JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1

DOI:10.33266/1024-6177-2025-70-1-115-121

A.V. Petraikin1, А.А. Baulin1,Y.A. Vasilev1, Z.R. Artyukova1, A.K. Smorchkova1,
D.S. Semenov1, A.A. Alihanov2, R.A. Erizhokov1, O.V. Omelyanskaya1

Analysis of Possibility of Using an Algorithm for Correcting Metal Artifacts in CT-Images for Radiation Therapy Planning

1 Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow, Russia

2 N.I. Pirogov RNIMU, Moscow, Russia

Контактное лицо: Аnatoly А. Baulin, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: To quantitatively evaluate reconstruction software algorithms in combination with algorithm O-MAR for correcting metal artifacts in CT-images and explore the potential of using O-MAR for radiation therapy planning tasks.

Material and methods: A quantitative assessment of the O-MAR algorithm on CT scans of a 20 cm diameter cylindrical phantom with a hip joint implant in the center was performed. Test tubes with different concentrations of potassium hydrogen phosphate (K2HO4×3H2O) were placed around the implant. The evaluation parameters used standard deviation (SD) of the region of interest (ROI) density in HU units and the calculation of the degree of susceptibility to artifacts (P).The calculation of absorbed dose in the phantom was performed on the Eclipse 17.0 planning station, using the AAA (Analytical Anisotropic Algorithm) calculation algorithm.

Results: Calculations of the degree of artifact susceptibility showed that the minimum mean noise value was observed for the iMR series in combination with O-MAR (31.6 ± 45.5 HU) and the maximum for FBP (16) without O-MAR (77.0 ± 31.1 HU). As a result of comparison of CT studies with/without O-MAR, the average calculated difference in absorbed dose for all control points is 0.33±1.68 % and 0.42±1.38 % in the presence of  implant for FBP and iMR modes, respectively. However, for both modes the difference was 3.22 % for the artifact zone (dark spot).

Conclusion: It is shown that the use of the O-MAR algorithm reduces the distorted values of X-ray density that arose as a result of the presence of an implant in CT studies. The calculation of the absorbed dose for the artifact zone (dark spot) shows a decrease in the uncertainty of the dose calculation in O-MAR-corrected studies.

Keywords:CT, metal artifacts reduction (MAR), radiation therapy planning

For citation: Petraikin AV, Baulin АА, Vasilev YA, Artyukova ZR, Smorchkova AK, Semenov DS, Alihanov AA, Erizhokov RA, Omelyanskaya OV. Analysis of Possibility of Using an Algorithm for Correcting Metal Artifacts in CT-Images for Radiation Therapy Planning. Medical Radiology and Radiation Safety. 2025;70(1):115–121. (In Russian). DOI:10.33266/1024-6177-2025-70-1-115-121

 

References

1. Rossi E., Emin S., Gubanski M., et al. Contouring Practices and Artefact Management Within a Synthetic CT-based Radiotherapy Workflow for the Central Nervous System. Radiat Oncol. 2024;19;1:27. doi: https://doi.org/10.1186/s13014-024-02422-9.

2. Goran Kolarevic, Dražan Jaroš, Bojan Pavičar, et al. Computed Tomography Simulator Conversion Curve Dependence on Scan Parameters and Phantom Dimension. Journal of Health Sciences. 2020;10;3:226-233. doi:https://doi.org/10.17532/jhsci.2020.1085.

3. Selles M., Stuivenberg V.H., Wellenberg R.H.H., et al. Quantitative Analysis of Metal Artifact Reduction in Total Hip Arthroplasty Using Virtual Monochromatic Imaging and Orthopedic Metal Artifact Reduction, a Phantom Study. Insights Imaging. 2021;12;1:171. doi:10.1186/s13244-021-01111-5.

4. John King, Shona Whittam, David Smith, Bashar Al-Qaisieh. The Impact of a Metal Artefact Reduction Algorithm on Treatment Planning for Patients Undergoing Radiotherapy of the Pelvis. Physics and Imaging in Radiation Oncology. 2022;24:138–143. doi: https://doi.org/10.1016/j.phro.2022.11.007.

5. Mark Selles, Jochen A.C. van Osch, Mario Maas, Martijn F. Boomsma, Ruud H.H. Wellenberg. Advances in Metal Artifact Reduction in CT Images: a Review of Traditional and Novel Metal Artifact Reduction Techniques. European Journal of Radiology. 2024;170:111276. doi: https://doi.org/10.1016/j.ejrad.2023.111276.

6. AAA Photon Dose Calculation Model in Eclipse. 2022. Treatment Planning System Wiki. URL: https://tpswiki.com/wp-content/uploads/2022/01/AAA-Algorithm.pdf.

