JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-35-39
M.V. Pustovalova1, V.D. Nekrasov1, E.V. Andreev3, 4, I.N. Fadeikina3, 4,
S.V. Leonov1, A.N. Nechaev3, 4, A.N. Osipov1
Synthesized Using β-Cyclodextrin Silver and Gold Nanoparticles
as Radiosensitizers in Breast Cancer Radiotherapy
1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
3 Joint Institute for Nuclear Research, Dubna, Russia
4 Dubna State University, Dubna, Russia
Contact person: A.N. Osipov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Purpose: 1) Synthesis and characterization of β-cyclodextrin stabilized silver and gold nanoparticles. 2) Evaluation of the effect of the synthesized nanoparticles on the severity of radiobiological effects in irradiated breast cancer (BC) cells.
Material and methods: Gold and silver nanoparticles were synthesized using β-cyclodextrin as a reducing agent and stabilizer. Human BC cell lines MDA-MB-231 (ER-/PR-/ EGFR+/ HER2-) and MCF7 (ER+/ PR+/ EGFR-/ HER2-) were used in the work. The cells were irradiated on a RUB RUST-M1 (Russia) X-ray irradiation facility, equipped with two X-ray emitters, at a dose rate of 0.85 mGy/min, 200 kV voltage, 5.0 mA current, 1.5 mm Al filter. Nanoparticles were added 24 h before irradiation at a concentration of 0.5 mg/l. Cells without nanoparticles were used as a control. To assess radiobiological effects, foci of the DNA damage marker protein (γH2AX) were analyzed 1 and 24 hours after irradiation. Statistical and mathematical data analysis was performed using GraphPad Prism 9.0.2.161 software (GraphPad Software). Statistical significance was assessed using analysis of variance (ANOVA).
Results: Effective radiosensitization of BC cell lines MDA-MB-231 and MCF7 using β-cyclodextrin stabilized gold and silver nanoparticles (AuNPs and AgNPs) was shown. The results obtained indicate the achievement of statistically significant results already at a concentration of 0.5 mg/l, which is at least 20 times less than the concentrations previously used to achieve a significant effect.
Keywords: breast cancer, radiation therapy, radiosensitizers, silver nanoparticles, gold nanoparticles, β-cyclodextrin
For citation: Pustovalova MV, Nekrasov VD, Andreev EV, Fadeikina IN, Leonov SV, Nechaev AN, Osipov AN. Synthesized Using β-Cyclodextrin Silver and Gold Nanoparticles as Radiosensitizers in Breast Cancer Radiotherapy. Medical Radiology and Radiation Safety. 2025;70(2):35–39. (In Russian). DOI:10.33266/1024-6177-2025-70-2-35-39
References
1. Arnold M., Morgan E., Rumgay H., Mafra A., Singh D., Laversanne M., et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast. 2022;66:15-23. doi: 10.1016/j.breast.2022.08.010.
2. Chen Y., Yang J., Fu S., Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2020;15:9407-30. doi: 10.2147/IJN.S272902.
3. Jackson N., Cecchi D., Beckham W., Chithrani D.B. Application of High-Z Nanoparticles to Enhance Current Radiotherapy Treatment. Molecules. 2024;29;11:24-38. doi: 10.3390/molecules29112438.
4. Khan M.J., Ahmad A., Zamzami M.A., Siddiqui S., Khan M.A. Bidirectional Approach of β-Cyclodextrin-Capped Silver Nanoparticles: Reduction in Toxicity and Enhancement in Antibacterial Activity. Clean Technologies and Environmental Policy. 2023;26;11:3955-64. doi: 10.1007/s10098-023-02618-9.
5. Osipov A., Chigasova A., Yashkina E., Ignatov M., Vorobyeva N., Zyuzikov N., et al. Early and Late Effects of Low-Dose X-ray Exposure in Human Fibroblasts: DNA Repair Foci, Proliferation, Autophagy, and Senescence. International Journal of Molecular Sciences. 2024;25;15:8253. doi: 10.3390/ijms25158253.
