Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4
DOI:10.33266/1024-6177-2025-70-4-96-101
K.E. Medvedeva, A.I. Adarova, N.G. Minaeva, I.A. Gulidov, S.N. Koryakin
Comparative Assessment of Dose Distributions During Proton
and Photon Therapy in Patients with Recurrent High-Grade Gliomas
A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia
Contact person: K.E. Medvedeva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Purpose: To compare treatment plans on the Prometheus proton therapy complex (PTC) and a linac in terms of dose distribution parameters and radiation doses on organs at risk.
Material and methods: The study included 20 adult patients who were treated on the Prometheus PTC in 2019–2020 for recurrent malignant gliomas. Comparative planning was carried out in the XIO radiation therapy planning system with the preparation of 3D-conformal photon radiation therapy plans using intensity modulated radiotherapy technology (IMRT) based on one set of contours of the irradiated volumes.
Results: Dose-volume histograms were constructed for all volumes, dose parameters were taken into account to assess the coverage of target volumes and compliance with safety criteria for organs at risk. The average dose to the entire brain volume during proton therapy ranged from 4.54 to 20.63 Gy, the median was 6.74 Gy. The average dose during photon therapy planning ranged from 5.9 to 32.48 Gy, the median was 21.2 Gy. The average difference in radiation load to the entire brain volume was 15.24 Gy (p < 0.001). The mean maximum dose to the brainstem during proton therapy ranged from 0.01 to 51.35 Gy, median 9.77 Gy. The mean dose when planning photon therapy using the IMRT technique ranged from 1.6 to 55.1 Gy, median 44.37 Gy. The mean difference was 34.6 Gy (p < 0.003). The mean maximum dose to the optic nerve during proton therapy ranged from 0 to 25.19 Gy, median 2.15 Gy. The mean dose in the photon therapy plan was
0 to 51.35 Gy, median 21.05 Gy. The reduction in the mean difference in dose load when using proton therapy was 18.9 Gy (p< 0.001).The average maximum dose to the chiasm during intensity-modulated proton therapy ranged from 0 to 32.9 Gy, median 0.38 Gy. A similar dose when calculating photon therapy doses ranged from 1.4 Gy to 54.3 Gy, median 28.47 Gy. The average difference in the dose load on the optic nerve in favor of proton therapy was 28.09 Gy (p< 0.001). The average value of the homogeneity index of protons was 0.16 (CI 95 % 0.14–0.18), photons – 0.13 (CI 95 % 0.11–0.14), p=0.00158.
Conclusion: Proton therapy during repeated courses of radiation therapy demonstrates a significant reduction in the dose load on risk organs when compared with photon therapy on a linear accelerator. Repeated irradiation of high-grade gliomas using an active scanning proton beam is a promising direction due to the reduction in overall toxicity of treatment and the possibility of delivering radiation doses close to radical ones.
Keywords: proton therapy, glioma, glioblastoma, re-irradiation, dosimetric planning
For citation: Medvedeva KE, Adarova AI, Minaeva NG, Gulidov IA, Koryakin SN. Comparative Assessment of Dose Distributions During Proton and Photon Therapy in Patients with Recurrent High-Grade Gliomas. Medical Radiology and Radiation Safety. 2025;70(4):96–101. (In Russian). DOI:10.33266/1024-6177-2025-70-4-96-101
References
1. Чойнзонов Е.Л., Грибова О.В., Старцева Ж.А., Рябова А.И., Новиков В.А., Мусабаева Л.И., Полежаева И.С. Современный подход к химиолучевой терапии злокачественных глиом головного мозга // Бюллетень сибирской медицины. 2014. Т.13. №3. С. 119-125 [Choynzonov Ye.L., Gribova O.V., Startseva Zh.A., Ryabova A.I., Novikov V.A., Musabayeva L.I., Polezhayeva I.S. Modern Approach to Chemoradiation Therapy of Malignant Gliomas of the Brain. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2014;13;3:119-125 (In Russ.)]. doi: 10.20538/1682-0363-2014-3-119-125.
2. Combs S.E., Debus J., Schulz-Ertner D. Radiotherapeutic Alternatives for Previously Irradiated Recurrent Gliomas. BMC Cancer. 2007;7:167. doi: 10.1186/1471-2407-7-167.
3. Lee J., Cho J., Chang J.H., Suh C.O. Re-Irradiation for Recurrent Gliomas: Treatment Outcomes and Prognostic Factors. Yonsei Med J. 2016 Jul 1;57;4:824–30. doi: 10.3349/ymj.2016.57.4.824.