7. Дружинина П.С., Романович И.К., Водоватов А.В., Чипига Л.А., Ахматдинов Р.Р., Братилова А.А., Рыжов С.А. Тенденции развития компьютерной томографии в Российской Федерации в 2011–2021 гг. // Радиационная гигиена. 2023. Т.16. №3. С. 101-117 [Druzhinina P.S., Romanovich I.K., Vodovatov A.V., Chipiga L.A., Akhmatdinov R.R., Bratilova A.A., Ryzhov S.A. Trends in the Development of Computed Tomography in the Russian Federation in 2011–2021. Radiatsionnaya Gigiyena = Radiation Hygiene. 2023;16;3:101-117 (In Russ.)]. https://doi.org/10.21514/1998-426X-2023-16-3-101-117.

8. Румянцев П.О. Возрастающая роль методов функциональной визуализации для навигации дистанционной радиотерапии и брахитерапии на примере рака предстательной железы // Digital Diagnostics. 2021. Т.2. №4. С. 488−497 [Rumyantsev P.O. Growing Role of Functional Imaging Methods for Navigation of Remote Radiotherapy and Brachytherapy on the Example of Prostate Cancer. Digital Diagnostics. 2021;2;4:488-497 (In Russ.)]. DOI: https://doi.org/10.17816/DD96197.

9. Meyer E., Raupach R., Lell M., Schmidt B., Kachelrieß M. Normalized Metal Artifact Reduction (NMAR) in Computed Tomography. Med. Phys. 2010;37:5482–5493. https://doi.org/10.1118/1.3484090.; 

10. Charles A. Kelsey. The Physics of Radiology. Ed. H.E.Johns, J.R.Cunningham. Med Phys. 1984;731-732. https://doi.org/10.1118/1.595545

11. Wellenberg R.H.H., Hakvoort E.T., Slump C.H., Boomsma M.F., Maas M., Streekstra G.J. Metal Artifact Reduction Techniques in Musculoskeletal CT-Imaging. Eur J Radiol. 2018;107:60-69. https://doi.org/ 10.1016/j.ejrad.2018.08.010.

12. Kosmas C., Hojjati M., Young P., Abedi A., Gholamrezanezhad A., Rajiah P. Dual-Layer Spectral Computerized Tomography for Metal Artifact Reduction: Small Versus Large Orthopedic Devices. Skeletal Radiol. 2019;48;12:1981-90. https://doi.org/10.1007/s00256-019-03248-3.

13. Васильев Ю.А., Туравилова Е.В., Шулькин И.М. и др. КТ брюшной полости с признаками остеопороза позвоночника: Свидетельство о гос. рег. базы данных №2023621045. Российская Федерация. MosMedData: №2023620796: заявл. 24.03.2023: опубл. 30.03.2023; заявитель ГБУЗ г. Москвы «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» [Vasil’yev Yu.A., Turavilova Ye.V., Shul’kin I.M., et al. Komp’yuternaya Tomografiya Bryushnoy Polosti s Priznakami Osteoporoza Pozvonochnika = Computed Tomography of the Abdominal Cavity with Signs of Osteoporosis of the Spine: Certificate of State registration of the Database No. 2023621045 Russian Federation. MosMedData: No. 2023620796. Declared. 24.03.2023. Published. 30.03.2023. Applicant Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Healthcare (In Russ.)].

14. Годзенко А.В., Петряйкин А.В., Морозов С.П. и др. Остеоденситометрия (Лучшие практики лучевой и инструментальной диагностики): Методические рекомендации. М.: Научно-практический центр медицинской радиологии, 2017. 26 с. [Godzenko A.V., Petryaykin A.V., Morozov S.P., et al. Osteodensitometriya (Luchshiye Praktiki Luchevoy i Instrumental’noy Diagnostiki) = Osteodensitometry (Best Practices of Radiation and Instrumental Diagnostics). Methodological Recommendations. Moscow, Scientific and Practical Center of Medical Radiology Publ., 2017. 26 p. (In Russ.)].

15. Васильев Ю.А., Владзимирский А.В., Артюкова З.Р. и др. Диагностика и скрининг остеопороза по результатам компьютерной томографии органов брюшной полости: Методические рекомендации // Серия «Лучшие практики лучевой и инструментальной диагностики». Вып.132. М.: Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ, 2023. 29 с. [Vasil’yev Yu.A., Vladzimirskiy A.V., Artyukova Z.R., et al. Diagnostika i Skrining Osteoporoza po Rezul’tatam Komp’yuternoy Tomografii Organov Bryushnoy Polosti = Diagnostics and Screening of Osteoporosis Based on the Results of Computed Tomography of the Abdominal Organs. Methodological Recommendations. Series “Best Practices in Radiation and Instrumental Diagnostics”. Issue 132. Moscow, Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Health of Moscow Publ., 2023. 29 p. (In Russ.)].

