JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2021. Vol. 66. № 6. P. 63–70

Current Trends in Targeted Radionuclide Therapy Development

M.S. Vorontsova, T.A. Karmakova, A.A. Pankratov, A.D. Kaprin

P.A. Hertsen Moscow Oncology Research Institute. Moscow, Russia

Contact person: Tatyana Anatolyevna Karmakova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

CONTENT

Introduction

1. Features of Targeted Delivery of Therapeutic Radionuclides

2. Design of Pharmaceuticals for Targeted Radionuclide Therapy (TRT)

2.1. Radionuclides

2.2. Synthesis of Radioconjugates

2.3. Targeting Carriers 

4. Subcellular Targeting of Radionuclides

5. TRT Dosimetry

Conclusion

Key words: cancer, solid tumors, targeted radionuclide therapy

For citation: Vorontsova MS, Karmakova TA, Pankratov AA, Kaprin AD. Current Trends in Targeted Radionuclide Therapy Development. Medical Radiology and Radiation Safety. 2021;66(6):63–70.

DOI: 10.12737/1024-6177-2021-66-6-63-70

References

1. Krylov VV, Kochetova TYu, Garbuzov PI, Shurinov AYu, Borodavina EV. Radionuclide Therapy. Therapeutic Radiology. National Guide. Ed. Caprin A.D., Mardynsky Yu.S. Moscow, GEOTAR-Media Publ., 2019. P. 637-664. (In Russ.). [Крылов В.В., Кочетова Т.Ю., Гарбузов П.И., Шуринов А.Ю., Бородавина Е.В. Радионуклидная терапия // Терапевтическая радиология. Национальное руководство / Под ред. акад. РАН Каприна А.Д., чл.-корр. РАН Мардынского Ю.С. М.: ГЭОТАР-Медиа, 2019. С. 637-664.].

2. Chernov VI, Medvedev AA, Sinilkin IG, Zelchan RV, Bragina OD, Choynzonov EL. Nuclear Medicine as a Tool for Diagnosis and Targeted Cancer Therapy. Bulletin of Siberian Medicine. 2018;17;1:220–231. DOI: 10.20538/1682-0363-2018-1-220–231 (In Russ.). [Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных новообразований // Бюллетень сибирской медицины. 2018. Т.17, № 1. С. 220-231. DOI: 10.20538/1682-0363-2018-1-220–231].

3. Krylov VV, Kochetova TY, Belozerova MS, Voloznev LV. Features of the Use of Various Radiopharmaceuticals for the Treatment of Patients with Bone Metastases. Palliative Medicine and Rehabilitation. 2015;4:26-33. (In Russ.). [Крылов В.В., Кочетова Т.Ю., Белозерова М.С., Волознев Л.В. Особенности применения различных радиофармпрепаратов в лечении больных с метастазами в кости // Паллиативная медицина и реабилитация. 2015. № 4. С. 26-33].

4. Pattni BS, Torchilin VP. Targeted Drug Delivery Systems: Strategies and Challenges. Targeted Drug Delivery: Concepts and Design. Advances in Delivery Science and Technology. Ed. Devarajan P., Jain S. Springer, Cham, 2015. P. 1-38.

5. Bae YH, Park K. Targeted Drug Delivery to Tumors: Myths, Reality and Possibility. J. Control Release. 2011;153;3:198-205. DOI: 10.1016/j.jconrel.2011.06.001. 

6. Keefe DMK, Bateman EH. Potential Successes and Challenges of Targeted Cancer Therapies. J. Natl. Cancer Inst. Monogr. 2019;2019;53:lgz008. DOI: 10.1093/jncimonographs/lgz008.

7. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of Human Tumours. Nat. Rev. Cancer. 2015;15;6:347-60. DOI: 10.1038/nrc3925.

8. Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current Outlook on Radionuclide Delivery Systems: from Design Consideration to Translation into Clinics. J. Nanobiotechnology. 2019;17;1:90. DOI: 10.1186/s12951-019-0524-9. 

9. Chernov VI, Bragina OD, Sinilkin IG, Medvedeva AA, Zel’chan RV. Radionuclide Theranostics of Malignancies. Russian Journal of Radiology. 2016;97;5:306-313. DOI: 10.20862/0042-4676-2016-97-5-306-313. (In Russ.). [Чернов В.И., Брагина О.Д., Синилкин И.Г., Медведева А.А., Зельчан Р.В. Радионуклидная тераностика злокачественных образований // Вестник рентгенологии и радиологии. 2016. Т.9, № 5. С. 306–313. DOI: 10.20862/0042-4676-2016-97-5-306-313.].

