Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 2. P. 47-52

DOI: 10.12737/article_58f0b9573ddc88.95867893

On RET/PTC Rearrangements in Thyroid Carcinoma after the Chernobyl Accident

S.V. Jargin

Peoples’ Friendship University, Moscow. Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

S.V. Jargin – Associate Professor, PhD in Medicine

Abstract

A major part of thyroid cancer (TC) cases detected during the first 10 years after the Chernobyl accident were represented by papillary carcinoma with the solid pattern and gene rearrangements RET/PTC3. On the contrary, among TC diagnosed 10 years after the accident and later predominated RET/PTC1. Reportedly, RET/PTC3 are associated with more aggressive TC, a larger size and a higher tumor stage at the time of diagnosis. The prevalence of RET/PTC tended to decrease with time after the accident. The cohort of early post-Chernobyl TC with the predominance of RET/PTC3 was deemed globally unique. In the sporadic TC, RET/PTC1 is predominant. It should be mentioned that early post-Chernobyl TC are not unique globally but in more developed countries, where a majority of studies has been performed. In a TC cohort from India RET/PTC3 predominated. RET/PTC3 was more frequent among non-exposed TC patients from Ukraine compared to those who were from France. The prevalence of RET/PTC among pediatric TC after the Fukushima-1 accident has been low, while RET/PTC1 is predominating. According to the hypothesis discussed here, RET/PTC are associated with certain steps of the tumor progression of papillary TC, the RET/PTC3 – with a later step. It is therefore expected that the prevalence of RET/PTC3 would correlate with the disease duration. It was reported on correlations between the prevalence of RET/PTC and individual dose estimates. Correlations do not necessarily prove cause-effect relationships. The screening was more intensive on the more contaminated territories. Dose-dependent self-selection of patients could contribute to the correlations. Pediatric TC was rarely diagnosed prior to the accident on the contaminated territories. Accordingly, there was a pool of neglected TC. Besides, some non-exposed patients could have been registered as Chernobyl victims. The pool of neglected cases was gradually exhausted by the screening. Improving diagnostics has also contributed to the earlier TC detection. The RET/PTC dynamics were in accordance with this hypothesis: the prevalence of tumors with RET rearrangements declined, while among RET-positive TC the percentage of RET/PTC1 increased and RET/PTC3 – decreased. In conclusion, RET/PTC rearrangements in TC after the Chernobyl accident, the RET/PTC3 in particular, have probably been related to the disease duration, so that the features of successive waves of TC after the accident must have been largely determined by evolving modalities of screening and diagnostics, as well as by exhaustion of the pool of neglected cancers.

Key words: Ionizing radiation, Chernobyl, mutation, RET/PTC, thyroid carcinoma, cancer

