JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2024. Vol. 69. № 5
DOI:10.33266/1024-6177-2024-69-5-53-58
E.A. Blinova1, 2, A.V. Korechenkova1, M.A. Yanishevskaya1, А.V. Akleyev1, 2
Effect of Repair Gene Polymorphism on the Risk
of Malignant Neoplasm Development after Chronic Radiation Exposure
1 Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
2 Chelyabinsk State University, Chelyabinsk, Russia
Contact person: E.A. Blinova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
The efficiency of DNA integrity repair processes after radiation exposure may depend on hereditary variations of repair genes caused by single nucleotide polymorphisms. Disturbances or even failure of repair processes trigger a chain of reactions leading to genome instability and oncogenic transformation of the cell.
Purpose: To investigate the association of single nucleotide polymorphism in genes of nucleotide excision repair (ERCC2 rs13181, XPC rs2228001), AP site repair (APEX rs1130409), homologous recombination (XRCC3 rs861539), single-strand DNA break repair (XRCC1 rs25487), and double-strand DNA break repair (PARP rs1136410, XRCC4 rs2075685) with the risk of malignant neoplasm development of various localisations in chronically exposed persons.
Material and methods: The study was conducted in 861 individuals who were exposed to chronic low dose rate radiation. 274 people of which had malignant neoplasms (MN) of various localisations and 587 people made up the comparison group (exposed persons without MN). The mean accumulated dose to red bone marrow (RBM) in the group of people with MN was 561.65±25.31 mGy, while in the comparison group it was 543.14±36.06 mGy. Genotyping of polymorphic loci rs13181, rs2228001, rs1130409, rs861539, rs25487, rs1136410, and rs2075685 was performed by real-time PCR. The association of polymorphic loci with the risk of MN development was determined by the odds ratio (OR) and 95 % confidence interval (95 % CI). A multifactor dimensionality reduction method was used to assess intergenic interactions.
Results: Single-stranded DNA break repair gene rs25487 (XRCC1) polymorphism in accordance with the dominant model is associated with an increased risk of MN development in the combined group of the examined persons (OR=1.79 (1.12‒2.87), p=0.01). The polymorphism of the gene involved in homologous recombination rs861539 (XRCC3) in accordance with the recessive model is associated with a reduced risk of MN development both in the combined group of exposed persons (OR = 0.25 (0.15‒0.41; p<0.00001), and separately in the group of the Slavs (OR = 0.28 (0.13‒0.60); p<0.0001) and in the group of the Turks (OR = 0.22 (0.11‒0.44; p<0.0001). The model of interfactorial interactions allowed us to establish a protective effect with respect to the risk of MN development in carriers of polymorphic loci rs861539 of XRCC3 gene and rs1130409 of APEX1 gene (p<0.001).
Keywords: chronic radiation exposure, single nucleotide polymorphism, repair genes, malignant neoplasm
For citation: Blinova EA, Korechenkova AV, Yanishevskaya MA, Akleyev АV. Effect of Repair Gene Polymorphism on the Risk of Malignant Neoplasm Development after Chronic Radiation Exposure. Medical Radiology and Radiation Safety. 2024;69(5):53–58. (In Russian). DOI:10.33266/1024-6177-2024-69-5-53-58
References
1. Lindahl T, Barnes D.E. Repair Of Endogenous Dna Damage. Cold Spring Harb Symp. Quant Biol. 2000;65:127-33. doi: 10.1101/sqb.2000.65.127.
2. Huang R., Zhou P.K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways And Clinical Translation for Targeted Cancer Therapy. Signal Transduct Target Ther. 2021 Jul 9;6;1:254. doi: 10.1038/s41392-021-00648-7.
3. Chatterjee N., Walker G.C. Mechanisms of Dna Damage, Repair, and Mutagenesis. Environ Mol Mutagen. 2017 Jun; 58;5:235-263. doi: 10.1002/em.22087.
