JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2018. Vol. 63. No. 3. P. 44-51

NUCLEAR MEDICINE

DOI: 10.12737/article_5b179a86bf0387.39000853

Evaluating the Effectiveness of Somatostatin Receptors Scintigraphy with 111In-Octreotide in the Diagnosis of Neuroendocrine Tumors

A.A. Markovich, S.V. Shiryaev, M.O. Goncharov, A.S. Krylov, D.A. Komanovskaya, A.D. Ryzhkov

N.N. Blokhin National Medical Research Center of Oncology. Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.A. Markovich – PhD Med, Senior Researcher; S.V. Shiryaev – Dr. Sc. Med., Head of Lab., President of the OSMI, Member of the EANMMI, Member of the ACNMMI, Member of the SNMMI; M.O. Goncharov – Radiologist; A.S. Krylov – PhD Med., Radiologist, Member of the EANMMI; D.A. Komanovskaya – Radiologist; A.D. Ryzhkov – Dr. Sc. Med., Leading Researcher

Abstract

Purpose: Exploring methods to improve diagnosis of neuroendocrine tumors (NET) in different locations using somatostatin receptors scintigraphy with 111In-octreotide.

Material and methods: The study included 125 patients with NET in different locations. Activity of injected 111In-octreotide was 200–250 MBq (effective dose – 0.054 mSv/MBq), which allows to carry out a planar study as and single photon emission computed tomography. The study was performed after 24 hours on intravenous injection of indicator on the combined SPECT/CT machine Symbia T2 (Siemens, Germany).

Results: In the sample of patients, NET distribution by localization is indicated in Fig. 1. The results of the study with 111In-octreotide are presented in the form of scintigrams in the whole body scanning mode and in the form of single-photon emission computer tomograms combined with CT. To determine the effectiveness of scintigraphy with 111In-octreotide, after a visual evaluation of the scintigrams obtained, the number of positive and negative results of the study was calculated. A comparison was made with the data of other methods and the number of TP, TN, FP, and FN results was determined. Further, the characteristic parameters of the method studied were calculated to determine its effectiveness. The study of values of characteristic parameters showed that the sensitivity was 73 % (95 % CI: 63–83 %), specificity – 97 % (95 % CI: 88–100 %) accuracy is 79 % (95 % CI: 71–87 %). The value of the positive predictive value of 99 % (95 % CI: 94–100 %), the predictive value of negative results – 55 % (95 % CI: 40–70 %).

While the study shows a high frequency of TP results, while the frequencies of the TN and FN results are not significantly different (the average frequency of the FN results falls within the confidence interval for the frequency of the TN results). The method has a high value of the prognostic value of the positive result, which gives the right to assert about the high probability of the presence of a neuroendocrine neoplasm in obtaining a positive result. In the present study, no FP results were obtained due to the presence of concomitant diseases, in which accumulation of used radiopharmaceutical is possible, since the data on the presence of such diseases were taken into account in the analysis of scintigrams. The data obtained in this paper are in good agreement with the data obtained by other authors, as well as early Russian publications. It is worth noting that the data of domestic authors were obtained on a small sample, without specifying confidence intervals; the injected activity was less than in this study. In addition, the possibility of obtaining more information than using classical imaging methods (for SPECT/CT, the tissue with the pathological accumulation of 111In-octreotide appeared to be intact on CT), allows us to recommend the method as a method of choice in the diagnosis of NET of different localization.

Conclusions: The method of somatostatin receptors scintigraphy using domestic analogue of somatostatin in the diagnosis of NET has a high efficiency (efficiency of the method, calculated as the average value of the parameters of sensitivity and specificity of 85 % (95 % CI: 66–100 %).

