Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 6. P. 34-38

RADIATION SAFETY

DOI: 10.12737/article_5a2534e207ddc6.86154973

Radiological Aspects of Liquid Radioactive Waste Management from Nuclear Power Plants Operation

O.A. Kochetkov1, E.A. Ivanov2, D.A. Sharov2

1. A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. All-Russian Scientific Research Institute for Nuclear Power Plants Operation Moscow, Russia.

O.A. Kochetkov – Head of Lab., PhD Tech, FMBA Expert, Member of RSCRP; E.A. Ivanov – Deputy Director, PhD Tech, Member of RSCRP, Member of Nuclear Society of Russia; D.A. Sharov – Head of Dep. of Radiation Safety, Ecology and Occupational Safety, PhD Phys.-Math.

Abstract

Purpose: The prospects and scale of the further development of nuclear energy depend to a large extent on the solution of the radioactive waste management (RW) problem. Special attention is given to management of the liquid radioactive waste (LRW), which poses the main potential hazard to the public and the environment, since LRW storage can lead to leaks into the environment.

The purpose of the paper is to examine the radiological aspects of LRW management from nuclear power plants (NPPs) operation and to study the influence of the list of radionuclides controlled in RW on the evaluation of the efficiency of LRW treatment technology and on the validity of radioactive waste characterization and classification.

Material and methods: The work is based on analysis of public materials (scientific publications, legal documents, international standards, recommendations of international organizations) in the area of LRW treatment and conditioning technologies, and methods of radioactive waste characterization, including information about accepted lists of controlled radionuclides.

Results: It is shown that an unreasonable reduction of the list of controlled radionuclides can lead to a significant underestimation of the radiological hazard of RW packages transferred for disposal. In order to optimize the volume of RW radiation control, the radionuclide vector technology was proposed. It is stated that the technology is not universal and its application in each specific case requires additional justification. It is shown that the correctness of accounting for the radiological characteristics of radioactive waste can significantly influence the evaluation of the efficiency of the radioactive waste treatment technology. A possible approach to determining the acceptability of LRW treatment technology based on the characteristics of the final products formed is suggested.

Conclusions: There is no universal approach to solve the problems of LRW treatment at the moment. A survey of the characteristics of LRW (chemical, physical, radiation) accumulated and formed during the operation of NPP with various types of reactors (VVER, RBMK, BN) should be performed to determine the initial requirements for LRW treatment technologies. A comprehensive analysis of the efficiency of LRW treatment technologies at all Russian NPPs is of interest with taking into account radionuclides that determine the radiological hazard of radioactive waste after the final disposal.

Key words: radioactive waste, liquid radioactive waste, nuclear power plant, radionuclide, radiological hazard, treatment technologies, selective sorption

REFERENCES

  1. Shhukin A.P., Serebryakov B.E., Ivanov E.A. et al. Posledstviya incidenta 1985 g. na Novovoronezhskoj AES. V sb.: «XI mezhdunarodnyj simpozium “Ural atomnyj, Ural promyshlennyj” 7–11.02.2005. Tezisy dokladov». Ekaterinburg. 2005. P. 119–120. (In Russ.).
  2. Staxiv M.R. Strategiya obrashheniya s radioaktivnymi otkhodami OAO «Koncern Rosenergoatom». Slajdovyj doklad na konferencii «Atomeko-2015». Available at: http://www.atomeco.org/mediafiles/u/files/2015/materials/9_november/staxiev.pdf (accessed 25.07.2017). (In Russ.).
  3. Godovoj otchet o deyatelnosti federalnoj sluzhby po ekologicheskomu, texnologicheskomu i atomnomu nadzoru v 2015 g. Moscow. 2016. Available at: http://www.gosnadzor.ru/public/annual_reports/godovoj otchet 2015.pdf (accessed 25.07.2017). (In Russ.).
  4. Federalnyj zakon ot 11.07.2011 N 190-Fz «Ob obrashhenii s radioaktivnymi otkhodami i o vnesenii izmenenij v otdelnye zakonodatelnye akty Rossijskoj Federacii». (In Russ.).
  5. Rasporyazhenie Pravitelstva RF 2499-r ot 07.12.2015. (In Russ.).
  6. Postanovlenie Pravitelstva Rf ot 19.10.2012 1069 «O kriteriyax otneseniya tverdyx, zhidkix i gazoobraznyx otxodov k radioaktivnym otxodam, kriteriyax otneseniya radioaktivnyx otxodov k osobym radioaktivnym otxodam i k udalyaemym radioaktivnym otxodam i kriteriyax klassifikacii udalyaemyx radioaktivnyx otxodov». (In Russ.).
  7. Zvereva I.O. Razrabotka texnologii pererabotki neorganicheskix ZHRO RU BN-350. Kurchatov. Institut radiacionnoj bezopasnosti i ekologii respubliki Kazaxstan. 2011. (In Russ.).
  8. Remeikis V. et al. Study of the nuclide inventory of operational radioactive waste for the RBMK-1500 reactor. Nucl. Eng. Design. 2009. Vol. 239. P. 813–818.
  9. NRC: 10 CFR § 61.55 Waste classification.
  10. IAEA Nuclear Energy Series NW-T-1.18. IAEA. Vienna. 2009.
  11. NP-093-14. Kriterii priemlemosti radioaktivnyx otxodov dlya zaxoroneniya. (In Russ.).
  12. Prikaz Minprirody Rossii ot 13.03.2013 89 «O pervonachalnom ustanovlenii tarifov na zaxoronenie radioaktivnyx otxodov». (In Russ.).
  13. ISO 21238-2007 «Scaling factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants».
  14. Xubecov S.B., Svitcov A.A., Demkin V.I. Pererabotka solevyx koncentratov, obrazuyushhixsya posle ustanovki UISO (Kolskaya AES). Sbornik trudov mezhdunarodnoj nauchno-texnicheskoj konferencii «Bezopasnost, effektivnost i ekonomika atomnoj energetiki» MNTK-2016. Moscow. 2016. (In Russ.).

For citation: Kochetkov OA, Ivanov EA, Sharov DA. Radiological Aspects of Liquid Radioactive Waste Management from Nuclear Power Plants Operation. Medical Radiology and Radiation Safety. 2017;62(6):34-8. Russian. DOI: 10.12737/article_5a2534e207ddc6.86154973

PDF (RUS) Full-text article (in Russian)