10. Makvandi M, Dupis E, Engle JW, Nortier FM, Fassbender ME, et al. Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations. Target Oncol. 2018;13;2:189-203. DOI: 10.1007/s11523-018-0550-9.

11. Ku A, Facca VJ, Cai Z, Reilly RM. Auger Electrons for Cancer Therapy - a Review. EJNMMI Radiopharm Chem. 2019;4;1:27. DOI: 10.1186/s41181-019-0075-2. 

12. Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front. Pharmacol. 2018;9:996. DOI: 10.3389/fphar.2018.00996.

13. Rosenkranz AA, Slastnikova TA, Georgiev GP, Zalutsky MR, Sobolev AS. Delivery Systems Exploiting Natural Cell Transport Processes of Macromolecules for Intracellular Targeting of Auger Electron Emitters. Nucl. Med. Biol. 2020;80;1:45-56. DOI: 10.1016/j.nucmedbio.2019.11.005. 

14. Edem PE, Fonslet J, Kjær A, Herth M, Severin G. In Vivo Radionuclide Generators for Diagnostics and Therapy. Bioinorg. Chem. Appl. 2016;2016:6148357. DOI: 10.1155/2016/6148357.

15. Price EW, Orvig C. Matching Chelators to Radiometals for Radiopharmaceuticals. Chem Soc Rev. 2014;43;1:260-90. DOI: 10.1039/c3cs60304k. 

16. Chernov VI, Bragina OD, Sinilkin IG, Titskaya AA, Zelchan RV. Radioimmunotherapy in the Treatment of Malignancies. Siberian Journal of Oncology. 2016;15;2:101–106. DOI: 10.21294/1814-4861-2016-15-2-101-106. (In Russ.). [Чернов В.И., Брагина О.Д., Синилкин И.Г., Тицкая А.А., Зельчан Р.В. Радиоиммунотерапия в лечении злокачественных образований // Сиб. Онкол. Жур. 2016. Т.15, № 2. С. 101-106. DOI: 10.21294/1814-4861-2016-15-2-101-106].

17. ClinicalTrials.gov: Database of privately and publicly funded clinical studies conducted around the world. U.S. National Library of Medicine. Available from: https://clinicaltrials.gov. 2019 Oct 07.

18. Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, et al. Recent Advances of Bispecific Antibodies in Solid Tumors. J. Hematol. Oncol. 2017;10;1:155. DOI: 10.1186/s13045-017-0522-z.

19. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and Challenges Towards Targeted Delivery of Cancer Therapeutics. Nat. Commun. 2018;9;1:1410. DOI: 10.1038/s41467-018-03705-y.

20. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58;10:1553-1559. DOI: 10.2967/jnumed.117.189944.

21. Shen G, Liu Z, Bao Y, Kuang A, Wu H From Darkness to Light: Pretargeted Radionuclide Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr. Top. Med. Chem. 2018;18;21:1851-1855. DOI: 10.2174/156802661821190104120031.

22. Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, et al. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials. 2018;179:209-245. DOI: 10.1016/j.biomaterials.2018.06.021.

23. Cheal SM, Xu H, Guo HF, Patel M, Punzalan B, Fung EK, et al. Theranostic Pretargeted Radioimmunotherapy of Internalizing Solid Tumor Antigens in Human Tumor Xenografts in Mice: Curative Treatment of HER2-Positive Breast Carcinoma. Theranostics. 2018;8;18:5106-5125. DOI: 10.7150/thno.26585.

24. Bodet-Milin C, Bailly C, Touchefeu Y, Frampas E, Bourgeois M, Rauscher A, et al. Clinical Results in Medullary Thyroid Carcinoma Suggest High Potential of Pretargeted Immuno-PET for Tumor Imaging and Theranostic Approaches. Front. Med. (Lausanne). 2019;6:124. DOI: 10.3389/fmed.2019.00124.

25. Richards DA. Exploring Alternative Antibody Scaffolds: Antibody Fragments and Antibody Mimics for Targeted Drug Delivery. Drug. Discov. Today Technol. 2018;30:35-46. DOI: 10.1016/j.ddtec. 2018.10.005. 

