JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Human Mesenchymal Stromal Cells: Characteristics, Radiosensitivity and Effects of Low-Dose Radiation
D.Yu. Usupzhanova, T.A. Astrelina, I.V. Kobzeva, V.A. Brunchukov, A.S. Samoilov
A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Usupzhanova Daria Yurievna: This email address is being protected from spambots. You need JavaScript enabled to view it.
Annotation
Throughout life a person is inevitably exposed to low doses of ionizing radiation (LDIR) both background radiation and as part of medical treatment and diagnostics, during professional activities, air travel etc. Today the effects of LDIR and the risks of long-term consequences of this impact are increasingly attracting the researchers attention. On the one hand, scientists point to the development of negative consequences, in particular, the accumulation of double-stranded breaks DNA, on the other hand, some studies demonstrating the development of such events as hormesis and adaptive response. Based on this, there is an assumption that in the range of LDIR may exist a non-linear dependence of the effects on the radiation dose, i.e. the effect isn’t proportional to the received dose and that is consistent with the threshold-concept. Today many scientific papers are devoted to this area of research. Special attention is drawn to the effects LDIR on human mesenchymal stromal cells (MSCs) because they are the regenerative reserve of the body. Due to the them ability to self-sustain MSCs can stay in the body for a long time and undergo several rounds of irradiation, accumulating the changes in themselves and passing ones to the next generations of cells since they have the potential to the differentiation. Thus, changes that have occurred in the MSCs affect the human body as a whole. Based on all of the above, it can be concluded that the study of the effects of LDIR on mesenchymal stromal cells of human is actual area of research currently.
Keywords: adaptive response, bystander effect, genomic instability, mesenchymal stromal cells, radiosensitivity, effects of low radiation doses, radiation hormesis
For citation: Usupzhanova DYu, Astrelina TA, Kobzeva IV, Brunchukov VA, Samoilov AS. Human Mesenchymal Stromal Cells: Characteristics, Radiosensitivity and Effects of Low-Dose Radiation. Medical Radiology and Radiation Safety. 2022;67(1):103-110.
DOI: 10.12737/1024-6177-2022-67-1-103-110
References
1. Squillaro T, Galano G, De Rosa R, Peluso G, Galderisi U. Concise Review: The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk. Stem Cells. 2018;36(8):1146-1153. doi:10.1002/stem.2836
2. Fazel R, Krumholz H, Wang Y. Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures. J Vasc Surg. 2009;50(6):1526-1527. doi:10.1016/j.jvs.2009.10.095
3. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332. doi:10.1016/j.icrp.2007.10.003
4. Thurairajah K, Broadhead M, Balogh Z. Trauma and Stem Cells: Biology and Potential Therapeutic Implications. Int J Mol Sci. 2017;18(3):577. doi:10.3390/ijms18030577
5. Ullah I, Subbarao R, Rho G. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2). doi:10.1042/bsr20150025
6. Aggarwal R, Lu J, J. Pompili V, Das H. Hematopoietic Stem Cells: Transcriptional Regulation, Ex Vivo Expansion and Clinical Application. Curr Mol Med. 2012;12(1):34-49. doi:10.2174/156652412798376125
7. Wang Q, Sun B, Wang D et al. Murine Bone Marrow Mesenchymal Stem Cells Cause Mature Dendritic Cells to Promote T-Cell Tolerance. Scand J Immunol. 2008;68(6):607-615. doi:10.1111/j.1365-3083.2008.02180.x
8. Spaggiari G, Capobianco A, Abdelrazik H, Becchetti F, Mingari M, Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327-1333. doi:10.1182/blood-2007-02-074997
9. Stagg J. Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens. 2007;69(1):1-9. doi:10.1111/j.1399-0039.2006.00739.x
10. Chen L, Tredget E, Wu P, Wu Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS One. 2008;3(4):e1886. doi:10.1371/journal.pone.0001886
11. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. doi:10.1080/14653240600855905
12. Gronthos S, Franklin D, Leddy H, Robey P, Storms R, Gimble J. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54-63. doi:10.1002/jcp.1138
13. Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393-403. doi:10.1111/j.1365-2184.1970.tb00347.x
14. Bonab M, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7(1):14. doi:10.1186/1471-2121-7-14
15. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69(1):5331–5339 doi: 10.1158/0008-5472.CAN-08-4630.
16. Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium. Cell Tissue Bank. 2014; 15(1):513–521 doi: 10.1007/s10561-014-9420-6.
17. Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation- induced DNA damage: relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.). 2013;25(1):578–585. doi: 10.1016/j.clon.2013.06.007.
18. Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of non- homologous end joining and homologous recombination in human cells. DNA Repair (Amst.). 2008;7(1):1765–1771. doi: 10.1016/j.dnarep.2008.06.018.
19. Solokov M., Neumman R. Human embryonic stem cell responses to ionizing radiation exposures: current state of knowledge and future challenges. Stem Cells Int. 2012;2012:579104 doi: 10.1155/2012/579104.
20. Prise KM, Saran A. Concise review: stem cell effects in radiation risk. Stem Cells. 2011;29(1):1315–1321. doi: 10.1002/stem.690.
21. Delacote F, Lopez BS. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle. 2008;7(1):33–38. doi: 10.4161/cc.7.1.5149.
22. Islam MS, Stemig ME., Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J. Radiat. Res. 2015;56(1):269–277. doi: 10.1093/jrr/rru098.
23. Nicolay N et al. Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 2015;6(1):2076–2087. doi: 10.18632/oncotarget.2857.
24. Oliver L et al. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells. 2013;31(1):800–807. doi: 10.1002/stem.1336.
25. Tsvetkova A et al. γH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget. 2017;8(1):64317–64329. doi: 10.18632/oncotarget.19203.
26. Wu P et al. Early passage mesenchymal stem cells display decreased radiosensitivity and increased DNA repair activity. Stem Cells Transl. Med. 2017;6(1):1504–1514. doi: 10.1002/sctm.15-0394. PMID: 28544661.
27. Aypar U, Morgan W, Baulch J. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiat. Biol. 2011;87(1):179–191. doi: 10.3109/09553002.2010.522686.
28. Meyer B et al. Histone H3 lysine 9 acetylation obstructs ATM activation and promotes ionizing radiation sensitivity in normal stem cells. Stem Cell Rep. 2016;7(1):1013–1022. doi: 10.1016/j.stemcr.2016.11.004.
29. Armstrong C et al. DNMTs are required for delayed genome instability caused by radiation. Epigenetics. 2012;7(1):892–902. doi: 10.4161/epi.21094.
30. Tang F, Loke W. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol. 2015;91(1):13-27. doi: 10.3109/09553002.201 4.937510.
31. Liu S. On radiation hormesis expressed in the immune system. Critical Reviews in Toxicology. 2003;33(1):431-441. doi: 10.1080/713611045.
32. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, Cai L, Li W. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. Journal of Radiation Research. 2011;52(1):380-386. doi: 10.1269/jrr.10121.
33. Truong K, Bradley S, Baginski B, Wilson J, Medlin D, Zheng L, Wilson R, Rusin M, Takacs E, Dean D. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PLoS One. 2018;13(1):e0190330. doi: 10.1371/journal.pone.0190330
34. Bernal A, Dolinoy D, Huang D, Skaar D, Weinhouse C, Jirtle R. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. Journal of the Federation of American Societies for Experimental Biology. 2013;27(1):665-671. doi: 10.1096/fj.12-220350.
35. Grdina D, Murley J, Miller R, Mauceri H, Sutton H, Thirman M, Li J, Woloschak G, Weichselbaum R. A Manganese Superoxide Dismutase (SOD2)-Mediated Adaptive Response. Radiation Research. 2013;179(1):115-124. doi: 10.1667/RR3126.2.
36. Takahashi A, Ohnishi K, Asakawa I, Kondo N, Nakagawa H, Yonezawa M, Tachibana A, Matsumoto H, Ohnishi T. Radiation response of apoptosis in C57BL/6N mouse spleen after whole-body irradiation. International Journal of Radiation Biology. 2001;77(1): 939-945. doi: 10.1080/09553000110062873.
37. Morgan W, Day J, Kaplan M, McGhee E, Limoli C. Genomic instability induced by ionizing radiation. Radiation Research.1996;146(1):247-258.
38. Pampfer S, Streffer C. Increased chromosome aberration levels in cells from mouse fetuses after zygote X-irradiation. Radiation Biology.1989;55(1):85–92. doi: 10.1080/09553008914550091.
39. Smith L, Nagar S, Kim G, Morgan W. Radiation-induced genomic instability: radiation quality and dose response. Health Physics. 2003;85(1):23-29. doi: 10.1097/00004032-200307000-00006.
40. McIlrath J, Lorimore S, Coates P, Wright E. Radiation induced genomic instability in immortalized haemopoietic stem cells. International Journal of Radiation Biology.2003;79(1):27–34.
