Medical Radiology and Radiation Safety. 2022. Vol. 67. № 6


I.Yu. Petrakova1, I.E. Tyurin2,3, M.F. Gubkina1,4

Visualization of the Pathology of the Chest Organs in Children
and the Possibility of Reducing Radiation Exposure

1Central Research Institute of Tuberculosis, Moscow, Russia

2N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia

3Russian Medical Academy of Continuous Professional Education, Moscow, Russia

4N.I. Pirogov Russian National Research Medical University, Moscow, Russia

Contact person: I.Yu. Petrakova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.



Possibilities of alternative imaging methods without the use of ionizing radiation

Possibilities of optimizing the radiation load in diagnostic methods using ionizing radiation

Features of the organization of work during the examination of children and anesthesiological support


Keyworlds: children, radiation load, chest, visualization

For citation: Petrakova IYu, Tyurin IE, Gubkina MF. Visualization of the Pathology of the Chest Organs in Children and the Possibility of Reducing Radiation Exposure. Medical Radiology and Radiation Safety. 2022;67(6):79–85. (In Russian). DOI:10.33266/1024-6177-2022-67-6-79-85



1. Communicating Radiation Risks in Paediatric Imaging // World Health Organization. 2016. URL: http:// (Date of Access: 10.05.2022).

2. Barkovskiy A.N., Akhmatdinov Ruslan R., Akhmatdinov Rustam R., et al. Radiation Doses of the Population of the Russian Federation in 2019. Information Collection. St. Petersburg Publ., 2020. 70 p. (In Russ.).

3. Brenner D., Elliston C., Hall E., Berdon W. Estimated Risks of Radiation-Induced Fatal Cancer from Pediatric CT. AJR Am. J. Roentgenol. 2001;176:289-296. /10.2214/ ajr.176.2.1760289.

4. Berrington de González A., Mahesh M., Kim K.P., Bhargavan M., Lewis R., Mettler F., et al. Projected Cancer Risks from Computed Tomographic Scans Performed in the United States in 2007. Arch. Intern. Med. 2009;169;22:2071-2077. /10.1001/archinternmed.2009.440. 

5. Hendee W.R., O’Connor MK. Radiation Risks of Medical Imaging: Separating Fact from Fantasy. Radiology 2012;264:312-321. 

6. URL: http:// (Date of Access: 11.05.2022).

7. Meulepas J.M., Ronckers C.M., Smets A.M.J.B., et al. Radiation Exposure from Pediatric CT Scans and Subsequent Cancer Risk in the Netherlands. J. Natl. Cancer Inst. 2019;111;3:256-263. /10.1093/jnci/djy104. 

8. Nikkilä A., Raitanen J., Lohi O., Auvinen A. Radiation Exposure from Computerized Tomography and Risk of Childhood Leukemia: Finnish Register-Based Case-Control Study of Childhood Leukemia (FRECCLE). Haematologica. 2018;103;11:1873-1880. /10.3324/haematol.2018.187716. 

9. Neklyudova G.V., Naumenko Zh.K.. Ultrasound Diagnostic Opportunities in Pulmonology. Pulmonologiya = Russian Pulmonology Journal. 2017;27;2:283-290. (In Russ.).

10. Lakhin R.Ye., Shchegolev A.V., Zhirnova Ye.A., et al. Characteristics of Ultrasound Signs in the Diagnosis of the Volume and Nature of Lung Damage. Vestnik Intensivnoy Terapii Imeni A.I. Saltanova = Annals of Critical Care. 2016;4:5–11 (In Russ.).

11. Stepanova O.A., Safina A.I. Ultrasound Diagnostics in Neonatal Intensive Care and Intensive Care Units. Vestnik Sovremennoy Klinicheskoy Meditsiny = The Bulletin of Contemporary Clinical Medicine. 2014;6:92-97 (In Russ.).

12. Glagolev N.A. Complex (CT and Ultrasound) Detection of Peripheral Neoplasms of the Chest. Pulmonologiya = Russian Pulmonology Journal. 2007;5:114-120.
(In Russ.).

13. Bakhodurov D.T., Ibodov Kh.I., Rofiyev R.R., et al. Ultrasound Scanning as an Effective Way to Diagnose Exudative Pleurisy in Children. Vestnik Poslediplomnogo Obrazovaniya v Sfere Zdravookhraneniya = Scientific and Practical Journal of Tajik Institute of Post-Graduate Education of Medical Staff. 2015;2:18-21 (In Russ.).  

14. Bakhodurov D.T., Ibodov Kh.I., Rofiyev R.R., et al. The Possibilities of Ultrasound Imaging in Complex Diagnostics of Neonatal Lung Diseases. Trudnyy Patsiyent = Difficult Patient. 2017;15;8-9:32-39 (In Russ.).

