the period of prenatal development, there are differences in the frequency of apoptotic death of peripheral blood lymphocytes compared with non-irradiated persons and persons who were irradiated in the postnatal period. SNPs of apoptosis-regulating genes can modify the response of blood lymphocytes to radiation in a wide range of doses RBM.

Key words: lymphocytes, apoptosis, single-nucleotide polymorphism, chronic irradiation

For citation: Blinova EA, Kotikova AI, Yanishevskaya МА, Akleyev AV. Apoptosis of Lymphocytes and Polymorphisms of Apoptosis Regulation Genes in Individuals Exposed to Chronic Radiation Exposure. Medical Radiology and Radiation Safety. 2020;65(4):36-42 (In Russ.).

DOI: 10.12737/1024-6177-2020-65-4-36-42

Список литературы / References

  1. Zhou L, Yuan R, Lanata S. Molecular mechanisms of irradiation-induced apoptosis. Front Biosci. 2003;8:9-19.
  2. Schmitz A, Bayer J, Dechamps N, Goldin L, Thomas G, Heritability of susceptibility to ionizing radiation induced apoptosis of human lymphocyte subpopulations. Int J Radiat Oncol Biol Phys. 2007;68(4):1169-77.
  3. Белушкина НН, Хомякова ТН, Хомяков Ю.Н. Заболевания, связанные с нарушением регуляции программируемой клеточной гибели. Молекулярная медицина. 2012;2:3-10. [Belushkina N N, Khomyakova T I, Khomyakov Yu N. Diseases associated with disregulation of programmed cell death. Molecular Medicine. 2012;2:3-10. (In Russ.)].
  4. Донов ПН, Уржумов ПВ, Блинова ЕА, Аклеев АВ. Связь полиморфизмов генов цитокинов, оксидативного стресса, клеточного цикла и репарации с хромосомными аберрациями у лиц, подвергшихся радиационному воздействию на реке Теча. Вопросы радиационной безопасности. 2014;3(75):61-8 [Donov PN, Urzhumov PV, Blinova EA, Akleyev AV. The Link Between Polymorphisms in Genes of Cytokines, Oxidative Response, Cell Cycle and Reparation, and Chromosome Aberrations in People Exposed to Chronic Radiation Exposure on the Techa River. Issues of Radiation Safety. 2014;3(75):61-8 (In Russ.)].
  5. Халюзова МВ, Литвяков НВ, Исубакова ДС. и др. Валидация связи геномного полиморфизма с повышенной частотой хромосомных аберраций у работников радиационного производства. Радиационная биология. Радиоэкология. 2017;57(4):365-83. [Khalyuzova MV, Litviakov NV, Isubakova DS, Bronikovskaya EV, Usova TV, Albakh EN, et al. Validation of the Association between Gene Polymorphisms and the Frequency of Cytogenetic Abnormalities in the Cohort of Employees of Radiation Facilities. Radiation Biology. Radioecology. 2017;57(4):365-83. (In Russ.)].
  6. Matsuura S, Royaba E, Akutsu SN, Yanagihara H, Ochiai Y, Kudo Y, et al. Analysis of individual differences in radiosensitivity using genome editing. Annals of the ICRP 45. 2016:290-6.
  7. ICRP Proceedings. 2015, AGIR, 2013. Human Radiosensitivity. Report of the Independent Advisory Group on Ionising Radiation. Doc. HPA, RCE–21. Health Protection Agency.
  8. Дегтева МО, Напье БА, Толстых ЕИ, Шишкина ЕА, Бугров НГ, Крестинина ЛЮ, Аклеев АВ. Распределение индивидуальных доз в когорте людей, облученных в результате радиоактивного загрязнения реки Течи. Мед. радиол. и радиац. безопасность. 2019;64(3):46-53. [Degteva MO, Napier BA, Tolstykh EI, Shishkina EA, Bougrov NG, Krestinina LYu, Akleyev AV. Individual dose distribution in cohort of people exposed as a result of radioactive contamination of the Techa River. Medical Radiology and Radiation Safety. 2019;64(3):46-53. (In Russ.)].
  9. Санитарные правила и нормативы СанПиН 2.6.1.2523-09. Нормы радиационной безопасности НРБ-99/2009. п. 3.1.4. [Sanitary rules and regulations SanPiN 2.6.1.2523-09. Radiation Safety Standards NRB-99/2009. Paragraph 3.1. (In Russ.)].
  10. Single-nucleotide polymorphism database (SNP). URL: www.snpedia.com. Date of request: 28.05.2020.
  11. Vermes I. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184(1):39-51.
  12. Segawa K, Suzuki J, Nagata S. Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci USA. 2011;108:19246-51.
  13. Bevers EM, Williamson PL. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane. Physiol Rev. 2016;96(2):605-45. DOI: 10.1152/physrev.00020.2015.
  14. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol. 2010;189:1059-70.
  15. Crowley LC. Detection of DNA Fragmentation in Apoptotic Cells by TUNEL. Cold Spring Harb Protoc. 2016;10. DOI: 10.1101/pdb.prot087221.
  16. Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Frontiers in Genetics. 2018;9:507. DOI: 10.3389/fgene.2018.00507.

PDF (RUS) Полная версия статьи

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Conflict of interest. The authors declare no conflict of interest.
Финансирование. Исследование не имело спонсорской поддержки.
Financing. The study had no sponsorship.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Contribution. Article was prepared with equal participation of the authors.
Поступила: 14.08.2020. Принята к публикации: 21.08.2020.
Article received: 14.08.2020. Accepted for publication: 21.08.2020.

Information about the authors:

Blinova E.A. https://orcid.org/0000-0002-2567-7945
Kotikova A.I. https://orcid.org/0000-0002-1695-1340
Yanishevskaya М.А. https://orcid.org/0000-0002-2649-5123
Akleyev A.V. https://orcid.org/0000-0003-2583-5808


Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2016447
Today
Yesterday
This week
Last week
This month
Last month
For all time
1784
1917
7721
11499
33199
29761
2016447

Forecast today
2304


Your IP:3.19.56.45