Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-27-34
P.A. Malakhov1, V.V. Maximov2, M.V. Pustovalova1, A.V. Smirnova1, Z. Nofal1,
V. Saburov3, A.N. Osipov1, D.V. Kuzmin1, S.V. Leonov1, 4
MiR-16-1-3p and miR-16-2-3p Overexpression Confers Tumor Suppressive and Antimetastatic Properties in Radioresistant A549 Non-Small Cell Lung Cancer Cells
1 Institute of Future Biophysics, Dolgoprudny, Russia
2 Department of Molecular Genetics and Microbiology, Institute of Medical Research, Israel–Canada,
Faculty of Medicine, Hebrew University, Jerusalem, Israel
3 A.F. Tsyb Medical Research Center of Radiology, Obninsk, Russia
4 Pushchino Scientific Center for Biological Research Institute of Cell Biophysics, Pushchino, Russia
Contact person: M.V. Pustovalova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Lung cancer is the leading cause of death worldwide, with non-small cell lung cancer (NSCLC) accounting for 85 % of all lung cancers. Combined chemoradiotherapy is one of options in the treatment of patients with inoperable NSCLC. However, the prognosis of NSCLC remains unsatisfactory due to the development of radio- and chemo-resistance of cancer cells. This study aimed to investigate how the overexpression of miR-16, miR-16-1-3p, and miR-16-2-3p influences clonogenic survival, migration, and sensitivity to cisplatin in both radiosensitive and radioresistant non-small cell lung cancer (NSCLC) cells.
Material and methods: This study involved the application of single proton beam irradiation to A549 NSCLC cells, resulting in the emergence of a subline of resilient radioresistant daughter cells, designated as A549IR. To explore the functional role of the miR-16, miR-16-1-3p, and miR-16-2-3p in NSCLC, we overexpressed the “leader” miR-16 as well as the “passenger” miR-16-1-3p and miR-16-2-3p strands in both the parental A549 and their radioresistant variant, A549IR cells. The impact of microRNA overexpression on cell viability was evaluated through a clonogenic assay. Additionally, cisplatin sensitivity was measured by calculating the total mass of surviving cells via the sulforhodamine B method. Furthermore, the capacity for cell migration and invasion was investigated using Boyden chambers.
Results: Overexpressing miR-16, miR-16-1-3p, and miR-16-2-3p significantly reduced the ability of A549 and radioresistant A549IR NSCLC cells to survive, clone, migrate, and invade, compared to cells with normal levels of these microRNAs. Moreover, the stable overexpression of these microRNAs markedly enhanced the sensitivity of A549 and A549IR cells to the cytotoxic effects of cisplatin, allowing for a nearly threefold reduction in the concentration needed to achieve 50 % cell death.
Conclusion: An increase in the expression of “passenger” miR-16-1-3p and miR-16-2-3p, as well as the “leader” miR-16, exhibits a robust tumor-suppressive and cisplatin-sensitizing activities in both the radiation-sensitive parental and the radiation-resistant daughter cells in the human NSCLC A549 lineage.
Keywords: non-small cell lung cancer, chemo-radiotherapy, radioresistance, metastasis, invasiveness, miR-16, miR-16-1; miR-16-2
For citation: Malakhov PA, Maximov VV, Pustovalova MV, Smirnova AV, Nofal Z, Saburov V, Osipov AN, Kuzmin DV, Leonov SV. MiR-16-1-3p and miR-16-2-3p Overexpression Confers Tumor Suppressive and Antimetastatic Properties in Radioresistant A549 Non-Small Cell Lung Cancer Cells. Medical Radiology and Radiation Safety. 2025;70(2):27–34. (In Russian). DOI:10.33266/1024-6177-2025-70-2-27-34
References
1. Bray F., Laversanne M., Sung H., et al. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024;74;3:229-263. doi:10.3322/caac.21834 PMID: 38572751
2. Zhou T., Zhang L.Y., He J.Z., et al. Review: Mechanisms and Perspective Treatment of Radioresistance in Non-Small Cell Lung Cancer. Front Immunol. 2023;14:1133899. Published 2023 Feb 14. doi:10.3389/fimmu.2023.1133899 PMID: 36865554
