Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 6. P. 82–87

DOI: 10.12737/1024-6177-2019-64-6-82-87

I.A. Znamenskiy1,2, A.K. Kondakov1,2, D.Yu. Mosin1, P.A. Nikitin1, A.V. Sozykin1,2, A.M. Filimonova1, M.M. Beregov2

Positron Emission Tomography with Rubidium-82 in Myocardial Perfusion Imaging

1. Central Clinical Hospital, Moscow, Russia;
2. N.I. Pirogov Russian National Medical Research University, Moscow, Russia.
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

I.A. Znamensky – Head of Dep., Dr. Sci. Med.;
A.K. Kondakov – Nuclear Medicine Physician;
D.Yu. Mosin – Nuclear Medicine Physician;
P.A. Nikitin – Radiologist;
A.V. Sozykin – Head of Dep., Prof., Dr. Sci. Med.;
A.M. Filimonova – Head of Dep., PhD Med.;
M.M. Beregov – Resident

Abstract

This review considers literature sources on myocardial perfusion studies using positron emission tomography with rubidium-82. The history of the development of the method, the protocols of the study, the dissymmetric data are analyzed, and comparisons are made with other positron emitters that are used in clinical practice and research to study myocardial blood supply. The use of PET/CT with rubidium-82 makes it possible to obtain valuable diagnostic information and it allows to measure myocardial blood directly and make a separate assessment of the coronary arteries function. Due to the fact that the production of rubidium-82 does not require an on-site cyclotron and a radiochemical laboratory, this method of imaging is more accessible than other positron emitters used for the same purpose. Also, the study is not associated with significant discomfort for the patient, since the full stress/rest imaging protocol requires less than half an hour. However, the use of rubidium-82 has a number of drawbacks, including the relatively low sharpness of the resulting image due to the high energy of the emitting positrons. Also there is a necessity for a mathematical correction of the roll-off phenomenon, which is a decrease in radiopharmaceutical extraction with an increase in myocardial blood flow. Due to the short half-life period, the provision of stress tests with ergometers is difficult. It needed to use pharmacological stress tests. In addition, usage of rubidium-82 is characterized by a high cost both due to the expensive production of the parent isotope, strontium-82, and the need for frequent replacement of generators – on average, 11 to 13 times a year.

Key words: positron emission tomography, PET/CT, myocardial perfusion, rubidium-82, radionuclide generator 82Sr/82Rb