REFERENCES

  1. Nikiforov Y.E. Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr. Pathol. 2006. Vol. 17. P. 307-317.
  2. Nikiforov Y.E., Nikiforova M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011. Vol. 7. P. 569-580.
  3. Lushnikov E.F., Cyb A.F., Yamasita S. Rak shchitovidnoj zhelezy v Rossii posle Chernobylya. Moscow: Medicina. 2006. (In Russ.).
  4. Cotran R.S., Kumar V., Robbins S.L. Robbins’ Pathologic Basis of Disease. Philadelphia: W.B. Saunders Co. 1994.
  5. Matsuu-Matsuyama M., Shichijo K., Okaichi K. et al. Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation. J. Radiat. Res. 2015. Vol. 56. P. 493-501.
  6. Walinder G. Late effects of irradiation on the thyroid gland in mice. I. Irradiation of adult mice. Acta Radiol. Ther. Phys. Biol. 1972. Vol. 11. P. 433-451.
  7. Lee W., Chiacchierini R.P., Shleien B., Telles N.C. Thyroid tumors following131 I or localized X irradiation to the thyroid and pituitary glands in rats. Radiat. Res. 1982. Vol. 92. P. 307-319.
  8. Mizuno T., Iwamoto K.S., Kyoizumi S. et al. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene. 2000. Vol. 19. P. 438-443.
  9. Ito T., Seyama T., Iwamoto K.S. et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 1993. Vol. 53. P. 2940-2943.
  10. Finn S.P., Smyth P., O’Regan E. et al. Array comparative genomic hybridisation analysis of gamma-irradiated human thyrocytes. Virchows Arch. 2004. Vol. 445. P. 396-404.
  11. Caudill C.M., Zhu Z., Ciampi R. et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 2364-2369.
  12. Nikiforov Y.E. Is ionizing radiation responsible for the increasing incidence of thyroid cancer?. Cancer 2010. Vol. 116. P. 1626-1628.
  13. Jargin S.V. Some aspects of mutation research after a low-dose radiation exposure. Mutat. Res. 2012. Vol. 749. P. 101-102.
  14. Jargin S.V. On the genetic effects of low-dose radiation. J. Environ. Occup. Sci. 2014. Vol. 3. P. 199-203.
  15. Jargin S.V. Chernobyl-related cancer and precancerous lesions: Incidence increase vs. late diagnostics. Dose Response. 2014. Vol. 12. P. 404-414.
  16. Jargin S.V. K voprosu o zavyshennoj ocenke medicinskih posledstvij avarii na CHAEHS: prichiny i mekhanizmy. Med. radiol. i radiac. bezopasnost’. 2011. Vol. 56. No. 5. P. 74-79. (In Russ.).
  17. Jargin S.V. On the RET rearrangements in Chernobyl-related thyroid cancer. J. Thyroid Res. 2012. Vol. 2012. Article 373879.
  18. Koterov A.N., Ushenkova L.N., Biryukov A.P., Samojlov A.S. Chastota gennyh perestroek RET/PTC v papillyarnyh karcinomah shchitovidnoj zhelezy v stranah mira v zavisimosti ot vremeni posle avarii na Chernobyl’skoj atomnoj ehlektrostancii (pooled-analiz). Med. radiol. i radiac. bezopasnost’. 2016. Vol. 61. No. 1. P. 5-19. (In Russ.).
  19. Viglietto G., Chiappetta G., Marchinez-Tello F.J. et al. RET-PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995. Vol. 11. P. 1207-1210.
  20. Tallini G., Santoro M., Helie M. et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res. 1998. Vol. 4. P. 287-294.
  21. Sugg S.L., Ezzat Sh., Rosen I.B. et al. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin. Endocrinol. Metab. 1998. Vol. 83. P. 4116-4122.
  22. Corvi R., Martinez-Alfaro M., Harach H.R. et al. Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab. Invest. 2001. Vol. 81. P. 1639-1645.
  23. Menicali E., Moretti S., Voce P. et al. Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front. Endocrinol. (Lausanne). 2012. Vol. 3. P. 67.
  24. Rhoden K.J., Johnson C., Brandao G. et al. Real-time quantitative RT-PCR identifies distinct c-RET, RET/PTC1 and RET/PTC3 expression patterns in papillary thyroid carcinoma. Lab. Invest. 2004. Vol. 84. P. 1557-1570.