15. Petrikov S.S., Popugayev K.A., Khamidova L.T., et al. First Experience of Lung Ultrasound Application in Patients with Acute Viral Infection Caused by SARS-CoV-2. Meditsinskaya Vizualizatsiya = Medical Visualization. 2020;24;2:50-62. (In Russ.).

16. Strokova L.A., Yegorov Ye.Yu. Experience in Conducting Lung Ultrasound in Community-Acquired Pneumonia COVID-19. Luchevaya Diagnostika i Terapiya = Diagnostic Radiology and Radiotherapy. 2020;11;2:99-106. (In Russ.).

17. Denina M., Scolfaro C., Silvestro E., et al. Lung Ultrasound in Children With COVID-19. Pediatrics. 2020;146;1: e20201157.

18. Chuyashenko Ye.V., Zavadovskaya V.D., Ageyeva T.S., et al. Lung Ultrasonography in Pneumonia. Sibirskiy Zhurnal Klinicheskoy i Eksperimentalnoy Meditsiny = The Siberian Journal of Clinical and Experimental Medicine. 2019;34;1:78-84. (In Russ.).

19. Yan C., Hui R., Lijuan Z., Zhou Y. Lung Ultrasound vs. Chest X-Ray in Children with Suspected Pneumonia Confirmed by Chest Computed Tomography: A Retrospective Cohort Study. Exp. Ther. Med. 2020;19;2:1363-1369. /10.3892/etm.2019.8333.

20. Safonov D.V., Dianova T.I., Rodionov V.A., Gerasimova L.A. X-Ray-Ultrasound Comparisons and Dynamic Echographic Control in Pneumonia in Children. Nauchnyy Zhurnal KubGAU = Scientific Journal of KubSAU. 2014;104:1591-1605 (In Russ.). 

21. Tukhbatullin M.G., Valiyev R.Sh., Shamshurova Ye.S.. X-ray Ultrasound Picture in Infiltrative Pulmonary Tuberculosis. Prakticheskaya Meditsina = Practical Medicine. 2014;3:139-142. URL: (In Russ.).

22. Gulla K.M., Gunathilaka G., Jat K.R., Sankar J., Karan M., Lodha R., Kabra S.K. Utility and Safety of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration and Endoscopic Ultrasound with an Echobronchoscope-Guided Fine Needle Aspiration in Children with Mediastinal Pathology. Pediatr Pulmonol. 2019;54;6:881-885. /10.1002/ppul.24313. 

23. Gilbert C.R., Chen A., Akulian J.A., Lee H.J., Wahidi M., Argento A.C., Tanner N.T., Pastis N.J., Harris K., Sterman D., Toth J.W., Chenna P.R., Feller-Kopman D., Yarmus L. The Use of Convex Probe Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in a Pediatric Population: a Multicenter Study. Pediatr. Pulmonol. 2014;49;8:807-815. /10.1002/ppul.22887. 

24. Filatova T.I. Informativeness of Computer and Magnetic Resonance Imaging in the Diagnosis of Enterogenic Mediastinal Cysts. Byulleten Meditsinskikh Internet-Konferentsiy = Bulletin of Medical Internet Conferences. 2013;2. URL: https:// (Date of Access: 12.05.2022) (In Russ.).

25. Kotlyarov P.M., Lagkuyeva I.D., Sergeyev N.I., Solodkiy V.A. Magnetic Resonance Imaging for Diagnostics of Lung Diseases. Pulmonologiya = Russian Pulmonology Journal. 2018;28;2:217–223. /10.18093/0869-0189-2018-28-2-217-223 (in Russ.).  

26. Kotlyarov P.M., Lagkuyeva I.D., Sergeyev N.I., et al. The Technique of Magnetic Resonance Imaging with Dynamic Contrast Enhancement with Focal Benign Lung Formation. Luchevaya Diagnostika i Terapiya = Diagnostic Radiology and Radiotherapy. 2018;3:69-74. (In Russ.).

27. Akhadov T.A., Guryakov S.YU., Ublinskiy M.V. Magnetic Resonance Imaging in Study of Lungs. Meditsinskaya Vizualizatsiya = Medical Visualization. 2019;4:10-23. (In Russ.).

28. Stashuk G.A., Dubrova S.E., Adel Salem Ali Numan. Differential Diagnosis of Intrathoracic Lymph Node Lesions in Lymphomas. Vestnik Rentgenologii i Radiologii = Journal of Radiology and Nuclear Medicine. 2008;4–6:16–24 (In Russ.).

29. Abdel Razek A.A., Elkammary S., Elmorsy A.S., Elshafey M., Elhadedy T. Characterization of Mediastinal Lymphadenopathy with Diffusion-Weighted Imaging. Magn. Reson. Imaging. 2011;29;2:167–172. 10.1016/j.mri.2010.08.002.

