Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 27-35


B.Ja. Narkevich1,2, Yu.V. Lysak3,4

Radiation Safety in the Ambulatory Use of Therapeutic Radiopharmaceuticals<

1. Institute of Medical Physics and Engineering, Moscow, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. N.N. Blokhin Cancer Research Center of RAMS, Moscow; 3. National Research Nuclear University MEPhI, Moscow; 4. Russian Scientific Center of Radiology and Nuclear Medicine, Moscow


Purpose: To determine the feasibility of the use of therapeutic radiopharmaceuticals (RN) in ambulatory mode without hospitalization for radionuclide therapy.

Material and methods: We performed computational studies of radiation safety of individuals from the population being in contact with the patient, which received particular therapeutic radiopharmaceuticals labeled with one of 19 β-γ-emitting radionuclides or one of 4 β-emitting radionuclides or one of 6 α-β-γ-emitting radionuclides in ambulatory mode. Criterion validity outpatient regimen is the effective dose of external exposure of these persons. Based on the dose limit for the population installed by NRB-99/2009, the maximum permissible activity of these radionuclides for various geometries and standard time exposure scenario was calculated.

Results and conclusions: It is shown that even for conservative exposure conditions outpatient mode of application is quite valid for all therapeutic radiopharmaceuticals labeled with any of these radionuclides, with the exception only for radiopharmaceuticals labeled with 131I.

Key words: radionuclide therapy, therapeutic radiopharmaceuticals, outpatient mode of application, radiation safety