4. Wang Y., Qiu C., Cui Q. A Large-Scale Analysis of the Relationship of Synonymous SNPs Changing MicroRNA Regulation with Functionality and Disease. Int J Mol Sci. 2015 Sep 30;16;10:23545-55. doi: 10.3390/ijms161023545.
5. Янишевская М.А., Блинова Е.А., Кореченкова А.В., Аклеев А.В. Анализ связи полиморфного локуса rs1052133 гена OGG1 с риском развития злокачественных новообразований у людей, подвергшихся радиационному воздействию // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2023. Т. 32, № 3. С. 97-108. [Yanishevskaya M.A , Blinova E.A, Korechenkova A.V, Akleyev A.V. Association between the Rs1052133 Polymorphism of the Ogg1 Gene and the Risk of Malignant Neoplasms Development in People Chronically Exposed to Radiation. Radiatsiya i Risk = Radiation and Risk. 2023;32;3:97-108 (In Russ.)].
6. Blinova E.A, Yanishevskaya M.A, Korechenkova A.V, Akleyev A.V. Association between Single Nucleotide Polymorphisms of Apoptosis and Cell Cycle Control Genes and the Risk of Cancer Development in Chronically Exposed People. Biology Bulletin. 2023;50;12:3250-3260.
7. Медико-биологические и экологические последствия радиоактивного загрязнения реки Теча / Под ред. А.В. Аклеева, М.Ф. Киселева. М.: Вторая типография ФУ «Медбиоэкстрем»; 2001. 531 с. [Mediko-Biologicheskiye i Ekologicheskiye Posledstviya Radioaktivnogo Zagryazneniya Reki Techa = Medical, and Environmental Consequences of Radioactive Contamination of the Techa River. Ed. А.V Akleyev, М.F Kiselev. Мoscow. Vtoraya tipografiya FU «Medbioekstrem» Publ., 2001. 531 p. (In Russ.)].
8. Дегтева М.О., Напье Б.А., Толстых Е.И., Шишкина Е.А., Бугров Н.Г., Крестинина Л.Ю., Аклеев А.В. Распределение индивидуальных доз в когорте людей, облученных в результате радиоактивного загрязнения реки Течи // Медицинская радиология и радиационная безопасность. 2019. Т. 64., №3. С. 46-53 [Degteva M.O., Napier B.A., Tolstykh E.I., Shishkina E.A., Bougrov N.G., Krestinina L.Yu, Akleyev A.V. Individual Dose Distribution in Cohort of People Exposed as a Result of Radioactive Contamination of the Techa River. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2019;64;3:46-53 (In. Russ.)]. doi:10.12737/article_5cf2364cb49523.98590475.
9. Блинова Е.А., Кореченкова А.В., Никифоров В.С., Янишевская М.А., Котикова А.И., Аклеев А.В. «Коллекция биологических образцов»: Свидетельство о государственной регистрации базы данных № 2024621345. Российская Федерация. № 2024620379: заявл. 07.02.2024: опубл. 28.03.2024 [Blinova E.A., Korechenkova A.V., Nikiforov V.S., Yanishevskaya M.A., Kotikova A.I., Akleyev A.V. Kollektsiya Biologicheskih Obraztsov. Svidetel’stvo O Gosudarstvennoy Registratsii Bazy Dannyh = Collection of Biological Samples. Certificate of State Registration of the Database. No. 2024621345 Rossiyskaya Federatsiya. No. 2024620379. Zayavl. 07.02.2024. Opubl. 28.03.2024 (In Russ.)].
10. Ritchie M.D., Hahn L.W., Moore J.H. Power of Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions in the Presence of Genotyping Error, Missing Data, Phenocopy, and Genetic Heterogeneity. Genet Epidemiol. 2003 Feb;24;2:150-7. doi: 10.1002/gepi.10218.