41. El-Osta, A. The rise and fall of genomic methylation in cancer. Leukemia. 2004;18(1):233–237 doi: 10.1038/sj.leu.2403218.
42. Matsumoto H, Hamada N, Takahashi A, Kobayashi Y, Ohnishi T. Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses. Journal of Radiation Research. 2007;48(1):97–106. doi: 10.1269/jrr.06090.
43. Klokov D, Criswell T, Leskov K, Araki S, Mayo L, Boothman D. IR- inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutation Research. 2004;568(1):97-110. doi: 10.1016/j.mrfmmm.2004.06.049.
44. Moore S, Marsden S, Macdonald D, Mitchell S, Folkard M, Michael B, Goodhead D, Prise K, Kadhim M. Genomic instability in human lymphocytes irradiated with individual charged particles: involvement of tumor necrosis factor alpha in irradiated cells but not bystander cells. Radiation Research. 2005;163(1):183-190. doi: 10.1667/rr3298.
45. Marchese M, Hall E. Encapsulated iodine-125 in radiation oncology. II. Study of the dose rate effect on potentially lethal damage repair (PLDR) using mammalian cell cultures in plateau phase. American Journal of Clinical Oncology.1984;7(1):613-616.
46. Boreham D, Mitchel R. DNA lesions that signal the induction of radioresistance and DNA repair in yeast. Radiation Research. 1991;128(1):19-28.
47. Piccinini A, Midwood K. DAMPening inflammation by modulating TLR signalling. Mediator inflamm. 2010;2010: 672395 doi: 10.1155/2010/672395.
48. Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ. Mol. Mutagen. 2009;50(2):105-113. doi: 10.1002/em.20440.
49. Yahyapour R, Amini P, Rezapoor S, Rezaeyan A, Farhood B, Cheki M, Fallah H, Najafi M. Targeting of Inflammation for Radiation Protection and Mitigation. Curr. Mol. Pharmacol. 2018;11(3):203-210. doi: 10.2174/1874467210666171108165641.
50. Zhang J, Liu J, Ren J, Sun T, Mitochondrial DNA induces inflammation and increases TLR9/NF-B expression in lung tissue. Int J Mol Med. 2014;33(4):817-824. doi: 10.3892/ijmm.2014.1650.
51. Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Najafi M, Villa V. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Curr Radiopharm. 2018;11(1):34-45. doi: 10.2174/1874471011666171229123130.
52. Kumar Jella K, Rani S, O'Driscoll L, McClean B, Byrne H, Lyng F. Exosomes are involved in mediating radiation induced by- stander signaling in human keratinocyte cells. Radiat. Res. 2014;181(2):138-145. doi: 10.1667/RR13337.1.
53. Xu S, Wang, J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA. Biol. 2015;12(12):1355-1363. doi: 10.1080/15476286.2015.1100795.
54. Ma Y, Zhang L, Rong S, Qu H, Zhang Y, Chang D, Pan H, Wang W. Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxid. Med. Cell Lon-gev. 2013;2013:543760. doi: 10.1155/2013/543760.
55. Chaudhry M. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 2009;24(1):49-56. doi: 10.1089/cbr.2008.0513.
56. Findik D, Song Q, Hidaka H, Lavin M. Protein kinase A inhibitors enhance radiation induced apoptosis. J. Cellular Bio-chem. 1995;57(1):12-21. doi: 10.1002/jcb.240570103.
57. Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, Li W, Shao C. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with gamma-rays or carbon ions. Life Sci. 2015;127(1):19-25. doi: 10.1016/j.lfs.2015.02.017.
58. Moon K, Stukenborg G, Keim J, Theodorescu D. Cancer incidence after localized therapy for prostate cancer. Cancer. 2006;107(5):991-998. doi: 10.1002/cncr.22083.
59. Marozik P, Mothersill C, Seymour C.B, Mosse I, Melnov S. Bystander effects induced by serum from survivors of the Chernobyl accident. Exp. Hematol., 2007;35(4):55-63. doi: 10.1016/j.exphem.2007.01.029.
60. Halimi M, Parsian H, Asghari S, Sariri R, Moslemi D, Yeganeh F, Zabihi E. Clinical translation of human microRNA-21 as a potential biomarker for exposure to ionizing radiation. Transl. Res. 2014;163(6):578-584. doi: 10.1016/j.trsl.2014.01.009.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution: Article was prepared with equal participation of the authors
Article received: 04.05.2021.
Accepted for publication: 15.10.2021