6. Osipov A.A., Chigasova A.K., Yashkina E.I., Ignatov M.A., Vorobyеva N.Y., Osipov A.N. Link Between Cellular Senescence and Changes in The Number and Size of Phosphorylated Histone H2ax Foci in Irradiated Human Fibroblasts. Medical Radiology and Radiation Safety. 2024;69;3:13-8. doi: 10.33266/1024-6177-2024-69-3-13-18.
7. Babayan N.S., Guryev D.V., Vorobyeva N.Y., Grigoryan B.A., Tadevosyan G.L., Apresyan L.S., et al. Colony-Forming Ability and Residual Foci of DNA Repair Proteins in Human Lung Fibroblasts Irradiated with Subpicosecond Beams of Accelerated Electrons. Bulletin of Experimental Biology and Medicine. 2021;172;1:22-5. doi: 10.1007/s10517-021-05323-z.
8. Van Oorschot B., Oei A.L., Nuijens A.C., Rodermond H., Hoeben R., Stap J., et al. Decay of Gamma-H2AX Foci Correlates with Potentially Lethal Damage Repair and P53 Status in Human Colorectal Carcinoma Cells. Cell Mol Biol Lett. 2014;19;1:37-51. doi: 10.2478/s11658-013-0113-0.
9. Sorokin M., Kholodenko R., Grekhova A., Suntsova M., Pustovalova M., Vorobyeva N., et al. Acquired Resistance to Tyrosine Kinase Inhibitors May be Linked with the Decreased sensitivity to X-ray Irradiation. Oncotarget. 2017;9;4:5111-24. doi: 10.18632/oncotarget.23700.
10. Olive P.L. Retention of γH2AX Foci as an Indication of Lethal DNA Damage. Radiotherapy and Oncology. 2011;101;1:18-23. doi: 10.1016/j.radonc.2011.05.055.
11. Saito K., McGehee K., Norikane Y. Size-Controlled Synthesis of Cyclodextrin-Capped Gold Nanoparticles for Molecular Recognition Using Surface-Enhanced Raman Scattering. Nanoscale Advances. 2021;3;11:3272-8. doi: 10.1039/d1na00125f.
12. Paramelle D., Sadovoy A., Gorelik S., Free P., Hobley J., Fernig D.G. A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles from UV-Visible Light Spectra. The Analyst. 2014;139;19:4855-4861. doi: 10.1039/c4an00978a.
13. Haiss W., Thanh N.T.K., Aveyard J., Fernig D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry. 2007;79;11:4215-21. doi: 10.1021/ac0702084.
14. Mirzayans R., Andrais B., Scott A., Wang Y.W., Weiss R.H., Murray D. Spontaneous Gammah2ax Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression. International Journal of Molecular Sciences. 2015;16;5:11609-28. doi: 10.3390/ijms160511609.
15. Merkher Y., Kontareva E., Bogdan E., Achkasov K., Maximova K., Grolman J.M., et al. Encapsulation and Adhesion of Nanoparticles as a Potential Biomarker for TNBC Cells Metastatic Propensity. Sci Rep. 2023;13;1:12289. doi: 10.1038/s41598-023-33540-1.
16. Thompson E.A., Graham E., MacNeill C.M., Young M., Donati G., Wailes E.M., et al. Differential Response of MCF7, MDA-MB-231, and MCF 10A Cells to Hyperthermia, Silver Nanoparticles and Silver Nanoparticle-Induced Photothermal Therapy. International Journal of Hyperthermia. 2014;30;5:312-23. doi: 10.3109/02656736.2014.936051.
17. Nosrati H., Salehiabar M., Charmi J., Yaray K., Ghaffarlou M., Balcioglu E., et al. Enhanced in Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles. ACS Applied Bio Materials. 2023;6;2:784-92. doi: 10.1021/acsabm.2c00965.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. Radiobiological research was carried out with the support of the Russian Science Foundation (project No. 24-45-20002, https://rscf.ru/project/24-45-20002 /). The synthesis and characterization of nanoparticles were performed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (No. 1024011000011-7-1.4.2;3.5.2 Conjugates of boron-containing quantum dots with biovectors for the diagnosis and boron-neutron capture therapy of superficial malignant tumors (FEEM-2024-0011)).
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.