11. Alsagaby S., Ahmed A.A., Rasheed Z., Althwab S.A., Aljohani A.SM., Alhumaydhi F.A., Alhomaidan H.T., Alkhamiss A.S., Alkhowailed M., Alaqeel A., Alblihed M.A., Alrehaili J., Fernández N., Abdulmonem W.A. Association of Genetic Polymorphisms in DNA Repair Genes ERCC2 Asp312Asn (rs1799793), ERCC2 Lys 751 Gln (rs13181), XRCC1 Arg399 Gln (rs25487) and XRCC3 Thr 241Met (rs861539) with the Susceptibility of Lung Cancer in Saudi Population. Nucleosides Nucleotides Nucleic Acids. 2022;41;5-6:530-554. doi: 10.1080/15257770.2022.2052317.
12. Gong L., Luo M., Sun R., Qiu L., Chen C., Luo Z. Significant Association Between XRCC1 Expression and its rs25487 Polymorphism and Radiotherapy-Related Cancer Prognosis. Front Oncol. 2021;May;19;11:654784. doi: 10.3389/fonc.2021.654784.
13. Monti S., Xu T., Liao Z., Mohan R., Cella L., Palma G. On the Interplay between Dosiomics and Genomics in Radiation-Induced Lymphopenia of Lung Cancer Patients. Radiother Oncol. 2022 Feb;167:219-225. doi: 10.1016/j.radonc.2021.12.038.
14. Parsaeian S.F., Asadian F., Karimi-Zarchi M., Setayesh S., Javaheri A., Tabatabaie R.S., Dastgheib S.A., Golestanpour H., Neamatzadeh H. A Meta-Analysis for Association of XRCC3 rs861539, MTHFR rs1801133, IL-6 rs1800795, IL-12B rs3212227, TNF-α rs1800629, and TLR9 rs352140 Polymorphisms with Susceptibility to Cervical Carcinoma. Asian Pac J Cancer Prev. 2021;Nov.;1;22;11:3419-3431. doi: 10.31557/APJCP.2021.22.11.3419.
15. Alkasaby M.K., Abd El-Fattah AI., Ibrahim IH., Abd El-Samie HS. Polymorphism of XRCC3 in Egyptian Breast Cancer Patients. Pharmgenomics Pers Med. 2020 Aug; 6;13:273-282. doi: 10.2147/PGPM.S260682.
16. Bei L., Xiao-Dong T., Yu-Fang G., Jian-Ping S., Zhao-Yu Y. DNA Repair Gene XRCC3 Thr241Met Polymorphisms and Lung Cancer Risk: a Meta-Analysis. Bull Cancer. 2015 Apr;102;4:332-9. doi: 10.1016/j.bulcan.2015.02.003.
17. Özgöz A., Hekimler Öztürk K., Yükseltürk A., Şamlı H., Başkan Z., Mutlu İçduygu F., Bacaksız M. Genetic Variations of DNA Repair Genes in Breast Cancer. Pathol Oncol Res. 2019 Jan;25;1:107-114. doi: 10.1007/s12253-017-0322-3.
18. Djansugurova L., Altynova N., Cherednichenko O., Khussainova E., Dubrova YE. The Effects of DNA Repair Polymorphisms on Chromosome Aberrations in the Population of Kazakhstan. Int J Radiat Biol. 2020 May;96;5:614-621. doi: 10.1080/09553002.2020.1711460.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The article was prepared as part of the implementation of the federal target program “Ensuring nuclear and radiation safety for 2016-2020 and for the period until 2030” (contract No. 27.501.21.2 dated June 11, 2021).
Contribution. Blinova EA – methodology development, article authoring;
AV Korechenkova – statistical processing, article authoring;
Yanishevskaya MA – laboratory research, article authoring; Akleyev AV — development of the research concept, scientific supervision, article authoring.
Article received: 20.05.2024. Accepted for publication: 25.06.2024.