Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 6. P. 70–81

DOI: 10.12737/1024-6177-2019-64-6-70-81

A.V. Khmelev

Analysis of Positron Emission Tomography Providing with Radionuclides

Federal Research Center for Project Evaluation and Consulting Services, Moscow, Russia.
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.V. Khmelev – Cheif Researcher, Dr. Sci. Phys.-Math., Prof.

Content

Introduction
1. General requirements to PET-radionuclides
2. Parameters of radionuclide ranging for application in PET
3. Positron emitters for different applications. Selection criteria
PET-studies
Joint PET- and SPECT-studies
Theranostics
Special applications
4. Availability of positron emitters
4.1. Cyclotron production of PET-radionuclides
Conventional radionuclides
Radionuclides under development
4.2. Production of PET-radionuclides on radionuclide generators
5. Future development of PET providing with radionuclides
Conclusion

Key words: PET, positron emitters, activity, cyclotron, radionuclide generator

REFERENCES

1. Townsend DW, Carney JPJ, Yap JT and Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(1):4S-14S.
2. Saha GB. Basics of PET Imaging. Physics, chemistry and regulation. 2nd ed. New York: Springer; 2010. 241 p.
3. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: WB Saunders; 2012. 523 p.
4. Khmelev V. Positron emission tomography: physical and technical aspects. Moscow: Trovant; 2016. 336 p. (In Russian).
5. Chart of the Nuclides. Available from: http://www.nndc.bnl.gov
6. Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40:155-66.
7. Kostylev VA, Narkevich BYa. Medical Physics. Moscow: Meditsina; 2008. 460 p. (In Russian).
8. Nuclear Physics for Medicine. Chapter III. Radioisotope production. Ed. by F Azaiez, A Bracco, J Dobeš, A Jokinen, G-E Körner, A Maj, A Murphy, P Van Duppen. Strasbourg: European Science Foundation. 2015. 156 p.
9. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report № 468. Vienna: IAEA. 2009.
10. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161-9.
11. Rosch F, Knapp FF (Russ). Radionuclide generators. In: Handbook of Nuclear Chemistry. V.4. Ed. by A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011: 1935-76.
12. Shimchuk GrG, Shimchuk GG, Kutuzov SG, et. al. Automatized generator system of clinical application for bolus and long-term injections of chloride 82Rb. Medical Physics. 2013;(2):67-75. (In Russian).
13. Miller PW, Nicholas J, Long NJ, Gee AD. Synthesis of 11C, 18F, 15O and 13N radiolabels for positron emission tomography. Angew Chem Int Ed. 2008;47(47):8998-9033.
14. Beyer G-J, Comor JJ. The potential of PET cyclotron installations for the production of uncommon positron emitting isotopes. In: Int Conf Clin PET and Molecular Nucl Med. 2007 Nov 10–14; Bangkok: 2007; 54-55.
15. Papash A, Alenitsky Yu. On commercial H– cyclotrons up to 30 MeV energy range for production of medicine isotopes. Problems Atomic Sci. and Technol. 2008;(5):143-5.
16. Schmor PW. Review of cyclotrons used in the production of radioisotopes for biomedical applications. In: Proceedings of Cyclotrons 2010. Lanzhou: 2010. 419-24.
17. Qaim SM. Cyclotron production of medical radionuclides. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1903-1933.
18. Kodina GE, Krasikova RN. Methods of production of radiopharmaceuticals and radionuclide generators for nuclear medicine. Moscow: MEI Publishing House; 2014. 282 p. (In Russian).
19. Khmelev AV. Nuclear medicine: physics, equipment, technologies. Moscow: NRNU MEPhI; 2018. 440 p. (In Russian).
20. Antoni G, Kihlberg T, Langstrom B. 11C: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1977-2021.
21. Ross TL, Wester HJ. 18F: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 2022-71.
22. Kilian K. 68Ga‑DOTA and analogs: current status and future perspectives. Rep Pract Oncol Radiother. 2014;19(L):S13-S21.
23. Velikyan I. Positron emitting [68Ga]Ga‑based imaging agents: chemistry and diversity. Med Chem. 2011;7(5):345-79.
24. Davidson CD, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200-27.
25. Severin GW, Engle JW, Nickles RJ, Barnhart TE. 89Zr radiochemistry for PET. Med Chem. 2011;7(5):389-94.
26. Walther M, Gebhardt P, Grosse-Gehling P, et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl Rad Isot. 2011;69:852-7.
27. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686-718.
28. Stocklin G, Pike VW. Radiopharmaceuticals for positron emission tomography: methodological aspects. New York; 1993. 178 p.
29. Dmitriev SN, Zaitseva NG, Ochkin AV. Radionuclides for nuclear medicine and ecology. Dubna UINR; 2001. 103 p. (In Russian).
30. Chopra D. Radiolabeled nanoparticles for diagnosis and treatment of cancer. In: Radioisotopes – applications in bio-medical science. Chapter 11. Ed. N. Singh. 2011: available from: http: //www.intechopen.com/books/radioisotopes-applications-in-bio-medical-science/radiolabeled-nanoparticles-for-diagnosis-and-treatment-of-cancer.
