JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

P.D. Remizov

Novel Immuno-PET Medical Radionuclides

M.V. Lomonosov Moscow State University, Moscow, Russia

Contact person: P.D. Remizov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

CONTENTS

Introduction

Modern imaging targets and vectors

Immuno-PET

Radionuclides for immuno-PET

Immuno-PET with 89Zr

Production of positron-emitting nuclides for immuno-PET

Conclusion

Keywords: positron emission tomography, medical radionuclides, 124I, 89Zr, immuno-PET, monoclonal antibodies

For citation: Remizov PD. Novel Immuno-PET Medical Radionuclides. Medical Radiology and Radiation Safety. 2022;67(3):67–74.
(In Russian). DOI:10.33266/1024-6177-2022-67-3-67-74

References

1. Cherry S., Jones T., Karp J., Qi J., Moses W., Badawi R. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. Journal of Nuclear Medicine. 2017;59;1:3-12. doi:10.2967/jnumed.116.184028

2. Delbeke D., Segall G. Status of and Trends in Nuclear Medicine in the United States. Journal of Nuclear Medicine. 2011;52;Suppl.2:24S-28S. doi:10.2967/jnumed.110.085688. 

3. Human Health Campus – Database & Statistics. Humanhealth.iaea.org. https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINEMaps.html. Published 2021. Accessed July 13, 2021.

4. Lee S., Burvenich I., Scott A. Novel Target Selection for Nuclear Medicine Studies. Semin Nucl. Med. 2019;49;5:357-368. doi:10.1053/j.semnuclmed.2019.06.004.

5. Lee S., Xie J., Chen X. Peptides and Peptide Hormones for Molecular Imaging and Disease Diagnosis. Chem Rev. 2010;110;5:3087-3111. doi:10.1021/cr900361p.

6. Van Dongen G., Visser G., Lub‐de Hooge M., de Vries E., Perk L. Immuno‐PET: A Navigator in Monoclonal Antibody Development and Applications. Oncologist. 2007;12;12:1379-1389. doi:10.1634/theoncologist.12-12-1379.

7. Köhler G., Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature. 1975;256;5517:495-497. doi:10.1038/256495a0.

8. Teillaud J. Engineering of Monoclonal Antibodies and Antibody-Based Fusion Proteins: Successes and Challenges. Expert Opin. Biol. Ther. 2005;5;sup1:S15-S27. doi:10.1517/14712598.5.1.s15.

9. Reddy S., Robinson M. ImmunoPET in Cancer Models. Semin. Nucl. Med. 2010;40;3:182–189. doi:10.1053/j.semnuclmed.2009.12.004.

10. Adams G., Schier R., McCall A., Simmons H., Horak E., Alpaugh R., et al. High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer Res. 2001;61;12:4750-4755.

11. Adams G., Tai M., McCartney J., Marks J., Stafford W., Houstonet L., et al. Avidity-Mediated Enhancement of in Vivo Tumor Targeting by Single-Chain Fv Dimers. Clin. Cancer Res. 2006;12;5:1599–1605. DOI: 10.1158/1078-0432.CCR-05-2217.

12. Williams L., Wu A., Yazaki P., Raubitschek A., Shively J., Wong J. Numerical Selection of Optimal Tumor Imaging Agents with Application to Engineered Antibodies. Cancer Biother Radiopharm. 2001;16;1:25–35. doi: 10.1089/108497801750095989.

13. McKnight B., Viola-Villegas N. 89Zr-ImmunoPET Companion Diagnostics and Their Impact in Clinical Drug Development. Journal of Labelled Compounds and Radiopharmaceuticals. 2018;61;9:727-738. doi:10.1002/jlcr.3605.

14. Chernyaev A., Borshchegovskaya P., Nikolaeva A., Varzar’ S., Samosadnyi V., Krusanov G. Radiation Technology in Medicine: Part 2. Using Isotopes in Nuclear Medicine. Moscow University Physics Bulletin. 2016;71;4:339-348. doi:10.3103/s0027134916040044.

15. Kraeber-Bodéré F., Rousseau C., Bodet-Milin C., Mathieu C., Guérard F., Frampas E., et al. Tumor Immunotargeting Using Innovative Radionuclides. Int. J. Mol. Sci. 2015;16;2:3932-3954. doi:10.3390/ijms16023932.

