JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3
A.V. Ozerskaya1, 2, S.Y. Lipaikin2, K.V. Belugin2,
N.A. Tokarev2, N.G. Chanchikova2, M.S. Larkina3, 4,
E.V. Podrezova3, M.V. Belousov3, 4, M.S. Yusubov1, 3, 4
Radiofluorination Methods: Historical Overview and Current State
1Tomsk Polytechnic University, Tomsk, Russia
2Siberian Research Clinical center, Krasnoyarsk, Russia
3Research Centrum for Oncotheranostics, Tomsk Polytechnic University, Tomsk, Russia
4Siberian State Medical University, Tomsk, Russia
Contact person: A.V. Ozerskaya, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
CONTENTS
1. Introduction
2. Radiofluorination methods for obtaining fluorine-18 radiopharmaceuticals
3. Electrophilic radiofluorination
4. Nucleophilic radiofluorination
5. Alternative radiofluorination methods
6. Conclusion
7. References
Keywords: radiopharmaceuticals, radiofluorination, fluorine-18, electrophilic reactions, nucleophilic reactions, chelation
For citation: Ozerskaya AV, Belugin KV, Lipaikin SY, Tokarev NA, Chanchikova NG, Larkina MS, Podrezova EV, Belousov MV, Yusubov MS. Radiofluorination Methods: Historical Overview and Current State. Medical Radiology and Radiation Safety. 2022;67(3):59–66. (In Russian). DOI:10.33266/1024-6177-2022-67-3-59-66
References
1. Theodoropoulos A.S., Gkiozos I., Kontopyrgias G., Charpidou A., Kotteas E., Kyrgias G., et al. Modern Radiopharmaceuticals for Lung Cancer Imaging with Positron Emission Tomography/Computed Tomography Scan: A Systematic Review. SAGE Open Med. 2020;8.
2. Mattos D.M., Gomes M.L., Freitas R.S., Moreno S., Lima-Filho G.L., Paula E.F., et al. Which Are the most Used Radionuclides in the Pet and in the Spect Techniques in the World? J. Label Compd Radiopharm. 2012;44;S1:S841-843.
3. Giammarile F., Castellucci P., Dierckx R., Lobato E.E., Farsad M., Hustinx R., et al. Non-FDG PET/CT in Diagnostic Oncology: a Pictorial Review. European J. Hybrid Imaging. 2019;3;20.
4. Vallabhajosula S. (18)F-Labeled Positron Emission Tomographic Radiopharmaceuticals in Oncology: an Overview of Radiochemistry and Mechanisms of Tumor Localization. Semin Nucl Med. 2007;37;6:400-419.
5. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zeltchan R.V., Bragina O.D. Development of Radiopharmaceuticals for Radionuclide Diagnostics in Oncology. Meditsinskaya vizualizatsiya = Medical Visualization. 2016;2:63-66. (In Russ.). [Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии // Медицинская визуализация. 2016. № 2. С. 63-66].
6. Coenen H.H. Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions. Ernst Schering Res Found Workshop. 2007;62:15-50.
7. Krzyczmonik A., Keller T., Kirjavainen A.K., Lahdenpohja S. Use of SF6 for the Production of Electrophilic 18f-Fluorination Reagents. J. Fluor Chem. 2017;204:90-97.
8. Blessing G., Coenen H.H., Franken K., Qaim S.M. Production of [18F]F2, H18F and 18Faq− Using the 20Ne(d, α)18F Process. Int. J. Radiat Appl Instrum Appl Radiat Isot. 1986;37;11:1135-1139.
9. Forsback S., Solin O. Post-Target Produced [18F]F2 in the Production of PET Radiopharmaceuticals. Radiochim Acta. 2014;103;3:219-226.
10. Bergman J., Solin O. Fluorine-18-Labeled Fluorine Gas for Synthesis of Tracer Molecules. Nucl Med. Biol. 1997;24;7:677-683.
11. Ido T., Wan C.N., Casella V., Fowler J.S., Wolf A.P., Reivich M., et al. Labeled 2-Deoxy-D-Glucose Analogs. 18F-Labeled 2-Deoxy-2-Fluoro-D-Glucose, 2-Deoxy-2-Fluoro-D-Mannose and 14C-2-Deoxy-2-Fluoro-D-Glucose. J. Label Compd Radiopharm. 1978;14:175-183.
12. Luxen A., Perlmutter M., Bida G.T., Van Moffaert G., Cook J.S., Satyamurthy N., et al. Remote, Semiautomated Production of 6-[18F]Fluoro-L-Dopa for Human Studies with PET. Int. J. Rad. Appl. Instrum A. 1990;41;3:275-281.