REFERENCES

1. WHO. World Health Organization, 2015. [cited 2019 Jan 15]; Available from: https://www.who.int/cardiovascular_diseases/ru/
2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017 Jul 4;70(1):1-25. DOI: 10.1016/j.jacc.2017.04.052
3. Cassar A, Holmes DR, Rihal CS, Gersh BJ. Chronic Coronary Artery Disease: Diagnosis and Management. Mayo Clin Proc. 2009 Dec; 84(12):1130-46. DOI: 10.4065/mcp.2009.0391
4. Russ M, Werdan K, Cremer J, Krian A, Meinertz T, Zerkowski H-R. Different treatment options in chronic coronary artery disease: when is it the time for medical treatment, percutaneous coronary intervention or aortocoronary bypass surgery? Dtsch Arztebl Int. 2009 Apr; 106(15):253-61. DOI: 10.3238/arztebl.2009.0253
5. Ramjattan NA, Makaryus AN. Coronary CT Angiography. StatPearls. 2018.
6. Mordi I, Badar A, Irving R, Weir-McCall J, Houston G, Lang C. Efficacy of noninvasive cardiac imaging tests in diagnosis and management of stable coronary artery disease. Vasc Health Risk Manag. 2017 Nov; 13:427-37.
7. Einstein AJ, Knuuti J. Cardiac imaging: does radiation matter? Eur Heart J. 2012 Mar 1;33(5):573-8. DOI: 10.1093/eurheartj/ehr281
8. Ryzhkova DV, Salakhova AR. Technical advances and clinical application of cardiac positron emission tomography for myocardial perfusion assessment as a stand alone technique and having been integrated in the hybrid imaging systems // Translation Medicine. 2015;(5):113-22. (In Russian).
9. Vaquero JJ, Kinahan P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng. 2015 Dec 7;17(1):385-414. DOI: 10.1146/annurev-bioeng-071114-040723
10. Chatal J-F, Rouzet F, Haddad F, Bourdeau C, Mathieu C, Le Guludec D. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging. Front Med. 2015 Sep 11;2:65. DOI: 10.1146/annurev-bioeng-071114-040723
11. Hagemann CE, Ghotbi AA, Kjær A, Hasbak P. Quantitative myocardial blood flow with rubidium-82 PET: a clinical perspective. Am J Nucl Med Mol Imaging. 2015;5(5):457-68.
12. Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging—From basic aspects to clinical applications. J Cardiol. 2010 Mar;55(2):163-73. DOI: 10.1016/j.jjcc.2010.01.001
13. Yano Y, Chu P, Budinger TF, Grant PM, Ogard AE, Barnes JW, et al. Rubidium-82 generators for imaging studies. J Nucl Med. 1977 Jan;18(1):46-50.
14. Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. Br Med Bull. 2013 Sep 1;107(1):87-100. DOI: 10.1093/bmb/ldt026
15. Love WD, Romney RB, Burch GE. A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium. Circ Res. 1954 Mar;2(2):112-22.
16. Kilpatrick R, Renschler HE, Munro DS, Wilson GM. A comparison of the distribution of 42K and 86Rb in rabbit and man. J Physiol. 1956 Jul 27;133(1):194-201. DOI: 10.1113/jphysiol.1956.sp005577
17. Threefoot SA, Ray CT, Burch GE. Study of the use of 86Rb as a tracer for the measurement of 86Rb and 39K space and mass in intact man with and without congestive heart failure. J Lab Clin Med. 1955 Mar 1;45(3):395-407. DOI: 10.5555/URI:PII:0022214355900081
18. Ray CT, Threefoot SA, Burgh GE. The excretion of radiorubidium, 86Rb, radiopotassium, 42K, and potassium, sodium, and chloride by man with and without congestive heart failure. J Lab Clin Med. 1955 Mar 1:408-30. DOI: 10.5555/URI:PII:0022214355900093
19. Love WD, Burch GE. Influence of the Rate of Coronary Plasma Flow on the Extraction of 86Rb from Coronary Blood. Circ Res. 1959 Jan;7(1):24-30. Available from: DOI: 10.1161/01.RES.7.1.24
20. Yano Y, Anger HO. Visualization of heart and kidneys in animals with ultrashort-lived 82Rb and the positron scintillation camera. J Nucl Med. 1968 Jul;9(7):413–5.
21. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A Positron-Emission Transaxial Tomograph for Nuclear Imaging (PETT). Radiology. 1975 Jan 1;114(1):89–98. DOI: 10.1148/114.1.89
22. Selwyn AP, Allan RM, L’Abbate A, Horlock P, Camici P, Clark J, et al. Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol. 1982;50(1):112-21.
23. Tyutin LA, Zhuikov WL, Kostenikov NA, et al. 82Sr/82Rb-generator and its clinical application. Medical physics. International scientific-practical conference “Adron medicine and nuclear therapy.” October 05-07, 2015 St. Petersburg. 2016;(2):56-7 (In Russian).
24. Kostenikov NA, Tyutin LA, Zhujkov BL, et al. 82Sr/82Rb-generator and perspectives for its use in neurooncology. Diagnostic Radiology and Radiotherapy. 2017;(3):5-13. (In Russian.) DOI: 10.22328/2079-5343-2017-3-5-13