16. Крупин К.Н., Кислов М.А. Конечно-элементный анализ формирования локального остеопороза при хирургическом лечении в области перелома малоберцовой кости // Судебная медицина. 2020. Т.6. №3. C. 58-61 [Krupin K.N., Kislov M.A. Finite Element Analysis of the Formation of Local Osteoporosis During Surgical Treatment in the Area of a Fracture of the Fibula. Sudebnaya Meditsina = Forensic Medicine. 2020;6;3:58-61 (In Russ.)]. doi: 10.19048/fm327.

17. Васильев Ю.А., Семенов Д.С., Ахмад Е.С., Панина О.Ю., Сергунова К.А., Петряйкин А.В. Метод оценки влияния алгоритмов подавления артефактов от металлов в КТ на количественные характеристики изображений // Медицинская техника. 2020. №4. С. 43-45 [Vasil’yev Yu.A., Semenov D.S., Akhmad Ye.S., Panina O.Yu., Sergunova K.A., Petryaykin A.V. Method for Assessing the Impact of Metal Artifact Suppression Algorithms in Computed Tomography on Quantitative Image Characteristics. Meditsinskaya Tekhnika = Medical Equipment. 2020;4:43-45 (In Russ.)].

18. Bolstad K., Flatabo S., Aadnevik D., Dalehaug I., Vetti N. Metal Artifact Reduction in CT, a Phantom Study: Subjective and Objective Evaluation of Four Commercial Metal Artifact Reduction Algorithms when Used on Three Different Orthopedic Metal Implants. Acta Radiol. 2018;59;9:1110-1118. doi:10.1177/0284185117751278.

19. Shim E., Kang Y., Ahn J.M., et al. Metal Artifact Reduction for Orthopedic Implants (O-Mar): Usefulness in CT Evaluation of Reverse Total Shoulder Arthroplasty. American Journal of Roentgenology. 2017;209;4:860-866. doi:10.2214/ajr.16.17684.

20. Huang Jessie Y., Kerns James R., Nute Jessica L., et al. An Evaluation of Three Commercially Available Metal Artifact Reduction Methods for CT Imaging. Physics in Medicine and Biology. 2015;60;3:1047–1067. doi:10.1088/0031-9155/60/3/1047.

21. Feldhaus F.W., Böning G., Kahn J., et al. Improvement of Image Quality and Diagnostic Confidence Using Smart Mar – a Projection-Based CT Protocol in Patients with Orthopedic Metallic Implants in Hip, Spine, and Shoulder. Acta Radiologica. 2020;61;10:1421-1430. doi:10.1177/0284185120903446.

22. Andersson Karin M., Norrman Eva, Geijer Håkan, et al. Visual Grading Evaluation of Commercially Available Metal Artefact Reduction Techniques in Hip Prosthesis Computed Tomography. The British Journal of Radiology. 2016;89;1063:20150993. doi:10.1259/bjr.20150993.

23. Akdeniz Yucel, Yegingil Ilhami, Yegingil Zehra. Effects of Metal Implants and a Metal Artifact Reduction Tool on Calculation Accuracy of AAA and Acuros XB Algorithms in Small Fields. Medical Physics. 2019;46;11:5326-5335. doi:10.1002/mp.13819.

24. Li B., Huang J., Ruan J., et al. Dosimetric Impact of CT Metal Artifact Reduction for Spinal Implants in Stereotactic Body Radiotherapy Planning. Quant Imaging Med Surg. 2023;13;12:8290-8302. doi: 10.21037/qims-23-442.

25. Ziemann C., Stille M., Cremers F., et al. Improvement of Dose Calculation in Radiation Therapy Due to Metal Artifact Correction Using the Augmented Likelihood Image Reconstruction. Journal of Applied Clinical Medical Physics. 2018;19;3:227–233. doi:10.1002/acm2.12325.

26. Baer E., Schwahofer A., Kuchenbecker S., Haering P. Improving Radiotherapy Planning in Patients with Metallic Implants using the Iterative Metal Artifact Reduction (iMAR) Algorithm. Biomed Phys & Eng Express. 2015;1:025206. doi:10.1088/2057-1976/1/2/025206.

27. Ulmer W., Pyyry J., Kaissl W. A 3D Photon Superposition Convolution Algorithm and its Foundation on Results of Monte Carlo Calculations. Phys Med Biol. 2005;50:1767–90. doi: 10.1088/0031-9155/50/8/010.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. This paper was prepared by a group of authors as a part of the research  and development effort titled «Development of ahardware and software suite for opportunistic screening of osteoporosis» (USIS No.: 123031400007-7) in accordance with the Order No. 1196 dated December 21, 2022 «On approval of state assignments funded by means of allocations from the budget of the city of Moscow to the state budgetary (autonomous) institutions subordinate to the Moscow Health Care Department, for 2023 and the planned period of 2024 and 2025» issued by the Moscow Health Care Department.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.10.2024. Accepted for publication: 25.11.2024.

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2759504
Today
Yesterday
This week
Last week
This month
Last month
For all time
2235
3035
17888
18409
67247
75709
2759504

Forecast today
2280


Your IP:216.73.216.83