  1. Normy radiatsionnoi bezopasnosti (NRB-99/2009). SP (In Russ.).
  2. Release of Patients after Therapy with Unsealed Radionuclides. Recommendation of the ICRP Publication 94. Annals of the ICRP. 2004. Vol. 34. No. 2. 80 p.
  3. IAEA Publication 1417. Release of Patients after Radionuclide Therapy. Safety Reports Series No. 63. IAEA, Vienna. 2009.
  4. Balonov M.I., Golikov V.Yu., Zvonova I.A. Radiologicheskie kriterii vypiski patsienta iz kliniki posle radionuklidnoi terapii ili brakhiterapii s implantatsiei zakrytykh istochnikov // Radiatsionnaya gigiena. 2009. Vol. 2. No. 4. P. 5-9. (In Russ.).
  5. Narkevich B.Ya., Zinov'eva N.P. Urovni oblucheniya otdel'nykh lits iz naseleniya ot patsientov s vvedennymi radiofarmpreparatami. Medical Radiology and Radiation Safety. 2002. Vol. 47. No. 1. P. 27-33. (In Russ.).
  6. Shishkanov N.G., Bakun Yu.M., Roziev R.A. O radiatsionnoi bezopasnosti otdel nykh lits iz naseleniya pri obshchenii s patsientami, proshedshimi kurs radioiodoterapii. Medical Radiology and Radiation Safety. 2001. Vol. 46. No. 5. P. 34-46. (In Russ.).
  7. Narkevich B.Ya., Shiryaev S.V., Klepov A.N., Lysak Yu.V. Radiatsionno-gigienicheskoe obosnovanie radionuklidnoi terapii v ambulatornom rezhime. Radiatsionnaya gigiena. 2014. No. 2. P. 26-38. (In Russ.).
  8. Consolidated Guidance about Materials Licensees. Rep. NUREG-1556: Nuclear Regulatory Commission. Washington, DC, 2008. Vol. 9. 28 p.
  9. ICRU Report 57. Conversion Coefficients for Use in Radiological Protection against External Radiation. 1998. 137 p.
  10. Gusev N.G., Kovalev E.E., Osanov D.P., Popov V.I. Zashchita ot izlucheniya protyazhennykh istochnikov. Moscow: Gosatomizdat. 1961. 250 p. (In Russ.).
  11. Mashkovich V.P., Kudryavtseva A.V. Zashchita ot ioniziruyushchikh izluchenii: spravochnik. Moscow: Energoatomizdat. 1995. 496 p. (In Russ.).
  12. ICRP Publication 107. Nuclear Decay Data for Dosimetric Calculations. Annals of the ICRP. Vol. 38. No. 3. P. 7-96.
  13. Neves M., Teixeira F.C., Antunes I. et al. Chemical and biological evaluation of 153Sm and 46/47Sc complexes of indazolebisphosphonates for targeted radiotherapy. Appl. Radiat. Isotopes. 2011. Vol. 69. No. 1. P. 80-84.
  14. Novak-Hofer I., Schubiger P.A. Copper-67 as a therapeutic nuclide for radimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2002. Vol. 29. No. 6. P. 821-830.
  15. Lewington V.J. Bone-seeking radionuclides for therapy. J. Nucl. Med. 2005. Vol. 46. No. 1. Suppl. P. 38S-47S.
  16. Fondell A. Two-step targeting for effective radionuclide therapy. Preclinical evaluation of 125I-labelling anthracycline delivered by tumor targeting liposomes. Dis. Ph.D., Uppsala Univ. 2011.
  17. Gerard S.K., Park H.M. 131I dosimetry and thyroid stunning. J. Nucl. Med. 2003. Vol. 44. No. 12. P. 2039-2040.
  18. Pinch C., Pilger A., Schwameis E. et al. Radiation synovectomy using 165Dy ferric-hydroxide and oxidative DNA damage in patients with different types of arthritis. J. Nucl. Med. 2000. Vol. 41. No. 2. P. 250-257.
  19. Valkema R., deJong M., Bakker W.H. et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA]octreotide: the Rotterdam experience. Seminars Nucl. Med. 2002. Vol. 32. No. 2. P. 110-122.
  20. Giralt S., Bensinger W., Goodman N. et al. 166Ho-DOTPM plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood. 2003, 102. No. 7. P. 2684-2691.
  21. Das T., Chakraborty S., Sarma H.D. et al. 170Tm-EDTMP: a potential cost-effective alternative 89SrCl2 for bone pain palliation. Nucl. Med. Biol. 2009. Vol. 36. No. 5. P. 561-568.
  22. Ando A., Takeshita M., Ando I. et al. Study of subcellular distribution of 169Yb and 111In in tumor and liver. Radioisotopes, 1977. Vol. 26. No. 3. P. 169-174.
  23. Chakraborty S., Das T., Banerjee Sh. et al. 175Yb labeled hydroxyapatite: a potential agent for use in radiation synovectomy of small joints. Nucl. Med. Biol. 2006. Vol. 33. No. 4. P. 585-591.
  24. Bakker W.H., Breeman N.A., Kwekkeboom D.J. et al. Practical aspects of peptide receptor radionuclide therapy 177Lu-[DOTA0,Tyr3]octreotat. Q. J. Nucl. Med. Imaging, 2006. Vol. 50. No. 4. P. 265-271.
  25. Kannan R., Zambre A., Chanda N. et al. Functionalized radioactive gold nanoparticles in tumor therapy. Nanomedicine and Nanobiotechnology. 2011. Vol. 4. No. 1. P. 42-51.
  26. Abrams P.G., Fritzberg A.R. Radioimmunotherapy of Cancer. New York: CRC Press. 2000. 416 p.
  27. Zalutsky M.R., Reardon D.A, Bigner D.D. Targeted α-particle radiotherapy with 211At labeled monoclonal antibodies. Nucl. Med. Biol. 2007. Vol. 34. No. 7. P. 779-785.
  28. Miao Y., Hylarides M., Fisher D.R. et al. Melanoma therapy via peptide-targeted alpha radiation. Clin. Cancer Res. 2005. Vol. 11. No. 15. P. 5615-5621.
  29. Yong K., Brechbiel M.W. Towards of 212Pb as a clinical therapeutic; getting the lead in. Dalton Trans. 2011. Vol. 40. No. 23. P. 6068-6076.
  30. Sartor O., Maalouf B.N., Hauck C.R., Macklis R.M. Targeted use of alpha particles: current status in cancer Nucl. Med. Radiat. Ther. 2012. Vol. 3. No. 4. P. 1000136, 8 p.
  31. Miederer M., Scheinberg D.A., McDevitt M.R. Realizing the potential of actinium-225 radionuclide generator in targeted alpha-particle therapy application. Adv. Drug Deliv. Rev. 2008. Vol. 60. No. 12. P. 1371-1382.
  32. Allen B.J. Systemic targeted alpha radiotherapy for cancer. Radiats. onkologiya i yadernaya meditsina. 2013. No. 2. P. 82-98.
  33. Mukhopadhyay B., Mukhopadhyay K. Application of the carrier free radioisotopes of second transition series elements in the field of nuclear medicine. J. Nucl. Med. Ther. 2011. Vol. 2. No. 2. P. 1000115, 9 p.
  34. Hillegonds D.J., Franklin S., Shelton D.K. et al. The management of painful bone metastases with an emphasis on radionuclide therapy. J. Natl. Med. Assoc. 2007. Vol. 99. No. 7. P. 785-794.
  35. Kucuk O.N., Soydal C., Lacin S. et al. Selective intraarterial radionuclide therapy with 90Y microspheres for unresectable primery and metastatic liver tumors. World J. Surg. Oncol. 2011. Vol. 9. No. 1. P. 86-96.
  36. Rajendran J.G. Therapeutic Radioisotopes. In: Nuclear Medicine Therapy. Ed. by F. Eary, W. Brenner. New York, London: Informa Healthcare. 2007. 195 p.
  37. Ehrhardt G.I., Volkert W., Goekeler W.F., Kapsch D.N. A new Cd-115 leads to In-115m radionuclide generator. J. Nucl. Med. 1983. Vol. 24. No. 4. P. 342-352.
  38. Khabriev R.U. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh form farmakologicheskikh veshchestv. Moscow: Meditsina. 2005. (In Russ.).
  39. Lubin E. Definitive improvement in the approach to the treated patient as a radioactive source. J. Nucl. Med. 2002. Vol. 43. P. 364-365.
  40. Gigienicheskie trebovaniya po obespecheniyu radiatsionnoi bezopasnosti pri provedenii luchevoi terapii s pomoshch yu otkrytykh radionuklidnykh istochnikov. SanPiN Moscow, Federal nyi tsentr gigieny i epidemiologii Rospotrebnadzora. 2009. 74 p. (In Russ.).
  41. Osnovnye sanitarnye pravila obespecheniya radiatsionnoi bezopasnosti OSPORB 99/2010. Sanitarnye pravila i normativy SP (v red. izmenenii No. 1, utv. postanovleniem Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 16.09.2013 No. 43). (In Russ.).
  42. Neves M., Kling A., Oliveira A. Radionuclides used for therapy and suggestion for new candidates. J. Radioanalyt. Nucl. Chem. 2005. Vol. 266. No. 3. P. 377-384.

For citation: Narkevich BJa, Lysak YuV. Radiation Safety in the Ambulatory Use of Therapeutic Radiopharmaceuticals. Medical Radiology and Radiation Safety. 2015;60(4):27-35. Russian.

PDF (RUS) Full-text article (in Russian)