JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

Effect of Dose Uncertainty on the Assessment of Radiation Risks of Solid Cancer Incidence
in a Cohort of Russian Participants in the Elimination of the Consequences of the Accident
at the Chernobyl NPP

V.K. Ivanov, S.Yu. Chekin, M.A. Maksioutov, A.I. Gorski, S.V.Karpenko , K.A. Tumanov, V.V. Kashcheev, A.M. Korelo, E.V. Kochergina A.F.

Tsyb Medical Radiological Research Center, Obninsk, Russia
Contact person: Sergei Yurievich Chekin, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT
Purpose: Investigation of the influence of the possible uncertainty of exposure doses of Russian participants in the liquidation of the consequences of the Chernobyl accident on the assessment of radiation risks of the incidence of solid cancer in this cohort.
Material and methods: Epidemiological and dosimetric data on a cohort of Russian participants in the liquidation of the consequences of the accident at the Chernobyl NPP, registered in the National Radiation and Epidemiological Register (NRER), are used as initial data for assessing radiation risks. The assessment of radiation risks is carried out by the statistical method of maximum likelihood in the framework of a linear non-threshold model of excess relative risk. Uncertainties in the liquidator’s exposure dose in the adopted risk assessment method are considered in the form of two error models. Dose estimates based on data from individual dosimeters are characterized by a classical model of measurement errors. In the case of estimates of unknown individual doses from group dosimetry data or group route doses, the Berkson assignment error model is used.
Results: A method for assessing radiation risks has been developed, accounting for the uncertainty in dose estimates, based on the observed likelihood function. When taking into account the uncertainty of estimates of individual doses in the cohort of Russian liquidators, the estimate of the coefficient of the excess relative rate per dose unit (ERR/Gy) for the incidence of solid malignancies decreases by 7%, compared with the estimate obtained directly from the doses registered in the NRER database. The ERR/Gy estimate derived from the doses recorded in the NRER database was 0.69 with a 95% confidence interval (CI) of 0.37–1.04. The estimate of ERR/Gy, obtained accounting for the uncertainty in estimates of individual doses of liquidators, was 0.64 at 95% CI (0.33–0.98). This estimate bias is not significant, since it is within 95% CI for both ERR/Gy estimates, the statistical range of which is of the order of magnitude of the estimates themselves.
Conclusions: Considering the uncertainty of individual dose estimates in the cohort of Russian liquidators, the estimate of the excess relative rate per dose unit (ERR/Gy) for the incidence of solid cancer does not statistically significantly differ from the estimate obtained directly from the doses registered in the NRER database. The bias in the estimate of the radiation risk coefficient observed, due to the dose uncertainty introduced into the calculation, is due to the statistical properties of the traditional radiation risk models used for radiation epidemiology. The results obtained confirm the high stability and validity of the radiation risk assessments obtained earlier from the doses registered in the NRER for the Russian cohort of Chernobyl liquidators. Further research will allow generalization of the developed method for assessing radiation risks, accounting for the uncertainty of dose estimates, based on the observed likelihood function, to other types of radiation epidemiological risk studies, including case-control and case-cohort studies.

Keywords: radiation risk, incidence, solid cancer, linear non-threshold risk model, liquidators of the accident at the Chernobyl nuclear power plant, external dose, dose uncertainty, bias in the estimate of radiation risk

For citation: Ivanov VK, Chekin SYu, Maksioutov MA, Gorski AI, Karpenko SV, Tumanov KA, Kashcheev VV, Korelo AM, Kochergina EV. Effect of Dose Uncertainty on the Assessment of Radiation Risks of Solid Cancer Incidence in a Cohort of Russian Participants in the Elimination of the Consequences of the Accident at the Chernobyl NPP. Medical Radiology and Radiation Safety. 2022;67(4):36-41. DOI: 10.33266/1024-6177-2022-67-4-36-41

References

1. Публикация 103 Международной комиссии по радиационной защите (МКРЗ) / Пер. с англ. Киселёва М.Ф., Шандалы Н.К. М.: Изд. ООО ПКФ «Алана», 2009. 312 с. [Электронный ресурс]. URL: http://www.icrp.org/docs/P103_Russian.pdf (дата обращения 15.01.2022).

2. Preston D.L., Ron E., Tokuoka S., Funamoto S., Nishi N., Soda M., Mabuchi K., Kodama K. Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998 // Radiat. Res. 2007. V.168, No. 1. P. 1–64.

3. Ozasa K., Shimizu Y., Suyama A., Kasagi F., Soda M., Grant E.J., Sakata R., Sugiyama H., Kodama K. Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: an Overview of Cancer and Noncancer Diseases // Radiat. Res. 2012. V.177, No. 3. P. 229–243.

4. Grant E.J., Brenner A., Sugiyama H., Sakata R., Sadakane A., Utada M., Cahoon E.K., Milder C.M., Soda M., Cullings H.M., Preston D.L., Mabuchi K., Ozasa K. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009 // Radiat. Res. 2017. V.187, No.5. P. 513–537.

5. Нормы радиационной безопасности (НРБ-99/2009). Санитарные правила и нормативы. СанПин 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.

6. Ivanov V.K., Tsyb A.F., Gorsky A.I., Maksyutov M.A., Rastopchin E.M., Konogorov A.P., Korelo A.M., Biryukov A.P., Matyash V.A. Leukaemia and Thyroid Cancer in Emergency Workers of the Chernobyl Accident: Estimation of Radiation Risks (1986–1995) // Radiat. Environ. Biophys. 1997. V.36, No. 1. P. 9–16.