16. Boswell C., Brechbiel M.. Development of Radioimmunotherapeutic and Diagnostic Antibodies: an Inside-Out View. Nucl. Med. Biol. 2007;34;7:757-778. doi:10.1016/j.nucmedbio.2007.04.001.

17. Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58;10:1553-1559. doi:10.2967/jnumed.117.189944.

18. Stéen E.J.L., Edem P.E., Nørregaard K., Jørgensen J., Shalgunov V., Kjaer A., et al. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials. 2018;179:209-245. doi:10.1016/j.biomaterials.2018.06.021.

19. Wu A.M., Yazaki P.J., Tsai Sw., Nguyen K., Anderson A., McCarthy D., et al. High-Resolution MicroPET Imaging of Carcinoembryonic Antigen-Positive Xenografts by Using a Copper-64-Labeled Engineered Antibody Fragment. Proc. Natl. Acad. Sci USA. 2000;97;15:8495-8500. doi:10.1073/pnas.150228297.

20. Nayak T., Brechbiel M. 86Y Based PET Radiopharmaceuticals: Radiochemistry and Biological Applications. Med. Chem. 2011;7;5:380-388. doi:10.2174/157340611796799249.

21. Vandenberghe S. Three-Dimensional Positron Emission Tomography Imaging with 124I and 86Y. Nucl. Med. Commun. 2006;27;3:237-245. doi:10.1097/01.mnm.0000199476.46525.2c.

22. Pentlow K. Quantitative Imaging of Yttrium-86 with PET The Occurrence and Correction of Anomalous Apparent Activity in High Density Regions. Clinical Positron Imaging. 2000;3;3:85-90. doi:10.1016/s1095-0397(00)00046-7.

23. Fraker P., Speck J.Jr. Protein and Cell Membrane Iodinations with a Sparingly Soluble Chloroamide, 1,3,4,6-Tetrachloro-3a,6a-Diphrenylglycoluril. Biochem Biophys Res. Commun. 1978;80;4:849-857. doi:10.1016/0006-291x(78)91322-0.

24. Cyclotron Produced Radionuclides: Emerging Positron Emitters For Medical Applications: 64Cu And 124I. Radioisotopes and Radiopharmaceuticals Reports No. 1. Vienna, International Atomic Energy Agency, 2016.

25. Abou D., Ku T., Smith-Jones P. In Vivo Biodistribution and Accumulation of 89Zr in Mice. Nucl. Med. Biol. 2011;38;5:675-681. doi:10.1016/j.nucmedbio.2010.12.011.

26. Heskamp S., Raavé R., Boerman O., Rijpkema M., Goncalves V., Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem. 2017;28;9:2211-2223. doi:10.1021/acs.bioconjchem.7b00325.

27. Chomet M., van Dongen GAMS, Vugts D.J. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem. 2021;32;7:1315-1330. doi:10.1021/acs.bioconjchem.1c00136.

28. Cascini G., Niccoli Asabella A., Notaristefano A., Restuccia A., Ferrari C., Rubini D., et al. 124 Iodine: a Longer-Life Positron Emitter Isotope-New Opportunities in Molecular Imaging. Biomed Res. Int. 2014;2014:672094. doi:10.1155/2014/672094.

29. Bensch F., Brouwers A., Lub-de Hooge M., de Jong J., van der Vegt B., Sleijfer S., et al. 89Zr-Trastuzumab PET Supports Clinical Decision Making in Breast Cancer Patients, when HER2 Status Cannot be Determined by Standard Work Up. Eur. J. Nucl. Med. Mol. Imaging. 2018;45;13:2300-2306. doi:10.1007/s00259-018-4099-8.

30. Dehdashti F., Wu N., Bose R., Naughton M., Ma C., Marquez-Nostra B., et al. Evaluation of [89Zr]trastuzumab-PET/CT in Differentiating HER2-Positive from HER2-Negative Breast Cancer. Breast Cancer Res. Treat. 2018;169;3:523-530. doi:10.1007/s10549-018-4696-z.

31. Dijkers E., Kosterink J., Rademaker A., Perk L., van Dongen G., Bart J., de Jong J., et al. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging. J. Nucl. Med. 2009;50;6:974-981. doi:10.2967/jnumed.108.060392.