  25. Gandhi M., Evdokimova V., Nikiforov Y.E. Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol. Cell. Endocrinol. 2010. Vol. 321. P. 36-43.
  26. Pfeifer J.D. Molecular genetic testing in surgical pathology. Lippincott: Philadelphia. 2006.
  27. DeLellis R.A., Shin S.J., Treaba D.O. Immunohistology of endocrine tumors. In: Diagnostic immunohistochemistry: Theranostic and Genomic Applications. Dabbs D.J., ed. 3rd edition - Saunders-Elsevier. Philadelph. 2010. P. 291-339.
  28. Unger K., Zitzelsberger H., Salvatore G. et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004. Vol. 89. P. 4272-4279.
  29. Yip L., Nikiforova M.N., Yoo J.Y. et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann. Surg. 2015. Vol. 262. P. 519-525.
  30. Romei C., Elisei R. RET/PTC Translocations and clinico-pathological features in human papillary thyroid carcinoma. Front. Endocrinol. (Lausanne). 2012. Vol. 3. P. 54.
  31. Prescott J.D., Zeiger M.A. The RET oncogene in papillary thyroid carcinoma. Cancer. 2015. Vol. 121. P. 2137-2146.
  32. Rabes H.M., Demidchik E.P., Sidorow J.D. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 2000. Vol. 6. P. 1093-1103.
  33. Trovisco V., Soares P., Preto A. et al. Molecular genetics of papillary thyroid carcinoma: great expectations. Arq. Bras. Endocrinol. Metabol. 2007. Vol. 51. P. 643-653.
  34. Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene. 2008. Vol. 27 Suppl 2. P. S9-S18.
  35. Bongarzone I., Vigneri P., Mariani L. et al. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin. Cancer Res. 1998. Vol. 4. P. 223-228.
  36. Stsjazhko V.A., Tsyb A.F., Tronko N.D. et al. Childhood thyroid cancer since accident at Chernobyl. BMJ. 1995. Vol. 310. P. 801.
  37. Parkin D.M., Kramárová E., Draper G.J. et al. International incidence of childhood cancer. IARC Scientific Publication 144. IARC Press. Lyon. 1999.
  38. Fridman M.V., Man’kovskaya S.V., Kras’ko O.V., Demidchik Yu.E. Kliniko-morfologicheskie osobennosti papillyarnogo raka shchitovidnoj zhelezy u detej i podrostkov v respublike Belarus’. Vopr. onkol. 2014. No. 2. P. 43-46. (In Russ.).
  39. Balonov M.I. Medicinskie i ehkologicheskie posledstviya Chernobyl’skoj avarii v doklade NKDAR OON (2008): uroki dlya reagirovaniya na yadernye avarii. Med. radiol. i radiac. bezopasnost’. 2011. Vol. 56. No. 6. P. 15-23. (In Russ.).
  40. UNSCEAR 2008 Report. Sources and Effects of Ionizing Radiation. Annex D. Health effects due to radiation from the Chernobyl accident. New York: United Nations.
  41. UNSCEAR 1994 Report. Sources and Effects of Ionizing Radiation. Annex A. Epidemiological studies of radiation carcinogenesis. New York: United Nations.
  42. Jaworowski Z. Observations on the Chernobyl disaster and LNT. Dose Response. 2010. Vol. 8. P. 148-171.
  43. Demidchik Y.E., Saenko V.A., Yamashita S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq. Bras. Endocrinol. Metabol. 2007. Vol. 51. P. 748-762.
  44. Zvonova I.A., Bratilova A.A., Pochtennaya G.T., Petrova G.V. Rak shchitovidnoj zhelezy u zhitelej Bryanskoj oblasti posle avarii na CHAEHS. Vopr. onkol. 1995. No. 5. P. 540-545. (In Russ.).
  45. Tronko M.D., Bogdanova T.I., Komissarenko I.V. et al. Thyroid carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident: statistical data and clinicomorphologic characteristics. Cancer. 1999. Vol. 86. P. 149-156.
  46. Williams E.D., Abrosimov A., Bogdanova T. et al. Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Brit. J. Cancer. 2004. Vol. 90. P. 2219-2224.
  47. Jargin S.V. Thyroid carcinoma in children and adolescents resulting from the Chernobyl accident: possible causes of the incidence increase overestimation. Cesk. Patol. 2009. Vol. 45. P. 50-52.
