JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 3. P. 58–63

DOI: 10.12737/article_5cf3dfefe60b13.90120976

V.I. Chernov1, E.A. Dudnikova1, V.E. Goldberg1, T.L. Kravchuk1, A.V. Danilova1, R.V. Zelchan1, A.A. Medvedeva1, I.G. Sinilkin1, O.D. Bragina1, Yu.V. Belevich1, E.S. Koroleva2

Single-Photon Emission Computerized Tomography in the Diagnosis and Monitoring of Lymphomas

1. Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. Siberian State Medical University, Tomsk, Russia

V.I. Chernov – Head of Dep., Dr. Sci. Med., Prof.;
E.A. Dudnikova – Junior Researcher;
V.E. Goldberg – Head of the Dep., Dr. Sci. Med., Prof.;
T.L. Kravchuk – Hematologist, PhD Med.;
A.V. Danilova – Hematologist;
R.V. Zelchan – Radiologist, PhD Med.;
A.A. Medvedeva – Senior Researcher, PhD Med.;
I.G. Sinilkin – Senior Researcher, PhD Med.;
O.D. Bragina – Junior Researcher, PhD Med.;
Yu.V. Belevich – Junior Researcher;
E.S. Koroleva – Associate Professor, PhD Med.

Abstract

Despite the high efficiency of the use of 18F-FDG PET in the diagnosis, staging, monitoring and prognosis of treatment of lymphomas, the use of this method in our country is limited due to the high cost and the insufficient number of PET-centers. In this regard, it seems relevant to conduct research aimed at using known and developing original radiopharmaceuticals for lymphoma imaging with single-photon emission computed tomography (SPECT). In this review, the main radiopharmaceuticals (67Ga-citrate, 201Tl, 199Tl, 99mTc-methoxy-isobutyl-isonitrile, 99mTc-tetrofosmin, 111In-octreotide), which are possible for SPECT lymphoma imaging are shown. Also mechanisms of their action, the possibility of their using for various morphological variants of lymphomas and localizations of the lesion are described. In addition, the results of the use of an innovative radiopharmaceutical based on glucose – 99mTc-1-thio-D-glucose, which is promising for diagnostics, staging and monitoring of lymphoproliferative diseases, are presented.

REFERENCES

  1. Aslanidi IP, Mukhortova OV, Shurupova IV, Derevyanko EP, Katunina TA, Pivnik AV, Stroyakovskii DL. Positron emission tomography: refining the stage of the disease in malignant lymphomas. Clinical Oncohematology. Fundamental Research and Clinical Practice. 2010;3(2):119-29. (Russian).

  2. Chernov VI, Dudnikova EA, Goldberg VE, et al. Positron Emission Tomography in the Diagnosis and Monitoring of Lymphomas. Medical Radiology and Radiation Safety. 2018;63(6):42-50. (Russian).

  3. Front D, Israel O. Present state and future role of gallium-67 scintigraphy in lymphoma. J Nucl Med. 1996;37(3):530-2.

  4. Novikov SN, Girshovich MM. Diagnosis and staging of Hodgkin lymphoma. Problems of Tuberculosis and Lung Diseases. 2007;8(2):65-72.

  5. Kostakoglu L, Goldsmith S.J. Fluorine-18 fluorodeoxyglucose positron emission tomography in the staging and followup of lymphoma: is it time to shift gears? Eur J Nucl Med. 2000;27(10):1564-78.

  6. Palumbo B, Sivolella S, Palumbo I, et al. 67Ga-SPECT/CT with a hybrid system in the clinical management of lymphoma. Eur J Nucl Med and Molec Imaging. 2005;32(9):1011-7.

  7. Lin J, Leung WT, Ho SKW, et al. Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med. 1995;22(6):553-5.

  8. Haas RLM, Vald´es-Olmos RA, Hoefnagel CA, et al. Thallium-201-chloride scintigraphy in staging and monitoring radiotherapy response in follicular lymphoma patients. Radiother and Oncol. 2003;69(3):323-8.

  9. Kostakoglu L, Goldsmith SJ. Lymphoma imaging: nuclear medicine. Cancer Treatment and Research. 2006;131:363-412.

  10. Arbab AS, Koizumi K, Hiraike S, et al. Will thallium-201 replace gallium-67 in salivary gland scintigraphy? J Nucl Med. 1996;37(11):1819-23.

