JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 5

DOI:10.33266/1024-6177-2024-69-5-59-65

A.I. Kotikova, V.S. Nikiforov, E.A. Blinova, A.V. Akleyev

Assessment of T-Regulatory Cell Population and Foxp3 Gene Expression in Chronically Exposed Residents of the Urals Region 

Urals Research Center for Radiation Medicine, Chelyabinsk, Russia

Chelyabinsk State University, Chelyabinsk, Russia

Contact person: Alisa Igorevna Kotikova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract 

Purpose:  To conduct a pilot study on the quantity of regulatory T-cells (Treg) in the peripheral blood and to assess transcriptional activity of FOXP3 gene in chronically exposed persons.  

Material and methods: The study included 77 participants who were divided into two groups: exposed people – 45 individuals, with an average accumulated dose to red bone marrow (RBM) of 641.21±80.41 mGy, and a comparison group – 32 individuals, with an average accumulated RBM dose of 20.38±2.51 mGy. The study on the assessment of FOXP3 gene expression was conducted on 298 individuals: the irradiated group consisted of 163 individuals with an average accumulated dose to RBM of 702±43.10 mGy; the comparison group included 135 individuals with an average accumulated dose to RBM of 17.30±1.40 mGy. The study groups did not differ significantly by age, sex and ethnicity. Quantitative assessment of regulatory T-cells in the peripheral blood was performed using flow cytometry method by the presence of T-helper markers CD3 and CD4, high expression of marker CD25 and low expression of marker CD127. Thus, the phenotype of T-regulatory lymphocytes was described as CD3+CD4+CD25highCD127low. The relative mRNA content of the FOXP3 gene was assessed by PCR-RT.

Results: More than 70 years after the onset of chronic radiation, no statistically significant changes in the pool of regulatory T-cells were detected in the exposed persons: the content of absolute and relative amount of Treg did not differ statistically significantly between the studied groups (p=0.91 and p=0.29, respectively); no statistically significant relationship of Treg indices with the accumulated doses to RBM and thymus and peripheral lymphoid organs were found. No statistically significant differences in FOXP3 gene mRNA expression were found between exposed individuals and the comparison group. A linear positive dependence of FOXP3 gene mRNA expression on the relative number of regulatory T-cells was shown (p=0.007).

Keywords: chronic exposure, regulatory T cells, immunity, gene expression, FOXP3

For citation: Kotikova AI, Nikiforov VS, Blinova EA, Akleyev AV. Assessment of T-Regulatory Cell Population and Foxp3 Gene Expression in Chronically Exposed Residents of the Urals Region. Medical Radiology and Radiation Safety. 2024;69(5):59–65. (In Russian). DOI:10.33266/1024-6177-2024-69-5-59-65

 

References

1.Sebe A, Anliker B, Rau J, Renner M. Genetisch Modifizierte Regulatorische T-Zellen: Therapiekonzepte und Ihr Regulatorischer Rahmen [Genetically Modified Regulatory T Cells: Therapeutic Concepts and Regulatory Aspects]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63;11:1403-1411. doi:10.1007/s00103-020-03230-8.

2.Rakebrandt N, Littringer K, Joller N. Regulatory T-cells: Balancing Protection Versus Pathology. Swiss Med Wkly. 2016;146:w14343. doi:10.4414/smw.2016.14343

3.Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol. 2016;34:609-633. doi:10.1146/annurev-immunol-032712-095948.

4.Persa E, Balogh A, Sáfrány G, Lumniczky K. The Effect of Ionizing Radiation on Regulatory T Cells in Health and Disease. Cancer Lett. 2015;368;2:252-261. doi:10.1016/j.canlet.2015.03.003.

5.Song D, Ding Y. A New Target of Radiotherapy Combined with Immunotherapy: Regulatory T Cells. Front Immunol. 2024;14:1330099. doi:10.3389/fimmu.2023.1330099.

6.Nakamura N., Kusunoki Y., Akiyama M. Radiosensitivity of Cd4 or Cd8 Positive Human T-Lymphocytes by an in Vitro Colony Formation Assay. Radiat. Res. 1990;123;2:224-227. 

7.Qu Y., Jin S., Zhang A., et al. Gamma-Ray Resistance of Regulatory cd4+cd25+foxp3+ T Cells in Mice. Radiation Research. 2010;173:148-157.

8.Baba N., Rubio M., Kenins L., et al. The Aryl Hydrocarbon Receptor (AhR) Ligand Vaf347 Selectively Acts on Monocytes and Naive Cd4(+) Th Cells to Promote the Development Of Il-22-Secreting Th Cells. Hum. Immunol. 2012;73:795-800.

9.Gremy O., Benderitter M., Linard C. Acute and Persisting Th2-Like Immune Response after Fractionated Colorectal Gamma-Irradiation. World J. Gastroenterol. 2008;14:7075-7085.

10.Hori S., Nomura T., Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science. 2003;299;5609:1057-1061.

11.Haribhai D., Williams J. B., Jia S., et al. A Requisite Role for Induced Regulatory T Cells in Tolerance Based on Expanding Antigen Receptor Diversity. Immunity. 2011;35;1:109-122.

12.Beauford S.S., Kumari A., Garnett-Benson C. Ionizing Radiation Modulates the Phenotype and Function of Human CD4+ Induced Regulatory T Cells. BMC Immunol. 2020;21;36:18.