13. Beuthien-Baumann B., Bredow J., Burchert W., Fuchtner F., Bergmann R., Alheit H.D., et al. 3-O-Methyl-6-[18F]Fluoro-L-DOPA and Its Evaluation in Brain Tumour Imaging. Eur. J. Nucl. Med. Mol. Imaging. 2003;30;7:1004-1008.
14. Füchtner F., Steinbach J. Efficient Synthesis of the 18F-labelled 3-O-methyl-6-[18F]Fluoro-L-DOPA. Appl Radiat Isot. 2003;58;5:575-578.
15. Nurmi E., Ruottinen H.M., Kaasinen V., Bergman J., Haaparanta M., Solin O., et al. Progression in Parkinson’s Disease: a Positron Emission Tomography Study with a Dopamine Transporter Ligand [18F]CFT. Ann. Neurol. 2000;47;6:804-806.
16. Laakso A., Bergman J., Haaparanta M., Vilkman H., Solin O., Syvälahti E., et al. Decreased Striatal Dopamine Transporter Binding in Vivo in Chronic Schizophrenia. Schizophr Res. 2001;52;1-2:115-120.
17. Lerman O., Tor Y., Rozen S. Acetyl Hypofluorite as a Taming Carrier of Elemental Fluorine for Novel Electrophilic Fluorination of Activated Aromatic Rings. J. Org. Chem. 1981;46;22:4629-4631.
18. Shiue C.Y., Salvadori P.A., Wolf A.P., Fowler J.S., MacGregor R.R. A New Improved Synthesis of 2-Deoxy-2-[18F]Fluoro-d-Glucose from 18F-Labeled Acetyl Hypofluorite. J. Nucl. Med. 1982;23;10:899-903.
19. Jewett D.M., Potoki J.F., Ehrenkaufer R.E. A Gassolid-Phase Microchemical Method for the Synthesis of Acetyl Hypofluorite. J. Fluorine Chem. 1984;24:477-484.
20. Bida G.T., Satyamurthy N., Barrio J.R. The Synthesis of 2-[F-18]Fluoro-2-Deoxy-D-Glucose Using Glycals: a Reexamination. J. Nucl. Med. 1984;25;12:1327-1334.
21. Oberdorfer F., Hofmann E., Maier-Borst W. Preparation of 18 F-Labelled N-Fluoropyridinium Triflate. J. Label Compd Radiopharm. 1988;25;9:999-1005.
22. Teare H., Robins E.G., Arstad E., Luthra S.K., Gouverneur V. Synthesis and Reactivity of [18F]-N-Fluorobenzenesulfonimide. Chem Commun (Camb). 2007;23:2330-2332.
23. Teare H., Robins E.G., Kirjavainen A.K., Forsback S., Sandford G., Solin O., et al. Radiosynthesis and Evaluation of [18F]Selectfluor Bis(Triflate). Angew Chem Int. Ed. Engl. 2010;49;38:6821-6824.
24. Satyamurthy N., Bida G.T., Phelps M.E., Barrio J.R. N-[18F]Fluoro-N-Alkylsulfonamides: Novel Reagents for Mild and Regioselective Radiofluorination. Int. J. Rad. Appl. Instrum A. 1990;41;8:733-738.
25. Keller T., Krzyczmonik A., Forsback S., Picon F.R.L., Kirjavainen A.K., Takkinen J., et al. Radiosynthesis and Preclinical Evaluation of [(18)F]F-DPA, A Novel Pyrazolo[1,5a]Pyrimidine Acetamide TSPO Radioligand, in Healthy Sprague Dawley Rats. Mol. Imaging Biol. 2017;19;5:736-745.
26. Liang T., Neumann C.N., Ritter T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew Chem Int. Ed. Engl. 2013;52;32:8214-8264.
27. Keller T., Lopez-Picon F.R., Krzyczmonik A., Forsback S., Kirjavainen A.K., Takkinen J.S., et al. [(18)F]F-DPA for the Detection of Activated Microglia in a Mouse Model of Alzheimer’s Disease. Nucl Med. Biol. 2018;67:1-9.
28. Orlovskaya V., Fedorova O., Nadporojskii M., Krasikova R. A Fully Automated Azeotropic Drying Free Synthesis of O-(2-[18F]Fluoroethyl)-L-Tyrosine ([18F]FET) Using Tetrabutylammonium Tosylate. Appl. Radiat. Isot. 2019;152:135-139.