4. Held K.D., Lomax A.J., Troost E.G.C. Proton Therapy Special Feature: Introductory Editorial. Br J Radiol. 2020;93;1107:20209004. doi: 10.1259/bjr.20209004.
5. Durante M., Flanz J. Charged Particle Beams to Cure Cancer: Strengths and Challenges. Seminars in Oncology. W.B. Saunders. 2019;46;3:219–225. doi: 10.1053/j.seminoncol.2019.07.007.
6. Kraft G. Progress in Particle and Nuclear Physics Tumor Therapy with Heavy Charged Particles. Progress in Particle and Nuclear Physics. 2000;45:473–544. doi: 10.1016/S0146-6410(00)00112-5.
7. Schaub L., Harrabi S.B., Debus J. Particle Therapy in the Future of Precision Therapy. Br J Radiol. 2020;93;1114:20200183. doi: 10.1259/bjr.20200183.
8. Mayer R., Sminia P. Reirradiation Tolerance of the Human Brain. Int J Radiat Oncol Biol Phys. 2008;70;5:1350-60. doi: 10.1016/j.ijrobp.2007.08.015.
9. Nieder C., Milas L., Ang K.K. Tissue Tolerance to Reirradiation. Semin Radiat Oncol. 2000;10;3:200-209. doi: 10.1053/srao.2000.6593.
10. Desai B.M., Rockne R.C., Rademaker A.W., Hartsell W.F., Sweeney P., Raizer J.J, et al. Overall Survival (OS) and Toxicity Outcomes Following Large-Volume Re-Irradiation Using Proton Therapy (PT) for Recurrent Glioma. Int J Radiat Oncol Biol Phys. 2014;90;1:286. doi: 10.1016/j.ijrobp.2014.05.971.
11. Combs S.E., Edler L., Rausch R., Welzel T., Wick W., Debus J. Generation and Validation of a Prognostic Score to Predict Outcome after Re-Irradiation of Recurrent Glioma. Acta Oncol (Madr). 2013;52;1:147–52. doi: 10.3109/0284186X.2012.692882.
12. Baumert B.G., Lomax A.J., Miltchev V., Davis J.B. A Comparison of Dose Distributions of Proton Beams in Stereotactic Confopmal Radiotherapy of Brain Lesions. Int J Radiat Oncol Biol Phys. 2001;49;5:1439-1449. doi: 10.1016/s0360-3016(00)01422-x.
13. Bolsi A., Fogliata A., Cozzi L. Radiotherapy of Small Intracranial Tumours with Different Advanced Techniques Using Photon and Proton Beams: a Treatment Planning Study. Radiotherapy and Oncology. 2003;68;1:1-14. doi: 10.1016/s0167-8140(03)00117-8
14. Kosaki K., Ecker S., Habermehl D., Rieken S., Jäkel O., Herfarth K., et al. Comparison of Intensity Modulated Radiotherapy (IMRT) with Intensity Modulated Particle Therapy (IMPT) Using Fixed Beams or an Ion Gantry for the Treatment of Patients with Skull Base Meningiomas. Radiation Oncology. 2012 Mar 22;7;44:1. doi:10.1186/1748-717X-7-44.
15. Adeberg S., Harrabi S.B., Bougatf N., et al. Intensity-Modulated Proton Therapy, Volumetric-Modulated arc Therapy, and 3D Conformal Radiotherapy in Anaplastic Astrocytoma and Glioblastoma: a Dosimetric Comparison. Intensitätsmodulierte Protonentherapie, Volumenmodulierte Arc-Therapie and Dreidimensionale Konformale Radiotherapie Beim Anaplastischen Astrozytom und Glioblastom: Ein Dosimetrischer Vergleich. Strahlenther Onkol. 2016;192;11:770-779. doi: 10.1007/s00066-016-1007-7.
16. Poel R., Stuessi A., Unkelbach J., Tanadini-Lang S., Guckenberger M., Foerster R. Dosimetric Comparison of Protons vs Photons in Re-Irradiation of Intracranial Meningioma Br J Radiol. 2019;92;1100:20190113. doi: 10.1259/bjr.20190113.
17. Weber D.C., Lim P.S., Tran S., Walser M., Bolsi A., et.al. Proton Therapy for Brain Tumours in the Area of Evidence-Based Medicine. Br J Radiol. 2020;93;1107:20190237. doi: 10.1259/bjr.20190237.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.03.2025. Accepted for publication: 25.04.2025.