  11. Lorberboym M, Estok L, Machac J, et al. Rapid differential diagnosis of cerebral toxoplasmosis and primary central nervous system lymphoma by thallium-201 SPECT. J Nucl Med. 1996;37(7):1150-4.

  12. Lorberboym M, Wallach F, Estok L, et al. Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary lymphoma and nonmalignant lesions in AIDS patients. J Nucl Med. 1998;39(8):1366-9.

  13. Skiest DJ, Erdman W, Chang WE, et al. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infection. 2000;40(3):274-81.

  14. Lishmanov YuB, Chernov VI, Krivonogov NG, Glukhov GG, Maslova LV. Perfusion scintigraphy of myocrdium with 199Tl-chloride in the experiment. Med Radiology and Radiation Safety. 1988;33(3):13-6. (Russian).

  15. Lishmanov YuB, Chernov VI, Triss SV, Mazurin IYu. Scinti­graphy of the myocardium with thallium-199. Med Radiology. 1990(4):35-8. (Russian).

  16. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Experience of developing innovative radiopharmaceuticals in the Tomsk Research Institute of Oncology. Siberian Oncol J. 2015 (Application 2):45-7. (Russian).

  17. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Innovative radiopharmaceuticals for oncology: development of Tomsk National Research Medical Center. Malignant Tumors. 2017;7(S3):52-6. (Russian).

  18. Lishmanov YuB, Chernov VI, Krivonogov NG, Efimova IYu, Vesnina ZhV, Zavadovsky KV. Radionuclide research methods in diagnosis of cardiovascular diseases. Siberian Med J (Tomsk). 2010;25(4-1):8-13. (Russian).

  19. Karpov RS, Pavlyukova EN, Vrublevsky AV, Chernov VI, Usov VYu. Modern methods of diagnosing coronary atherosclerosis. Siberian Sci Med J. 2006;26(2):105-117. (Russian).

  20. Chernov VI, Garganeyeva AA, Vesnina ZhV, Lishmanov YuB. Perfusion scintigraphy of myocardium in evaluation of the results of course treatment with trimetazidine in patients with ischemic heart disease. Cardiology. 2001;41(8):14-6. (Russian).

  21. Titskaya AA, Chernov VI, Slonimskaya EM, Sinilkin IG. Imaging with 199Tl in the diagnosis of breast cancer. Siberian Oncol J. 2008(6):5-10. (Russian).

  22. Zelchan RV, Chernov VI, Medvedeva AA, Sinilkin IG, Bragina OD, Chizhevskaya SYu, Choinzonov EL. Use of single-photon emission computer tomography with 99mTc-MIBI and 199Tl-chloride in the diagnosis and evaluation of the efficacy of chemotherapy for primary and recurrent tumors of the larynx and larynx. Eurasian Cancer J. 2016;1(8):9-16. (Russian).

  23. Kostakoglu L, Elahi N, K¨ıratl¨ı P, et al. Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med. 1997;38(7):1003-8.

  24. Rodriguez C, Commes T, Robert J, Rossi J-F. Expression of P-glycoprotein and anionic glutathione S-transferase genes in non-Hodgkin’s lymphoma. Leukemia Res. 1993;17(2):149-56.

  25. Liu Q, Ohshima K, Kikuchi M. High expression ofMDR-1 gene and P-glycoprotein in initial and re-biopsy specimens of relapsed B-cell lymphoma. Histopathology. 2001;38(3):209-16.

  26. Piwnica-Worms D, Chiu M.L, Budding M, et al. Functional imaging of multidrugresistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53(5):977-84.

  27. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med. 1994;35(3):510-515.

  28. Song HC, Lee JJ, Bom HS, et al. Double-phase Tc-99m MIBI scintigraphy as a therapeutic predictor in patients with non-Hodgkin’s lymphoma. Clin Nucl Med. 2003;28(6):457-62.

  29. Kao CH, Tsai SC, Wang JJ, et al. Evaluation of chemotherapy response using technetium-99m-sestamibi scintigraphy in untreated adult malignant lymphomas and comparison with other prognosis. BioMed Research International 11 factors: a preliminary report. Int J Cancer. 2001;95(4):228-31.

  30. Liang JA, Shiau YC, Yang SN, et al. Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression. Oncol Reports. 2002;9(2):307-12.

  31. Lazarowski A, Dupont J, Fernández J, et al. 99mTechnetium-Sestamibi uptake inmalignant lymphomas. Correlation with chemotherapy response. Lymphatic Res Biol. 2006;4(1):23-8.

  32. Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34(2):222-7.