32. Gaykema S., Brouwers A., Lub-de Hooge M., Pleijhuis R., Timmer-Bosscha H., Pot L., et al. 89Zr-Bevacizumab PET Imaging in Primary Breast Cancer. J. Nucl. Med. 2013;54;7:1014-1018. doi:10.2967/jnumed.112.117218.

33. Ulaner G., Lyashchenko S., Riedl C., Ruan S., Zanzonico P., Lake D., et al. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. J. Nucl. Med. 2018;59;6:900-906. doi:10.2967/jnumed.117.202010.

34. O’Donoghue J., Lewis J., Pandit-Taskar N., Fleming S., Schöder H., Larson S., et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer. J, Nucl, Med. 2018;59;1:161-166. doi:10.2967/jnumed.117.194555.

35. Pandit-Taskar N., O’Donoghue J., Beylergil V., Lyashchenko S., Ruan S., Solomonet S., et al. ⁸⁹Zr-huJ591 Immuno-PET Imaging in Patients with Advanced Metastatic Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;11:2093-2105. doi:10.1007/s00259-014-2830-7.

36. McCarthy W., Shefer R., Klinkowstein R., Bass L., Margeneau W., Cutler C., et al. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997;24;1:35-43. doi:10.1016/s0969-8051(96)00157-6.

37. Retracted: The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu [retraction of: Biomed Res Int. 2014;2014:786463]. BioMed Res. Int. 2018;2018:3860745. doi:10.1155/2018/3860745.

38. Ikotun O., Lapi S. The Rise of Metal Radionuclides in Medical Imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem. 2011;3;5:599-621. doi:10.4155/fmc.11.14.

39. Alves F., Alves V., Do Carmo S., Neves A., Silva M., Abrunhosa A. Production of Copper-64 and Gallium-68 with a Medical Cyclotron Using Liquid Targets. Mod. Phys. Lett A. 2017;32;17:1740013. doi:10.1142/s0217732317400132.

40. Rajec P., Csiba V., Leporis M., Štefečka M., Pataky E., Reich M., et al. Preparation and Characterization of Nickel Targets for Cyclotron Production of 64Cu. J. Radioanal Nucl. Chem. 2010;286;3:665-670. doi:10.1007/s10967-010-0736-9.

41. Reischl G., Rösch F., Machulla H. Electrochemical Separation and Purification of Yttrium-86. Radiochimica Acta. 2002;90;4:225-228. doi:10.1524/ract.2002.90.4_2002.225.

42. Yoo J., Tang L., Perkins T., Rowland D., Laforest R., Lewis J., et al. Preparation of High Specific Activity 86Y Using A Small Biomedical Cyclotron. Nucl. Med. Biol. 2005;32;8:891-897. doi:10.1016/j.nucmedbio.2005.06.007.

43. Avila-Rodriguez M., Nye J., Nickles R. Production and Separation of Non-Carrier-Added 86Y from Enriched 86Sr Targets. Appl. Radiat. Isot. 2008;66;1:9-13. doi:10.1016/j.apradiso.2007.07.027.

44. Koehler L., Gagnon K., McQuarrie S., Wuest F. Iodine-124: a Promising Positron Emitter for Organic PET Chemistry. Molecules. 2010;15;4:2686-2718. doi:10.3390/molecules15042686.

45. Synowiecki M., Perk L., Nijsen J. Production of Novel Diagnostic Radionuclides in Small Medical Cyclotrons. EJNMMI Radiopharm Chem. 2018;3;1:3. doi:10.1186/s41181-018-0038-z.

46. Wang F., Liu T., Li L., Guo X., Duan D., Liu Z., et al. Production, Quality Control of Next-Generation PET Radioisotope Iodine-124 and Its Thyroid Imaging. J. Radioanal Nucl. Chem. 2018;318;3:1999-2006. doi:10.1007/s10967-018-6277-3.

47. Soppera N., Dupont E., Flemming M. JANIS Book of Deuteron Induced Cross Sections: Comparison of Evaluated and Experimental Data from ENDF/B-VIII.0, TENDL-2019 and EXFOR. 2020.