29. Yu S. Review of F-FDG Synthesis and Quality Control. Biomed Imaging Interv J. 2006;2;4:e57.
30. Yusubov M.S., Larkina M.S., Drygunova L.A. The Use of Polyvalent Iodine Compouds in the Production of [18F]Fluorine-Containing Tracers for Positron Emission Tomography. Vestnik Nauki Sibiri = Siberian Journal of Science. 2011;1;1:648-655 (In Russ.). [Юсубов М.С., Ларькина М.С., Дрыгунова Л.А. Использование соединений поливалентного иода в получении [18F]фторсодержащих трейсеров для позитронной эмиссионной томографии // Вестник науки Сибири. 2011. Т.1, № 1. С. 648-655].
31. Mu L., Fischer C., Holland J., Becaud J., Schubiger P.A., Schibli R., et al. 18F-Radiolabeling of Aromatic Compounds Using Triarylsulfonium Salts. Eur. J. Org. Chem. 2012;2012;5:889-892.
32. Rotstein B.H., Stephenson N.A., Vasdev N., Liang S.H. Spirocyclic Hypervalent Iodine(III)-Mediated Radiofluorination Of Non-Activated and Hindered Aromatics. Nat. Commun. 2014;5:4365.
33. Preshlock S., Calderwood S., Verhoog S., Tredwell M., Huiban M., Hienzsch A., et al. Enhanced Copper-Mediated (18)F-Fluorination of Aryl Boronic Esters Provides Eight Radiotracers for PET Applications. Chem Commun (Camb). 2016;52;54:8361-8364.
34. Gamache R.F., Waldmann C., Murphy J.M. Copper-Mediated Oxidative Fluorination of Aryl Stannanes with Fluoride. Org. Lett. 2016;18;18:4522-4525.
35. Fowler J.S., Ido T. Initial and Subsequent Approach for the Synthesis of 18FDG. Semin Nucl Med. 2002;32;1:6-12.
36. Peck M., Pollack H.A., Friesen A., Muzi M., Shoner S.C., Shankland E.G., et al. Applications of PET Imaging with the Proliferation Marker [18F]-FLT. Q J. Nucl. Med. Mol. Imaging. 2015;59;1:95-104.
37. Suehiro M., Vallabhajosula S., Goldsmith S.J., Ballon D.J. Investigation of the Role of the Base in the Synthesis of [18F]FLT. Appl. Radiat. Isot. 2007;65;12:1350-1358.
38. Kim D.W., Ahn D.S., Oh Y.H., Lee S., Kil H.S., Oh S.J., et al. A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules. J. Am. Chem. Soc. 2006;128;50:16394-16397.
39. Chaly T., Dhawan V., Kazumata K., Antonini A., Margouleff C., Dahl J.R., et al. Radiosynthesis of [18F] N-3-Fluoropropyl-2-Beta-Carbomethoxy-3-Beta-(4-Iodophenyl) Nortropane and the First Human Study with Positron Emission Tomography. Nucl. Med. Biol. 1996;23;8:999-1004.
40. Krasikova R.N. Robotic Synthesis of Radiopharmaceuticals for positron emission tomography. Radiokhimiya = Radiochemistry. 1998;40;1:352-360 (In Russ.). [Красикова Р.Н. Роботизированный синтез радиофармпрепаратов для позитронной эмиссионной томографии // Радиохимия. 1998. Т.40, № 1. С. 352-360].
41. Pauwelyn G., Vlerick L., Dockx R., Verhoeven J., Dobbeleir A., Bosmans T., et al. Kinetic Analysis of [(18)F] Altanserin Bolus Injection in the Canine Brain Using PET Imaging. BMC Vet. Res. 2019;15;1:415.
42. Lemaire C., Cantineau R., Guillaume M., Plenevaux A., Christiaens L. Fluorine-18-Altanserin: a Radioligand for the Study of Serotonin Receptors with PET: Radiolabeling and in Vivo Biologic Behavior in Rats. J. Nucl. Med. 1991;32;12:2266-2272.
43. Ding Y.S., Liang F., Fowler J.S., Kuhar M.J., Carroll F.I. Synthesis of [18F]Norchlorofluoroepibatidine and its N-Methyl Derivative: New PET Ligands for Mapping Nicotinic Acetylcholine Receptors. J. Label Compd Radiopharm. 1997;39;10:827-832.
