Radiology and Radiation Safety. 2016. Vol. 61. No. 5. P. 59-64

RADIATION PHYSICS, TECHNOLOGY AND DOSIMETRY

S.E. Ulianenko1, A.N. Soloviev1,2, V.M. Lityaev1, V.V. Fedorov1, S.N. Koryakin1

Monte-Carlo Simulation of Photon and Proton Capture Therapy with Gold Compounds

1. A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Institute for High Energy Physics, Protvino, Russia

ABSTRACT

Purpose: Theoretical and numerical simulation using Monte-Carlo method to assess the proof-of-concept mechanism of photon and proton capture therapy with gold compounds and solutions.

Material and methods: The simulation of photon capture therapy is done with MCNP code, the proton capture therapy using Geant4 framework and our own developed software methods C++ and Python. Both simulations carried with tissue-equivalent phantom. The number of additional simulations was required to find the theoretical mechanism of proton capture therapy.

Results: The 10 mg per 1 g Au-based tissue compound resulted in doubling the absorbed dose value mainly due to interaction γ-quanta with electron shells of atoms and induced cascade of electrons. The 1 mg per 1 g Au-based tissue compound for the proton capture therapy may result in qualitive changes in absorbed dose distribution, resulted in 15 % few dose for 50 MeV proton, 15 % higher dose for 150-250 MeV protons and same dose for 100 MeV protons. The additional experiments and simulations may be further required for proper investigation of such effects. And also with a proton energy increase there is a decrease of number of elastic collisions with gold compounds, which demonstrates significant reduction of the reaction cross section.

Conclusion: The Au-based solutions may be kindly introduced into clinical practice for the photon capture therapy, on the other side, the proton capture therapy are yet to be implemented under both the physical interaction models improve as well as qualitive assessment of radiobiology effect.

Key words: Monte-Carlo method, photon capture therapy, proton capture therapy, gold compounds

REFERENSES

  1. Ul'yanenko S.E., Koryakin S.N. Neitron-zakhvatnaya terapiya. Aktual'nye problemy i vozmozhnye podkhody k perspektivam razvitiya meditsinskoi tekhnologii. Germaniya: Palmarium Academic Publishing Palmarium. 2012. 104 p. (In Russ.).
  2. Kaprin A.D., Starinskii V.V., Aleksandrova L.M. et al. Razvitie onkologicheskoi pomoshchi v Rossiiskoi Federatsii v svete vypolneniya gosudarstvennykh programm. Ross. med. zhurnal. No. 21. Р. 4-9. (In Russ.).
  3. Sheino I.N., Izhevskii P.V., Lipengol'ts A.A. Obosnovanie printsipa foton-zakhvatnoi terapii zlokachestvennykh novoobrazovanii. Saratovskii nauchno-med. zhurnal. 2013. Vol. 9. No. 4. Р. 878-891. (In Russ.).
  4. Darenskaya N.G., Dobrynina O.A., Nasonova T.A. et al. Ispol'zovanie gadolinii-soderzhashchego preparata dlya povysheniya effektivnosti rentgenovskogo oblucheniya pri lechenii eksperimental'nykh opukholei. Radiology and Radiation Safety. Vol. 51. No. 4. Р. 5-11. (In Russ.).
  5. Koryakin S.N., Yadrovskaya V.A., Beketov E.E. et al. Volhe study of hyaluronic acid compounds for neutron capture and photon activation therapies. Central Eur. J. Biol. 2014. Vol. 9. No. 10. Р. 922-930.
  6. Rahman W., Ackerly Vol., He C. et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed.: Nanotechnol., Biol., Med. 2009. 5. No. 2. P. 136-142.
  7. Polf J., Bronk L., Driessen W. et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Lett. 2011. Vol. 98. No. 19. P. 193702-1-193702-3.
  8. X-5 Monte Carlo Voleam. MCNP - A General N-Particle Volransport Code, Version 5. Vol. I: Overview and Volheory, LA-UR-03-1987. 2005.
  9. Shchegol'kov I.V., Sheino I.N., Khokhlov V.F. et al. Modelirovanie raspredelenii pogloshchennoi dozy metodom Monte-Karlo v tekhnologii foton-zakhvatnoi terapii. Med. fizika. No. 4. Р. 12-16.
  10. ICRU 44. Volissue Substitutes in Radiation Dosimetry and Measurement. 1989.
  11. Agostinelli S., Allison J., Amako K. et al. Geant4 - a simulation toolkit. Nucl. Meth. Phys. Res. 2003. Vol. 506. No. 3. P. 250-303.
  12. Allison J., Amako K., Araujo H. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006. Vol. 53. No. 1. Р. 270-278.
  13. Brun R., Rademakers F. ROOT - An object oriented data analysis framework. Proc. AIHENP’96 Workshop, Lausanne, Sep. 1996. Nucl. Instr. Meth. Phys. Res. 1997. 389. No. 1-2. P. 81-86.
  14. Metropolis N., Bibins R., Storm M. et al. Monte Carlo calculations on intranuclear cascades. Low-energy studies. Phys. Rev. 1958. Vol. 110. No. 1. P. 185-203.
  15. Titarenko Yu. E., Shvedov O.V., Batyaev V.F. et al. Experimental and Computer Simulations Study of Radionuclide Production in Heavy Materials Irradiated by Intermediate Energy Protons. Nucl. Experiment. 1999. nucl-ex/9908012 LA-UR-99-4489.
  16. Khokhlov V.F., Izhevskii P.V., Kulakov V.N. et al. Farmakokineticheskaya otsenka preparatov dlya binarnoi luchevoi terapii v ramkakh skriningovogo issledovaniya. Ros. bioter. zhurnal. Vol. 8, No. 1. P. 25-25. (In Russ.).
  17. Cherepanov A.A., Lipengol'ts A.A., Nasonova T.A. et al. Uvelichenie protivoopukholevogo effekta rentgenovskogo oblucheniya pri pomoshchi gadolinii soderzhashchego preparata na primere myshei s transplantiruemoi melanomoi B16F10. Med. fizika. No. 3. Р. 66-69. (In Russ.).
  18. Koryakin S.N., Ul'yanenko S.E., Yadrovskaya V.A. et al. Otsenka kontsentratsii zolota v opukholi i okruzhayushchikh tkanyakh laboratornykh zhivotnykh dlya zadach foton-zakhvatnoi terapii. Trudy regional'nogo konkursa proektov fundamental'nykh nauchnykh issledovanii. 2015. Vyp. 20. Р. 190-194. (In Russ.).
  19. Davydov M.I., Golanov A.V., Kanaev S.V. et al. Analiz sostoyaniya i kontseptsiya modernizatsii radiatsionnoi onkologii i meditsinskoi fiziki v Rossii. Vopr. onkol. Vol. 59. No. 5. Р. 529-538. (In Russ.).
  20. Khmelevskii E.V., Kharchenko V.P. et al. Metod protonno-fotonnoi luchevoi terapii lokalizovannogo raka predstatel'noi zhelezy. Rossiiskii onkologicheskii zhurnal. No. 6. Р. 13-16. (In Russ.).

For citation: Ulianenko SE, Soloviev AN, Lityaev VM, Fedorov VV, Koryakin SN. Monte-Carlo Simulation of Photon and Proton Capture Therapy with Gold Compounds. Medical Radiology and Radiation Safety. 2016;61(5):59-64. Russian.

PDF (RUS) Full-text article (in Russian)