31. Veryevkin AA, Stervoedov NG, Kovtun GP. Production and application short lived and ultra-short lived isotopes in medicine. Reporter of Kharkiv University. 2006;(746):54-64. (In Russian).
32. Kurenkov NV, Shubin YN. Radionuclides in nuclear medicine. Medical Radiology. 1996;41(5):54-63. (In Russian).
33. Narkevich BYa. Single photon emission computer tomography with positron emitting radioparmaceuticals: status and growth area. Medical Radiology and Radiation Safety. 2000;45(6):56-63. (In Russian).
34. Rosch F, Baum RB. Generator-based PET radiopharmaceuticals for molecular imaging of tumors: on the way to theranostics. Dalton Transactions. 2011; 40(23):6104-11.
35. Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. 68Gallium- and 90Yttrium-/ 177Lutetium: “theranostic twins” for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.
36. Rosch F, Riss P. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633-68.
37. Ellison PA, Chenb F, Barnharta TE, Nickles RJ, Caia W, De Jesus OT. Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents. In: WTTC15 Proc. Prague: 2014. 110-1.
38. Wooten AL, Lewis BC, Laforest R, Smith SV, Lapi SE. Cyclotron production and PET/MRI imaging of 52Mn. In: WTTC15 Proc. Prague: 2014. 97-9.
39. Xing Y, Zhao J, Shi X, Conti P.S, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol. 2014;2(2):1016-25.
40. Bogdanov PV, Vorogushin MF, Lamzin EA, et al. Development of compact cyclotrons CC-18/9, CC-12 and MCC-30/15 for production of medical radionuclides. J Tech Phys. 2011;81(10):68-83. (In Russian).
41. Wolf AP, Jones WB. Cyclotrons for biomedical radioisotope production. Radiochimica Acta. 1983;34(1/2):1-7.
42. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301-27.
43. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018; 3(1):35-46.
44. Bakhtiari M, Enferadi M, Sadeghi M. Accelerator production of the positron emitter 89Zr. Annals of Nuclear Energy. 2012; 41:93-107.
45. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009; 36(7):729-39.
46. McCarthy DW, Shefer RE, Klinkowstein RE, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997; 24:35-49.
47. Pandey MK, Byrne JF, Jiang H, Packard AB, De Grado TR. Cyclotron production of 68Ga via the 68Zn(p,n)68Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging. 2014;4(4):303-10.
48. Walczak R, Krajewski S, Szkliniarz K, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys. 2015; 2:33-43.
49. Qaim M. Development of cyclotron radionuclides for medical applications: from fundamental nuclear data to sophisticated production technology. In: Proc of 15th Int Workshop on targetry and target chemistry. Prague: 2014. 18-20.
50. Pillai MRA, Dash A, Knapp FFJr. Radionuclide generator: ready source diagnostic and therapeutic radionuclides for nuclear medicine applications. In: Radiopharmaceuticals: application, insights and future. Ed. by R Santos-Oliveria. Lambert Academic Publishing. 2016. 63-118.
51. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radio­pharmaceuticals. Radiochim Acta. 2010; 98(3):149-56.
52. Jalilian AR. The application of unconventional PET tracers in nuclear medicine. Iran J Nucl Med. 2009; 17(1):1-11.
53. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
54. Tlostanova MS, Khodjibekova MM, Panfilenko AA, et al. Capabilities of combined positron emission and computer tomography in diagnosis of neuroendocrine tumors: first experience of using of native synthesis module 68Ga‑DOTA-TATE. STM. 2016; 8(4):51-8. (In Russian).
55. Severin GW, Fonslet J, Jensen AI, Zhuravlev F. Hydroliticaly stable titanium-45. In: WTTC15 Proc. Prague: 2014. 103-6.
56. Weineisen M, Schottelius M, Simecek J, et al. 68Ga‑ and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostics concept and first proof-of-concept human studies. J Nucl Med. 2015; 56(8):1169-76.
57. Devillet FG, Geets J-M, Ghyoot M, et al. Performance of IBA new conical shaped niobium [18O] water targets. In: Cyclotrons 2013 Proc. Vancouver: 2013. 406-8.
58. Zeisler SK, Becker DW, Pavan RA, et al. A water-cooled spherical niobium target for the production of [18F] fluoride. Appl Radiat Isot. 2000; 53(3):449-53.
59. Smith SV, Jones M, Holmes V. Production and selection of metal PET radioisotopes for molecular imaging. In: Radioisotopes – applications in biomedical science. Chapter 10. Ed. N. Singh. 2011: available from: http: //www.intechopen. com/books/radioisotopes-applications-in-bio-medical-science/production-and-selection-of-metal-pet-radioisotopes-for-molecular imaging.
60. Hoehr C, Oehlke E, Hou H, et al. Production of radiometals in liquid target. In: WTTC15 Proc. Prague: 2014. P. 41-2.

For citation: Khmelev AV. Analysis of Positron Emission Tomography Providing with Radionuclides. Medical Radiology and Radiation Safety. 2019;64(6):70–81. (in Russian).

DOI: 10.12737/1024-6177-2019-64-6-70-81

PDF (RUS) Full-text article (in Russian)