48. Dabkowski A., Paisey S., Talboys M., Marshall C. Optimization of Cyclotron Production for Radiometal of Zirconium 89. Acta. Physica Polonica A. 2015;127;5:1479-1482. doi:10.12693/aphyspola.127.1479.

49. Verel I., Visser G., Boellaard R., Stigter-van W., Snow G., van Dongen G. 89Zr Immuno-PET: Comprehensive Procedures for the Production of 89Zr-Labeled Monoclonal Antibodies. J. Nucl. Med. 2003;44;8:1271-1281.

50. Siikanen J., Tran T., Olsson T., Strand S., Sandell A. A Solid Target System with Remote Handling of Irradiated Targets for PET Cyclotrons. Appl. Radiat. Isot. 2014;94:294-301. doi:10.1016/j.apradiso.2014.09.001.

51. Ellison P., Valdovinos H., Graves S., Barnhart T., Nickles R. Spot-Welding Solid Targets for High Current Cyclotron Irradiation. Appl. Radiat. Isot. 2016;118:350-353. doi:10.1016/j.apradiso.2016.10.010.

52. Pandey M., Bansal A., Engelbrecht H., Byrne J., Packard A., DeGrado T. Improved Production and Processing of 89Zr Using a Solution Target. Nucl. Med. Biol. 2016;43;1:97-100. doi:10.1016/j.nucmedbio.2015.09.007.

53. DeGrado T., Pandey M., Byrne J. Solution Target for Cyclotron Production of Radiometals. Google Patents. 2017.

54. Oehlke E., Hoehr C., Hou X., Hanemaayer V., Zeisler S., Adam M., et al. Production of Y-86 and Other Radiometals for Research Purposes Using a Solution Target System. Nucl. Med. Biol. 2015;42;11:842-849. doi:10.1016/j.nucmedbio.2015.06.005.

55. Zheltonozhsky V., Zheltonozhskaya M., Savrasov A., Belyshev S., Chernyaev A., Yatsenko V. Studying the Activation of 177Lu in (γ, рxn) Reactions. Bulletin of the Russian Academy of Sciences: Physics. 2020;84:923-928. doi:10.3103/s1062873820080328.

56. Hovhannisyan G., Bakhshiyan T., Dallakyan R. Photonuclear Production of the Medical Isotope 67Cu. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2021;498:48-51. doi:10.1016/j.nimb.2021.04.016.

57. Belousov A.I., Zheltonozhskaya M.V., Lykova Ye.N., Rem-
izov P.D., CHernyayev A.P., Yatsenko V.N. Research of 131Cs Radionuclide Production for Brachytherapy with Photonuclear Method. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2019;64;
1:53-57. doi:10.12737/article_5c55fb4d218e20.76419134.
(In Russ.). [Белоусов А.И., Желтоножская М.В., Лыкова Е.Н., Ремизов П.Д., Черняев А.П., Яценко В.Н. Исследование возможности получения радионуклида 131Cs для брахитерапии фотоядерным способом // Медицинская радиология и радиационная безопасность. 2019. Т.64, № 1. С. 53-57].

58. Loveless C., Radford L., Ferran S., Queern S., Shepherd M., Lapi S. Photonuclear Production, Chemistry, and in Vitro Evaluation of the Theranostic Radionuclide 47Sc. EJNMMI Res. 2019;9;42. doi:10.1186/s13550-019-0515-8.

59. Chernyaev A., Kolyvanova M., Borshchegovskaya P. Radiation Technology in Medicine: Part 1. Medical Accelerators. Moscow University Physics Bulletin. 2015;70;6:457-465. doi:10.3103/s0027134915060090.

60. Zheltonozhskaya M., Zheltonozhsky V., Lykova E., Chernyaev A., Iatsenko V. Production of Zirconium-89 by Photonuclear Reactions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;470:38-41. doi:10.1016/j.nimb.2020.03.002.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The reported study was funded by RFBR, project number 20-315-90124. This research has been supported by the Moscow State University Interdisciplinary Scientific and Educational School “Photonic and Quantum technologies. Digital medicine”.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2766712
Today
Yesterday
This week
Last week
This month
Last month
For all time
2606
4471
25096
18409
74455
75709
2766712

Forecast today
3024


Your IP:216.73.216.10