25. Germino M, Ropchan J, Mulnix T, Fontaine K, Nabulsi N, Ackah E, et al. Quantification of myocardial blood flow with 82Rb: Validation with 15O-water using time-of-flight and point-spread-function modeling. EJNMMI Res. 2016 Dec;6(1):68. DOI: 10.1186/s13550-016-0215-6
26. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien HA, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med. 1983 Oct;24(10):898-906.
27. Mullani NA, Gould KL. First-pass measurements of regional blood flow with external detectors. J Nucl Med. 1983 Jul;24(7):577-81.
28. Hsu B. PET tracers and techniques for measuring myocardial blood flow in patients with coronary artery disease. J Biomed Res. 2013 Nov;27(6):452-9. DOI: 10.7555/JBR.27.20130136
29. Kelion A, Arumugam P, Sabharwal N. Nuclear Cardiology (Oxford Specialist Handbooks in Cardiology). Vol. 1. Oxford University Press; 2017. DOI: 10.1093/med/9780198759942.001.0001
30. Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, et al. Relative Flow Reserve Derived From Quantitative Perfusion Imaging May Not Outperform Stress Myocardial Blood Flow for Identification of Hemodynamically Significant Coronary Artery Disease. Circ Cardiovasc Imaging. 2015 Jan;8(1). DOI: 10.1161/circimaging.114.002400
31. Chow BJW, Ananthasubramaniam K, deKemp RA, Dalipaj MM, Beanlands RSB, Ruddy TD. Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol. 2005 Apr 19;45(8):1227-34. DOI: 10.1016/j.jacc.2005.01.016
32. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC. Diagnostic Performance of Positron Emission Tomography in the Detection of Coronary Artery Disease. Acad Radiol. 2008 Apr;15(4):444-51. DOI: 10.1016/j.acra.2007.08.012
33. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic Performance of Noninvasive Myocardial Perfusion Imaging Using Single-Photon Emission Computed Tomography, Cardiac Magnetic Resonance, and Positron Emission Tomography Imaging for the Detection of Obstructive Coronary Artery Disease. J Am Coll Cardiol. 2012 May 8;59(19):1719-28. DOI: 10.1016/j.jacc.2011.12.040
34. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does Rubidium-82 PET Have Superior Accuracy to SPECT Perfusion Imaging for the Diagnosis of Obstructive Coronary Disease? J Am Coll Cardiol. 2012 Oct 30;60(18):1828-37. DOI: 10.1016/j.jacc.2012.07.038
35. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med. 2003 Feb;44(2):146-54.
36. Dunet V, Klein R, Allenbach G, Renaud J, deKemp RA, Prior JO. Myocardial blood flow quantification by 82Rb cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs. J Nucl Cardiol. 2016;23(3):499-510. DOI: 10.1007/s12350-015-0151-2
37. Schleipman A, Castronovojr F, Dicarli M, Dorbala S. Occupational radiation dose associated with 82Rb myocardial perfusion positron emission tomography imaging. J Nucl Cardiol. 2006 Jun;13(3):378-84. DOI: 10.1016/j.nuclcard.2006.03.001
38. Machac J. Basis of Cardiac Imaging 2: Myocardial Perfusion, Metabolism, Infarction, and Receptor Imaging in Coronary Artery Disease and Congestive Heart Failure. In: The Pathophysiologic Basis of Nuclear Medicine. Ed. Elgazzar A.H. Springer Berlin Heidelberg, 2006. 352-95.
39. Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. NIH Public Access; 2013 Feb 1;5(1):35-46. DOI: 10.2217/iim.13.1
40. Kagaya A, Fukuda H, Yoshida K, Endo M, Himi T, Niwayama H, et al. [Pulmonary kinetics of 13N-ammonia in smoking subjects – a quantitative study using dynamic PET]. Kaku Igaku. 1992 Sep;29(9):1099-106.
41. Ghotbi AA, Kjaer A, Hasbak P. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging. Clin Physiol Funct Imaging. 2014 May;34(3):163-70. DOI: 10.1111/cpf.12083
42. Klein R, Beanlands RSB, deKemp RA. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol. 2010 Aug 2;17(4):555-70. DOI: 10.1007/s12350-010-9256-9
43. Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging—From basic aspects to clinical applications. J Cardiol. Elsevier; 2010 Mar 1;55(2):163-73. DOI: 10.1016/j.jjcc.2010.01.001
44. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016 Dec;3(1):8. DOI: 10.1186/s40658-016-0144-5

For citation: Znamenskiy IA, Kondakov AK, Mosin DYu, Nikitin PA, Sozykin AV, Filimonova AM, Beregov MM. Positron Emission Tomography with Rubidium-82 in Myocardial Perfusion Imaging. Medical Radiology and Radiation Safety. 2019;64(6):82–87. (in Russian).

DOI: 10.12737/1024-6177-2019-64-6-82-87

PDF (RUS) Full-text article (in Russian)