30. Sudarkina A.V., Dergilev A.P., Kozlov V.V., et al. Differential Diagnosis of Mediastinal Lymphadenopathy in Lymphoma and Sarcoidosis Using Diffusion-Weighted Magnetic Resonance Imaging. Luchevaya Diagnostika i Terapiya = Diagnostic Radiology and Radiotherapy. 2020;11;3:56-62. (In Russ.).

31. Lesnyak V.N., Zhuravleva V.A., Averyanov A.V. The Capabilities of MRI in the Lung Lesions Diagnosis in Patients with COVID-19. Klinicheskaya Praktika = Journal of Clinical Practice. 2020;11;2:51–59. 10.17816/ clinpract34843 (In Russ.).

32. Wielpütz M.O., Puderbach M., Kopp-Schneider A., Stahl M., Fritzsching E., Sommerburg O., Ley S., Sumkauskaite M., Biederer J., Kauczor H.U., Eichinger M., Mall M.A. Magnetic Resonance Imaging Detects Changes in Structure and Perfusion, and Response to Therapy in Early Cystic Fibrosis Lung Disease. Am. J. Respir. Crit. Care Med. 2014;189;8:956-965. 10.1164/rccm.201309-1659OC. 

33. Pennati F., Roach D.J., Clancy J.P., et al. Assessment of Pulmonary Structure-Function Relationships in Young Children and Adolescents with Cystic Fibrosis by Multivolume Proton-MRI and CT. J. Magn. Reson. Imaging.. 2018;48;2:531-542.

34. Ciet P., Tiddens H.A., Wielopolski P.A., et al. Magnetic Resonance Imaging in Children: Common Problems and Possible Solutions for Lung and Airways Imaging. Pediatr Radiol. 2015;45;13:1901-1915.

35. Roach D.J., Crémillieux Y., Fleck R.J., Brody A.S., Serai S.D., Szczesniak R.D., Kerlakian S., Clancy J.P., Woods J.C. Ultrashort Echo-Time Magnetic Resonance Imaging Is a Sensitive Method for the Evaluation of Early Cystic Fibrosis Lung Disease. Ann. Am. Thorac. Soc. 2016;13;11:1923-1931. 

36. Miroshnichenko S.I., Kovalenko Yu.N., Chernetsov V.B. Replacement of Fluorography with Screening Digital Radiography. Poliklinika. 2016;6:19-22 (in Russ).

37. Nikitin M.M. The Possibilities of Digital Tomosynthesis in the Diagnosis of Various Forms of Pulmonary Tuberculosis. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiology. 2016;6;1:35–47. (In Russ.).

38. Kruamak T., Edwards R., Cheng S., et al. Accuracy of Digital Tomosynthesis of the Chest in Detection of Interstitial Lung Disease Comparison with Digital Chest Radiography. Comparative Study. J. Comput. Assist. Tomogr. 2019;43;1:109–114.

39. Kim J.H., Lee K.H., Kim K.T., et al. Comparison of Digital Tomosynthesis and Chest Radiography for the Detection of Pulmonary Nodules: Systematic Review and Meta-Analysis. Br. J. Radiol. 2016;89;1068:20160421. 10.1259/bjr.20160421.

40. Simonovskaya Kh.Yu., Zaytseva O.V., Sholokhova N.A. Opportunities for Solving Relevant Diagnostic Problems in Pediatrics with the Use of Digital Chest Tomosynthesis. Pediatriya. Zhurnal im. G.N. Speranskogo = Pediatrics Journal Named After G.N. SPERANSKY. 2020;99;2:112-117 (In Russ.).

41. Matkevich Ye.I., Sinitsyn V.Ye., Ivanov I.V. Napravleniya Optimizatsii Luchevoy Nagruzki pri Kompyuternoy Tomografii = Directions of Optimization of Radiation Load in Computed Tomography. Scientific and Practical Guide. Moscow-Voronezh, Elist Publ., 2018. 200 p.

42. Aschoff A.J., Catalano C., Kirchin M.A., Krix M., Albrecht T. Low Radiation Dose in Computed Tomography: the Role of Iodine. Br. J. Radiol. 2017;90;1076:20170079. 10.1259/bjr.20170079.

43. Strauss K.J., Goske M.J., Kaste S.C., Bulas D., Frush D.P., Butler P., et al. Image Gently: Ten Steps You Can Take to Optimize Image Quality and Lower CT Dose for Pediatric Patients. AJR American Journal of Roentgenology. 2010;194;4:868–873. 

44. Silin A.Yu., Gruzdev I.S., Morozov S.P. The Influence of Model Iterative Reconstruction on the Image Quality in Standard and Low-Dose Computer Tomography of the Chest. Experimental Study. Klinicheskaya Praktika = Journal of Clinical Practice. 2020;11;4:49–54. doi: 10.17816/clinpract34900) (In Russ.).