Keу words: 111In-octreotide, neuroendocrine tumors, somatostatin receptor scintigraphy

REFERENCES

  1. Finnerty BM, Gray KD, Moore MD, et al. Epigenetics of gastroenteropancreatic neuroendocrine tumors: A clinicopathologic perspective. World J Gastrointest Oncol. 2017;9(9):341-53. DOI: 10.4251/wjgo.v9.i9.341.
  2. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia. 2017;19(12):991-1002. DOI: 10.1016/j.neo.2017.09.002.
  3. Gorbunova VA, Orel NF, Egorov GN, Kuzminov AE. Highly differentiated neuroendocrine tumors (carcinoids) and neuroendocrine tumors of the pancreas. A modern view of the problem. Moscow, Litterra; 2007. 104 p. Russian.
  4. Hemminki K, Li X. Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer. 2001;92(8):2204-10.
  5. Egorov AV, Kondrashin SA, Fominikh EV, et al. Analogs of Somatostatin in Diagnostics and Managements of Neuroendocrine Tumors. Annals of HPB surgery. 2009;14(4):71-8. Russian.
  6. Oberg K. Neuroendocrine Gastroenteropancreatic Tumours – current views on diagnosis and treatment. Eur Oncol Rev.; 2005. P. 1-6. Available from: https://www.iart.academy/images/letteratura/O/oberg.pdf.
  7. Simonenko VB. Neuroendocrine tumors. Moscow: Medicine; 2003. 216 p. Russian.
  8. Trakhtenberg AH, Frank GA, Pikin OV, et al. Neuroendocrine tumors of the lungs. Experience of diagnosis and treatment. Herald of the Moscow Cancer Society. 2010;11(572):3-5. Russian.
  9. Ni SJ, Sheng WQ, Du X. Pathologic research update of colorectal neuroendocrine tumors. World J Gastroenterol. 2010;16(14):1713-9.
  10. Yu R, Wachsman A. Imaging of Neuroendocrine Tumors: Indications, Interpretations, Limits, and Pitfalls. Endocrinol Metab Clin North Am. 2017;46(3):795-814. DOI: 10.1016/j.ecl.2017.04.008.
  11. Shiryaev SV. The possibilities of nuclear medicine in the diagnosis and therapy of neuroendocrine tumors. Effective pharmacotherapy. Oncology, Hematology and Radiology. 2010;(3):50-2. Russian.
  12. Solodotsky VA, Ivanova VV, Panshin GA, Stavitsky RV. Possibilities of using the radiopharmaceutical Octreotide 111In in oncological practice. Radiology-Practice. 2010;(4):42-8. Russian.
  13. Shiryaev SV, Odzharova AA, Orel NF, et al. Scintigraphy with 111In-octreotide in Diagnosis of Carcinoid Tumors of Different Location and Highly-differentiated Neuroendocrine Pancreatic Cancer. Medical Radiology and Radiation Safety. 2008;53(1):53-62. Russian.
  14. Rebrova OYu. Statistical analysis of medical data. Application of the STATISTICA software package. Moscow; 2002.312 p. Russian.
  15. Bombardieri E, Coliva A, Maccauro M, et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Quart J Nucl Med Mol Imaging. 2010;54(1):3-15.
  16. Kaltsas G, Korbonits M, Heintz E, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86(2):895-902. DOI: 10.1210/jcem.86.2.7194.
  17. Koopmans KP, Jager PL, Kema IP, et al. 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med. 2008;49(8):1232-7. DOI: 10.2967/jnumed.107.047738.
  18. Gnanasegaran G, O’Doherty MJ. Imaging neuroendocrine tumours with radionuclide techniques. Minerva Endocrinol. 2008;33(2):105-26.
  19. Lee ST, Kulkarni HR, Singh A, Baum RP. Theranostics of neuroendocrine tumors. Visc Med. 2017;33(5):358-66. DOI: 10.1159/000480383.
  20. Gay E, Vuillez JP, Palombi O, et al. Intraoperative and postoperative gamma detection of somatostatin receptors in bone-invasive en plaque meningiomas. Neurosurgery. 2005;57 Suppl 1:107-13.

For citation: Markovich AA, Shiryaev SV, Goncharov MO, Krylov AS, Komanovskaya DA, Ryzhkov AD. Evaluating the Effectiveness of Somatostatin Receptors Scintigraphy with 111In-Octreotide in the Diagnosis of Neuroendocrine Tumors. Medical Radiology and Radiation Safety. 2018;63(3):44-51. Russian. DOI: 10.12737/article_5b179a86bf0387.39000853

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2768347
Today
Yesterday
This week
Last week
This month
Last month
For all time
1293
2948
25438
25438
76090
75709
2768347

Forecast today
2064


Your IP:216.73.216.190