  48. Vuong H.G., Altibi A.M., Abdelhamid A.H. et al. The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget. 2016. doi: 10.18632/oncotarget.12885
  49. Mitsutake N., Fukushima T., Matsuse M. et al. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Sci. Rep. Vol. 5. Article 16976.
  50. Koterov A.N., Ushenkova L.N., Biryukov A.P. Zavisimosti doza-ehffekt dlya chastoty gennyh perestroek RET/PTC v papillyarnyh karcinomah shchitovidnoj zhelezy posle oblucheniya. Ob»edinennyj analiz radiacionno-ehpidemiologicheskih dannyh. Radiac. biologiya. Radioehkologiya. 2016. Vol. 56. No. 1. P. 5-25. (In Russ.).
  51. Tuttle R.M., Lukes Y., Onstad L. et al. RET/PTC activation is not associated with individual radiation dose estimates in a pilot study of neoplastic thyroid nodules arising in Russian children and adults exposed to Chernobyl fallout. Thyroid 2008. Vol. 18. P. 839-846.
  52. Jargin S.V. Preuvelichennaya ocenka medicinskih posledstvij povysheniya radiacionnogo fona. Med. radiol. i radiac. Bezopasnost’. 2008. Vol. 53. No. 3. P. 17-22. (In Russ.).
  53. McGeoghegan D., Binks K., Gillies M. et al. The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946-2005. Int. J. Epidemiol. 2008. Vol. 37. P. 506-518.
  54. Zablotska L.B., Bazyka D., Lubin J.H. et al. Radiation and the risk of chronic lymphocytic and other leukemias among chornobyl cleanup workers . Environ. Health Perspect 2013. Vol. 121. P. 59-65.
  55. Leeman-Neill R.J., Brenner A.V., Little M.P. et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013. Vol. 119. P. 1792-1799.
  56. Hamatani K., Eguchi H., Ito R. et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 2008. Vol. 68. P. 7176-7182.
  57. Nakachi K., Hayashi T., Hamatani K. et al. Sixty years of follow-up of Hiroshima and Nagasaki survivors: current progress in molecular epidemiology studies. Mutat. Res. 2008. Vol. 659. P. 109-117.
  58. Nikiforov Y.E. Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab. Med. 2011. Vol. 135. P. 569-577.
  59. Rao P.J., Vardhini N.V., Parvathi M.V. et al. Prevalence of RET/PTC1 and RET/PTC3 gene rearrangements in Chennai population and its correlation with clinical parameters. Tumour Biol. 2014. Vol. 35. P. 9539-9548.
  60. Di Cristofaro J., Vasko V., Savchenko V. et al. RET/PTC1 and RET/PTC3 in thyroid tumors from Chernobyl liquidators: comparison with sporadic tumors from Ukrainian and French patients. Endocr. Relat Cancer. 2005. Vol. 12. P. 173-183.
  61. Romei C., Fugazzola L., Puxeddu E. et al. Modifications in the papillary thyroid cancer gene profile over the last 15 years. J. Clin. Endocrinol. Metab. 2012. Vol. 97. P. E1758-E1765.
  62. Jung C.K., Little M.P., Lubin J.H. et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 2014. Vol. 99. P. E276-E285.
  63. Leboulleux S., Baudin E., Hartl D.W. et al. Follicular cell-derived thyroid cancer in children. Horm. Res. 2005. Vol. 63. P. 145-151.
  64. Suzuki K., Mitsutake N., Saenko V., Yamashita S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis. Cancer Sci. 2015. Vol. 106. P. 127-133.
  65. Jarzab B., Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease?. Hormones (Athens). 2007. Vol. 6. P. 200-209.
  66. Akulevich N.M., Saenko V.A., Rogounovitch T.I. et al. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr. Relat. Cancer. 2009. Vol. 16. P. 491-503.

For citation: On RET/PTC Rearrangements in Thyroid Carcinoma after the Chernobyl Accident. Medical Radiology and Radiation Safety. 2017;62(2):47-52. Russian. DOI: 10.12737/article_58f0b9573ddc88.95867893

PDF (RUS) Full-text article (in Russian)