45. Ichikawa Y., Kitagawa K., Nagasawa N., Murashima S., Sakuma H. CT of the Chest with Model-Based, Fully Iterative Reconstruction: Comparison with Adaptive Statistical Iterative Reconstruction. BMC Med. Imaging. 2013;13:27. 

46. den Harder A.M., Willemink M.J., Budde R.P., Schilham A.M., Leiner T., de Jong P.A. Hybrid and Model-Based Iterative Reconstruction Techniques for Pediatric CT. AJR. Am. J. Roentgenol. 2015;204;3:645-53. 

47. Rampinelli C., Origgi D., Vecchi V., Funicelli L., Raimondi S., Deak P., Bellomi M. Ultra-Low-Dose CT with Model-Based Iterative Reconstruction (MBIR): Detection of Ground-Glass Nodules in an Anthropomorphic Phantom Study. Radiol. Med. 2015;120;7:611-617. 10.1007/s11547-015-0505-5.

48. Nakajo C., Heinzer S., Montandon S., Dunet V., Bize P., Feldman A., Beigelman-Aubry C. Chest CT at a Dose Below 0.3 mSv: Impact of Iterative Reconstruction on Image Quality and Lung Analysis. Acta. Radiol. 2016;57;3:311-317. 

49. Padole A., Singh S., Ackman J.B., Wu C., Do S., Pourjabbar S., Khawaja R.D., Otrakji A., Digumarthy S., Shepard J.A., Kalra M. Submillisievert Chest CT with Filtered Back Projection and Iterative Reconstruction Techniques. AJR. Am. J. Roentgenol. 2014;203;4:772-781. /10.2214/AJR.13.12312. 

50. Sun J., Zhang Q., Hu D., et al. Feasibility Study of Using One-Tenth mSv Radiation Dose in Young Children Chest CT with 80 kVp and Model-Based Iterative Reconstruction. Sci. Rep. 2019;9:12481.

51. Villanueva-Meyer J.E., Naeger D.M., Courtier J.L., et al. Pediatric Chest CT at Chest Radiograph Doses: When Is the Ultralow-Dose Chest CT Clinically Appropriate? Emerg. Radiol. 2017;24;4:369-376. /10.1007/s10140-017-1487-5.

52. Kiratli P.Ö., Tuncel M., Bar-Sever Z. Nuclear Medicine in Pediatric and Adolescent Tumors. Semin. Nucl. Med. 2016;46;4:308-323. 

53. Malherbe S.T., Shenai S., Ronacher K., Loxton A.G., Dolganov G., Kriel M., et al. Persisting Positron Emission Tomography Lesion Activity and Mycobacterium Tuberculosis mRNA after Tuberculosis Cure. Nat. Med. 2016;22;10:1094-1100. 

54. Chipiga L.A., Zvonova I.A., Ryzhkova D.V., et al. Levels of Patient Exposure and a Potential for Optimization of the Pet Diagnostics in the Russian Federation. Radiatsionnaya Gigiyena = Radiation Hygiene. 2017;10;4:31-43. (In Russ.).

55. Petryaykin A.V., Razumovskiy A.Yu., Ublinskiy M.V., et al. Multispiral Computed Tomography with Contrast Enhancement in the Diagnosis of Surgical Diseases of the Thoracic Cavity in Children. Detskaya Khirurgiya = Russian Journal of Pediatric Surgery. 2013;4:9-15 (In Russ.).

56. Khasanova K.A., Tyurin I.E., Ryzhov S.A., Kizhayev Ye.V. Radiation Dose Reduction in Pediatric Computed Tomography. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2019;64;1:38-44. /10.12737/article_5c55fb466d7532.24221014 (In Russ.).

57. Stranzinger E., Schindera S., Cullmann J., Herrmann R., Schmitz S., Wolf R. Pediatric CT of the Lung: Influences on Image Quality. Open Journal of Radiology. 2013;3;1:45-50. /10.4236/ojrad.2013.31007.

58. Schulte-Uentrop L., Goepfert M.S. Anaesthesia or Sedation for MRI in Children. Curr. Opin. Anaesthesiol. 2010;23;4:513–517.

59. Serafini G., Zadra N. Anaesthesia for MRI in the Paediatric Patient . Curr. Opin. Anaesthesiol. 2008;21;4:499–503.

60. Panteleyeva M.V., Ovezov A.M., Kotov A.S., et al. Postoperative Cognitive Dysfunction in Children (Literature Review). RMZH (Russkiy Meditsinskiy Zhurnal). 2018;9:52–56 (In Russ.). 


 PDF (RUS) Full-text article (in Russian)


Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.07.2022. Accepted for publication: 25.09.2022.