44. Yusubov M.S., Yoshimura A., Zhdankin V.V. Iodonium Ylides in Organic Synthesis. Arkivoc. 2016;342-374.
45. Zhang M.R., Kumata K., Suzuki K. A Practical Route for Synthesizing a PET Ligand Containing [18F]Fluorobenzene Using Reaction of Diphenyliodonium Salt with [18F]F-. Tetrahedron Lett. 2007;48;49:8632-8635.
46. Hodolic M., Topakian R., Pichler R. (18)F-Fluorodeoxyglucose and (18)F-Flumazenil Positron Emission Tomography in Patients with Refractory Epilepsy. Radiol Oncol. 2016;50;3:247-253.
47. Moon B.S., Kil H.S., Park J.H., Kim J.S., Park J., Chi D.Y., et al. Facile Aromatic Radiofluorination of [18F]Flumazenil from Diaryliodonium Salts with Evaluation of their Stability and Selectivity. Org. Biomol Chem. 2011;9;24:8346-8355.
48. McBride W.J., Sharkey R.M., Karacay H., D’Souza C.A., Rossi E.A., Laverman P., et al. A Novel Method of 18F Radiolabeling for PET. J. Nucl. Med. 2009;50;6:991-998.
49. McBride W.J., D’Souza C.A., Sharkey R.M., Karacay H., Rossi E.A., Chang C.H., et al. Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex. Bioconjug Chem. 2010;21;7:1331-1340.
50. Fersing C., Bouhlel A., Cantelli C., Garrigue P., Lisowski V., Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [(18)F]Fluoride: Will [(18)F]AlF Replace (68)Ga for Metal Chelate Labeling? Molecules. 2019;24;16.
51. Alonso Martinez L.M., Harel F., Nguyen Q.T., Letourneau M., D’Oliviera-Sousa C., Meloche B., et al. Al[(18)F]F-Complexation of DFH17, a NOTA-Conjugated Adrenomedullin Analog, for PET Imaging of Pulmonary Circulation. Nucl. Med. Biol. 2018;67:36-42.
52. Wan W., Guo N., Pan D., Yu C., Weng Y., Luo S., et al. First Experience of 18F-Alfatide in Lung Cancer Patients Using a New Lyophilized Kit for Rapid Radiofluorination. J. Nucl. Med. 2013;54;5:691-698.
53. Lee E., Kamlet A.S., Powers D.C., Neumann C.N., Boursalian G.B., Furuya T., et al. A Fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science. 2011;334(6056):639-42.
54. Scroggie K.R., Perkins M.V., Chalker J.M. Reaction of [18F]Fluoride at Heteroatoms and Metals for Imaging of Peptides and Proteins by Positron Emission Tomography. Front Chem. 2021;9:472.
55. Vedejs E., Chapman R.W., Fields S.C., Lin S., Schrimpf M.R. Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids. J. Org. Chem. 1995;60;10:3020-3027.
56. Pourghiasian M., Liu Z., Pan J., Zhang Z., Colpo N., Lin K.S., et al. (18)F-AmBF3-MJ9: a Novel Radiofluorinated Bombesin Derivative for Prostate Cancer Imaging. Bioorg Med. Chem. 2015;23;7:1500-1506.
57. Lau J., Pan J., Rousseau E., Uribe C.F., Seelam S.R., Sutherland B.W., et al. Pharmacokinetics, Radiation Dosimetry, Acute Toxicity and Automated Synthesis of [(18)F]AmBF3-TATE. EJNMMI Res. 2020;10.1:25.
58. Ting R., Harwig C.W., Lo J., Li Y., Adam M.J., Ruth T.J., et al. Substituent Effects on Aryltrifluoroborate Solvolysis in Water: Implications for Suzuki-Miyaura Coupling and the Design of Stable (18)F-Labeled Aryltrifluoroborates for Use in PET Imaging. J. Org. Chem. 2008;73;12:4662-4670.
59. Marans N.S., Sommer F.C., Whitmore J. Preparation of Organofluorosilanes Using Aqueous Hydrofluoric Acid.
J. Am. Chem. Soc. 1951;73:5127-5130.
60. Mu L., Hohne A., Schubiger P.A., Ametamey S.M., Graham K., Cyr J.E., et al. Silicon-Based Building Blocks for One-Step 18F-Radiolabeling of Peptides for PET Imaging. Angew Chem Int. Ed. Engl. 2008;47;26:4922-4925.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study was funded by the Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1925).
Contribution. Article was prepared with equal participation of the authors.
Article received: 17.01.2022. Accepted for publication: 15.03.2022.