3. Jonas S., Izaurralde E. Towards a Molecular Understanding of MicroRNA-Mediated Gene Silencing. Nat Rev Genet. 2015;16;7:421-433. doi:10.1038/nrg3965 PMID: 26077373
4. O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402 PMID: 30123182
5. Daugaard I., Hansen T.B. Biogenesis and Function of Ago-Associated RNAs. Trends Genet. 2017;33;3:208-219. doi:10.1016/j.tig.2017.01.003 PMID: 28174021
6. Peng Y., Croce C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct Target Ther. 2016;1:15004. doi:10.1038/sigtrans.2015.4 PMID: 29263891
7. Klein U., Lia M., Crespo M., et al. The DLEU2/miR-15a/16-1 Cluster Controls B Cell Proliferation and its Deletion Leads to Chronic Lymphocytic Leukemia. Cancer Cell. 2010;17;1:28-40. doi:10.1016/j.ccr.2009.11.019 PMID: 20060366
8. Lovat F., Fassan M., Gasparini P., et al. MiR-15b/16-2 Deletion Promotes B-Cell Malignancies. Proc Natl Acad Sci USA. 2015;112;37:11636-11641. doi:10.1073/pnas.1514954112 PMID: 26324892
9. Lovat F., Fassan M., Sacchi D., et al. Knockout of Both miR-15/16 Loci Induces Acute Myeloid Leukemia. Proc Natl Acad Sci USA. 2018;115;51:13069-13074. doi:10.1073/pnas.1814980115 PMID: 30478046
10. Maximov V.V., Akkawi R., Khawaled S., et al. MiR-16-1-3p and MiR-16-2-3p Possess Strong Tumor Suppressive and Antimetastatic Properties in Osteosarcoma. Int J Cancer. 2019;145;11:3052-3063. doi:10.1002/ijc.32368 PMID: 31018244
11. Hu H., Chen C., Chen F., Sun N. LINC00152 Knockdown Suppresses Tumorigenesis in Non-Small Cell Lung Cancer Via Sponging MiR-16-5p. J Thorac Dis. 2022;14;3:614-624. doi:10.21037/jtd-22-59 PMID: 35399229
12. Biton M., Levin A., Slyper M., et al. Epithelial MicroRNAs Regulate Gut Mucosal Immunity Via Epithelium-T Cell Crosstalk. Nat Immunol. 2011;12;3:239-246. doi:10.1038/ni.1994 PMID: 21278735
13. Chava S., Reynolds C.P., Pathania A.S., et al. MiR-15a-5p, MiR-15b-5p, and MiR-16-5p Inhibit Tumor Progression by Directly Targeting MYCN in Neuroblastoma. Mol Oncol. 2020;14;1:180-196. doi:10.1002/1878-0261.12588 PMID: 31637848
14. Calin G.A., Ferracin M., Cimmino A, et al. A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia [Published Correction Appears in N Engl J Med. 2006 Aug 3;355(5):533]. N Engl J Med. 2005;353;17:1793-1801. doi:10.1056/NEJMoa050995 PMID: 16251535
15. Zhou Y., Huang Y., Dai T., et al. LncRNA TTN-AS1 Intensifies Sorafenib Resistance in Hepatocellular Carcinoma by Sponging MiR-16-5p and Upregulation of Cyclin E1. Biomed Pharmacother. 2021;133:111030. doi:10.1016/j.biopha.2020.111030 PMID: 33378944
16. Zhang X., Zhang J., Liu Q., Zhao Y., Zhang W., Yang H. Circ-CUX1 Accelerates the Progression of Neuroblastoma Via MiR-16-5p/DMRT2 Axis. Neurochem Res. 2020;45;12:2840-2855. doi:10.1007/s11064-020-03132-w PMID: 33000435
17. Wang Z., Hu S., Li X., et al. MiR-16-5p Suppresses Breast Cancer Proliferation by Targeting ANLN. BMC Cancer. 2021;21;1:1188. doi:10.1186/s12885-021-08914-1 PMID: 34743685
18. Du R., Jiang F., Yin Y., et al. Knockdown of lncRNA X Inactive Specific Transcript (XIST) Radiosensitizes Non-Small Cell Lung Cancer (NSCLC) Cells through Regulation of MiR-16-5p/WEE1 G2 Checkpoint Kinase (WEE1) Axis. Int J Immunopathol Pharmacol. 2021;35:2058738420966087. doi:10.1177/2058738420966087 PMID: 33583218
19. Wang Q., Chen Y., Lu H., et al. Quercetin Radiosensitizes Non-Small Cell Lung Cancer Cells through the Regulation of miR-16-5p/WEE1 axis. IUBMB Life. 2020;72;5:1012-1022. doi:10.1002/iub.2242 PMID: 32027086
20. Mohammadi C., Gholamzadeh Khoei S., Fayazi N., Mohammadi Y., Najafi R. MiRNA as Promising Theragnostic Biomarkers for Predicting Radioresistance in Cancer: A Systematic Review and Meta-Analysis. Crit Rev Oncol Hematol. 2021;157:103183. doi:10.1016/j.critrevonc.2020.103183 PMID: 33310279
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was supported by Russian Science Foundation (agreement No 23-14-00220).
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.