13.Аклеев А.В., Силкина Л.А., Веремеева Г.А. Радиационно-индуцированные изменения иммунитета и их возможная роль в развитии отдаленных последствий облучения человека // Радиация и риск. Бюллетень НРЭР. 1997. №10. С.137-146 [Akleyev A.V., Silkina L.A., Veremeyeva G.A. Radiation-Induced Immunity Changes and their Potential Role in the Development of Late Radiation Effects in Humans. Radiatsiya i Risk. Byulleten’ Natsional’nogo Radiatsionno-Epidemiologicheskogo Registra = Radiation & Risk. Bulletin of the National Radiation and Epidemiological Registry. 1997;10:137-146 (In Russ.)].

14.Аклеев А.А. Иммунный статус человека в отдалённом периоде хронического радиационного воздействия // Медицинская радиология и радиационная безопасность. 2020. Т. 65. №4. С. 29-35 [Akleyev A.A. Immune Status of a Man Long after Chronic Radiation Exposure. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2020;65(4):29-35 (In Russ.)]. doi: 10.12737/1024-6177-2020-65-4-29-35.

15.Последствия радиоактивного загрязнения реки Течи / Под ред. А.В. Аклеева. Челябинск, 2016. 390 с. [Posledstviya Radioaktivnogo Zagryazneniya Reki Techi = Consequences of Radioactive Contamination of the Techa River. Ed. Akleyev A.V. Chelyabinsk Publ., 2016. 390 p. (In Russ.)].

16.Дегтева М.О., Напье Б.А., Толстых Е.И., Шишкина Е.А., Бугров Н.Г., Крестинина Л.Ю., Аклеев А.В. Распределение индивидуальных доз в когорте людей, облученных в результате радиоактивного загрязнения реки Течи // Медицинская радиология и радиационная безопасность. 2019. Т.64. №3. С.46-53 [Degteva MO, Napʹe BA, Tolstykh EI, Shishkina EA, Bugrov NG, Krestinina LYu, Akleyev AV. Individual Dose Distribution in Cohort of People Exposed as a Result of Radioactive Contamination of the Techa River. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2019;64(3):46-53 (In. Russ.)]. doi: 10.12737/article_5cf2364cb49523.98590475.

17.СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». М., 2009. 225 c. [Sanitary Rules and Regulations Sanpin 2.6.1.2523-09. Standards of Radiation Safety (NRB-99/2009)». Moscow Publ., 2009. 225 p. (In Russ.)]. 

18.Котикова А.И., Блинова Е.А., Аклеев А.В. Субпопуля-
ционный состав Т-хелперов в периферической крови хронически облученных лиц в отдаленном периоде // Медицина экстремальных ситуаций. 2022. Т.24. №.2. С.65-73 [Kotikova AI, Blinova EA, Akleyev AV. Subpopulation Composition of T-Helpers in the Peripheral Blood of Persons Chronically Exposed to Radiation in the Long Term. Meditsina Ekstremal’nykh Situatsiy = Extreme medicine. 2022;24(2):65-73 (In Russ.)]. doi: 10.47183/mes.2022.018.

19.Селькова М.С., Селютин А.В., Сельков С.А. Особенности содержания Т-регуляторных лимфоцитов и NK-клеток у пациентов с хроническим гепатитом С // Инфекция и иммунитет. 2012. Т.2. №4. С.715-722 [Selkova M.S., Selutin A.V., Selkov S.A. Patterns of Regulatory T-Cells and NK-Cells Levels in Patients with Hepatitis C Virus Infection. Infektsiya i Immunitet = Infection and Immunity. 2014;2;4:715-722 (In Russ.)]. doi: 10.15789/2220-7619-2012-4-715-722.

20.Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25;4:402-408.

21.Кодинцева Е.А., Аклеев А.А., Блинова Е.А. Цитокиновый профиль лиц, подвергшихся хроническому радиационному воздействию, в отдаленные сроки после облучения // Радиационная биология. Радиоэкология. 2021. Т. 61. №5. С.506-514 [Kodintseva E.A., Akleyev A.A., Blinova E.A. The Cytokine Profile of Chronically Irradiated People in Long Terms after the Beginning of Irradiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2021;61;5:506-514 (In Russ.)]. doi: 10.31857/S0869803121050076. 

22.Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ. Recipient CD4 + T Cells that Survive Irradiation Regulate Chronic Graft-Versus-Host Disease. blood. 2004;104;5:1565-1573. doi:10.1182/blood-2004-01-0328.

23.Winzler C, Fantinato M, Giordan M, Calore E, Basso G, Messina C. CD4(+) T Regulatory Cells are More Resistant to DNA Damage Compared to CD4(+) t Effector Cells as Revealed by Flow Cytometric Analysis. Cytometry A. 2011;79;11:903-911. doi:10.1002/cyto.a.21132.

24.Pantelias G.E., Terzoudi G.I. A Standardized G2-Assay for the Prediction of Individual Radiosensitivity. Radiother. Oncol. 2011;101:28–34.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The work was carried out as part of the: «Study on the effect of chronic radiation exposure on the state of the human T-cell immune system».

Contribution. Kotikova AI ‒ laboratory research, statistical processing, article authoring; Nikiforov VS – laboratory research, statistical processing, article authoring; Blinova EA ‒ article authoring; Akleyev AV ‒ development of the research concept, scientific supervision, article authoring.

Article received: 20.05.2024. Accepted for publication: 25.06.2024.

 

 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2760117
Today
Yesterday
This week
Last week
This month
Last month
For all time
2364
3035
18501
18409
67860
75709
2760117

Forecast today
2424


Your IP:216.73.216.52