7. Ivanov V.K., Rastopchin E.M., Gorsky A.I., Ryvkin V.B. Cancer Incidence among Liquidators of the Chernobyl Accident: Solid Tumors, 1986– 1995 // Health Phys. 1998. V.74, No. 3. P. 309–315.

8. Ivanov V.K., Kashcheev V.V., Chekin S.Y., Maksioutov M.A., Tumanov K.A, Vlasov O.K., Shchukina N.V., Tsyb A.F. Radiation-Epidemiological Studies of Thyroid Cancer Incidence in Russia after the Chernobyl Accident (Estimation of Radiation Risks, 1991–2008 Follow-up Period) // Radiat. Prot. Dosimetry. 2012. V.151, No. 3. P. 489–499.

9. Kashcheev V.V., ChekinS.Yu., Maksiutov M.A., Tumanov K.A., Kochergina E.V., Kashcheeva P.V., Shchukina N.V. Incidence and Mortality of Solid Cancer among Emergency Workers of the Chernobyl Accident: Assessment of Radiation Risks for the Follow-up of 1992–2009 // Radiat. Eviron. Biophys. 2015. V.54, No. 1. P. 13–23.

10. Кащеев В.В., Чекин С.Ю., Карпенко С.В., Максютов М.А., Туманов К.А., Кочергина Е.В., Глебова С.Е., Иванов С.А., Каприн А.Д. Оценка радиационных рисков злокачественных новообразований среди российских участников ликвидации последствий аварии на Чернобыльской АЭС // Радиация и риск. 2021. Т.30, № 1. С. 58–77.

11. Медицинские радиологические последствия Чернобыля: прогноз и фактические данные спустя 30 лет / Под ред. чл.-корр. РАН Иванова В.К., чл.-корр. РАН Каприна А.Д. М.: ГЕОС, 2015. 450 с.

12. Питкевич В.А., Иванов В.К., Цыб А.Ф., Максютов М.А., Матяш В.А., Щукина Н.В. Дозиметрические данные Российского государственного медико-дозиметрического регистра для ликвидаторов // Радиация и риск. 1995. № 2. С. 3–44.

13. Gillies M., Haylock R. The Cancer Mortality and Incidence Experience of Workers at British Nuclear Fuels plc, 1946–2005 // J. Radiol. Prot. 2014. V.34, № 3. P. 595–623.

14. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects of Ionizing Radiation. UNSCEAR 2006 Report to the General Assembly with Scientific Annexes. V. I. New York: United Nations, 2008. 392 p. [Электронный ресурс]. URL: https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Report_Vol.I.pdf (дата обращения 15.01.2022).

15. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2012 Report to the General Assembly, with scientific annexes. Scientific Annexes. New York: United Nations, 2015. 232 p. [Электронный ресурс]. URL: https://www.unscear.org/docs/publications/2012/UNSCEAR_2012_Annex-B.pdf (дата обращения 15.01.2022).

16. Breslow N., Day N. Statistical Methods in Cancer Research. V. II. The Design and Analysis of Cohort Studies. IARC Scientific Publication No. 82. Lyon: IARC, 1987. 406 p.

17. Международная статистическая классификация болезней и проблем, связанных со здоровьем, 10-й пересмотр (МКБ-10). Т. 1. Ч. 1. Женева: ВОЗ, 1995. 698 с.

18. Ivanov V.K., Gorsky A.I., Kashcheev V.V., Maksioutov M.A., Tumanov K.A. Latent Period in Induction of Radiogenic Solid Tumors in the Cohort of Emergency Workers // Radiat. Environ. Biophys. 2009. V.48, № 3. P. 247–252.

19. Stram D.O., Kopecky K.J. Power and Uncertainty Analysis of Epidemiological Studies of Radiation-Related Disease Risk in Which Dose Estimates are Based on a Complex Dosimetry System: Some Observations // Radiat. Res. 2003. V.160, No. 4. P. 408–417.

20. Wu Y., Hoffman F.O., Apostoaei A.I., Kwon D., Thomas B.A., Glass R., Zablotska L.B. Methods to Account for Uncertainties in Exposure Assessment in Studies of Environmental Exposures // Environ. Health. 2019. V.18, No. 1. P. 31. [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454753/pdf/12940_2019_ Article_468.pdf (дата обращения 15.01.2022).

21. Stayner L., Vrijheid M., Cardis E., Stram D.O., Deltour I., Gilbert S.J., Howe G. A Monte Carlo Maximum Likelihood Method for Estimating Uncertainty Arising from Shared Errors in Exposures in Epidemiological Studies of Nuclear Workers // Radiat. Res. 2007. V.168, No. 3. P. 757– 763.

22. Breslow N.E. Discussion of the Paper by D.R. Cox // J. R. Statist. Soc. B. 1972. No. 34. P. 216–217.

23. Lyn D.Y. On the Breslow Estimator // Lifetime Data Anal. 2007. No. 13. P. 471–480. [Электронный ресурс]. URL: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC6454753/pdf/12940_2019_Article_468.pdf (дата обращения 15.01.2022)

24. Breslow N., Day N. The Analysis of Case-Control Studies. V. I. // Statistical Methods in Cancer Research. IARC Scientific Publication No. 32. Lyon: IARC, 1980. 350 p.

25. Pierce D.A., Vaeth M., Cologne J.B. Allowance for Random Dose Estimation Errors in Atomic Bomb Survivor Studies: a Revision // Radiat. Res. 2008. V.170, No. 1. P. 118–126.

 PDF (RUS) Full-text article (in Russian)

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов. 
Поступила: 15.03.2022. Принята к публикации: 11.05.2022. 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2767298
Today
Yesterday
This week
Last week
This month
Last month
For all time
244
2948
25438
25438
75041
75709
2767298


Your IP:216.73.216.181