26. Bragina OD, Larkina MS, Stasyuk ES, Chernov VI, Yusubov MS, et al. Development of highly specific radiochemical compounds based on 99m Tc-labeled recombinant molecules for targeted imaging of cells overexpressing Her-2/neu. Bulletin of Siberian Medicine. 2017; 16(3):25–33. Russian. DOI 10.20538/1682-0363-2017-3-25–33. (In Russ.). [Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С. и др. Разработка высокоспецифичного радиохимического соединения на основе меченых 99mТс рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her-2/neu // Бюллетень сибирской медицины. 2017. Т.16, № 3. С. 25–33. DOI 10.20538/1682-0363-2017-3-25–33].

27. Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, et al. Radionuclideimaging of VEGFR2 in Glioma Vasculature Using Biparatopic Affibody Conjugate:Proof-of-Principle in a Murine Model. Theranostics. 2018;8;16:4462-4476.DOI: 10.7150/thno.24395. 

28. Soudy R, Byeon N, Raghuwanshi Y, Ahmed S, Lavasanifar A, Kaur K. Engineered Peptides for Applications in Cancer-Targeted Drug Delivery and Tumor Detection. Mini. Rev. Med. Chem. 2017;17;18:1696-1712. DOI: 10.2174/1389557516666160219121836.

29. Cives M, Strosberg J. Radionuclide Therapy for Neuroendocrine Tumors. Curr. Oncol. Rep. 2017;19;2:9. DOI: 10.1007/s11912-017-0567-8. 

30. Fani M, Nicolas GP, Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017;58:61S-66S. DOI: 10.2967/jnumed.116.186783.

31. Królicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, et al. Safety and Efficacy of Targeted Alpha Therapy with 213Bi-DOTA-Substance P in Recurrent Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46;3:614-622. DOI: 10.1007/s00259-018-4225-7. 

32. Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med. Res. Rev. 2016;36;3:494-575. DOI: 10.1002/med.21387. 

33. Sun M, Niaz MO, Nelson A, Skafida M, Niaz MJ. Review of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer. Cureus. 2020;12;6:e8921. DOI: 10.7759/cureus.8921.

34. Violet J, Sandhu S, Iravani A, Ferdinandus J. Thang S.P., Kong G., et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of 177Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2020;61;6:857-865. DOI: 10.2967/jnumed.119.236414. 

35. Umbricht CA, Benešová M, Schibli R, Müller C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties to Improve Prostate Cancer Therapy. Mol Pharm. 2018;15;6:2297-2306. DOI:10.1021/acs.molpharmaceut. 8b00152. 

36. Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. Application of Nanotechnology to Cancer Radiotherapy. Cancer Nanotechnol. 2016;7;1:11. DOI: 10.1186/s12645-016-0024-7.

37. Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to Radiobiology of Targeted Radionuclide Therapy. Front. Med. (Lausanne). 2015;2:12. DOI: 10.3389/fmed.2015.00012. 

38. Vallis KA, Reilly RM, Scollard D, Merante P, Brade A, Velauthapillai S, et al. Phase I Trial to Evaluate the Tumor and Normal Tissue Uptake, Radiation Dosimetry and Safety of (111)In-DTPA-Human Epidermal Growth Factor in Patients with Metastatic EGFR-Positive Breast Cancer. Am. J. Nucl. Med. Mol. Imaging. 2014;4;2:181-92. 

39. Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple Targeting of Auger Emitters Using Octreotate Conjugated to a DNA-Binding Ligand and a Nuclear Localizing Signal. Int. J. Radiat. Biol. 2016;92;11:707-715. 

40. Sobolev AS. Modular Nanotransporters for Nuclear-Targeted Delivery of Auger Electron Emitters. Front. Pharmacol. 2018;9:952. DOI: 10.3389/fphar.2018.00952.

41. Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting Active Nuclear Import for Efficient Delivery of Auger Electron Emitters into the Cell Nucleus. Int. J. Radiat. Biol. 2020:1-11. DOI: 10.1080/09553002.2020.1815889. 

42. Sobolev AS. The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine. Acta Naturae. 2020;12;4:47-56. DOI: 10.32607/actanaturae.11049. 

43. Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics. 2017;7;18:4551-4565. DOI: 10.7150/thno.19782.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 23.12.2020. 

Accepted for publication: 20.01.2021.

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2766472
Today
Yesterday
This week
Last week
This month
Last month
For all time
2366
4471
24856
18409
74215
75709
2766472

Forecast today
3120


Your IP:216.73.216.124