  33. Ding HJ, Shiau YC, Tsai SC, et al. Uptake of 99mTc tetrofosmin in lymphoma cell lines: a comparative study with 99mTc sestamibi. Appl Radiat Isotop. 2002 Vol. 56(6):853-6.

  34. Aigner RM, Fueger GF, Zinke W, Sill H. 99mTc-tetrofosmin scintigraphy in Hodgkin’s disease. Nucl Med Commun. 1997;18(3):252-7.

  35. Chernov VI, Bragina OD, Zelchan RV, Medvedeva AA, Sinilkin IG, Larkina MS, et al. Labeled analogues of somatostatin in the therapy of neuroendocrine tumors. Med Radiology and Radiation Safety. 2017;62(3):42-9. (Russian).

  36. Chernov VI, Bragina OD, Sinilkin IG, Medvedeva AA, Zelchan RV. Radionuclide theranostics of malignant tumors. Bull Roentgenol Radiol. 2016;97(5):306-13. (Russian).

  37. Ferone D, Semino C, Boschetti M, et al. Initial staging of lymphoma with octreotide and other receptor imaging agents. Sem Nucl Med. 2005;35(3):176-85.

  38. Valencak J, Trautinger F, Raderer M, et al. Somatostatin receptor scintigraphy in primary cutaneous T- and B-cell lymphomas. J Eur Acad Dermatol Venereol. 2010;24(1):13-7.

  39. Raderer M, Traub T, Formanek M, et al. Somatostatin receptor scintigraphy for staging and follow-up of patients with extraintestinal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT)-type. Brit J Cancer. 2001;85(10):1462-6.

  40. Raderer M, Valencak J, Pfeffel F, et al. Somatostatin receptor expression in primary gastric versus nongastric extranodal B-cell lymphoma of mucosa-associated lymphoid tissue type. J Nat Cancer Institute. 1999;91(8):716-8.

  41. Li S, Kurtaran A, Li M, et al. 111In-DOTA-DPhe1-Tyr3-octreotide. 111In-DOTA-lanreotide and 67Ga citrate scintigraphy for visualisation of extranodal marginal zone B-cell lymphoma of the MALT type: a comparative study. Eur J Nucl Med Molec Imaging. 2003;30(8):1087-95.

  42. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Stasyuk E, Rogov A, et al. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Conference Proceedings. 2016;P.020072-1-020072-4.

  43. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Bragina O, Stasyuk E, et al. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016;P. 012054.

  44. Zelchan RV, Medvedeva AA, Sinilkin IG, Bragina OD, Chernov VI, Stasyuk ES, et al. A study of the functional suitability of the tumor-neutral radiopharmaceutical 99mTc-1-tio-D-glucose in the experiment. Molecular Med . 2018;16(2):54-7. (Russian).

  45. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD. Development of radiopharmaceuticals for radionuclide diagnostics in oncology. Med Visualization. 2016(2):63-6 (Russian).

  46. Seidensticker M, Ulrich G, Muehlberg FL, et al. Tumor Cell Uptake of 99mTc-Labeled 1-Thio-β-D-Glucose and 5-Thio-D-Glucose in Comparison with 2-Deoxy-2-[18F]Fluoro-D-Glucose in vitro P. Kinetics, Dependencies, Blockage and Cell Compartment of Accumulation. Mol Imaging Biol. 2014(16):189-98.

  47. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121(1):29-40.

  48. Ong LC, Jin Y, Song IC, et al. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008;49(10):1145-53.

  49. Chernov VI, Dudnikova EA, Zelchan RV, et al. The first experience of using 99mTc-1-thio-D-glucose for single-photon emission computed tomography imaging of lymphomas. Siberian J Oncol. 2018;17 (4):81-7. DOI: 10.21294/1814-4861-2018-17-4-81-7. (Russian).

For citation: Chernov VI, Dudnikova EA, Goldberg VE, Kravchuk TL, Danilova AV, Zelchan RV, Medvedeva AA, Sinilkin IG, Bragina OD, Belevich YuV, Koroleva ES. Single-Photon Emission Computerized Tomography in the Diagnosis and Monitoring of Lymphomas. Medical Radiology and Radiation Safety. 2019;64(3):58-63. (Russian).

DOI: 10.12737/article_5cf3dfefe60b13.90120976

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2764425
Today
Yesterday
This week
Last week
This month
Last month
For all time
319
4471
22809
18409
72168
75709
2764425


Your IP:216.73.216.20