Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 66-78


DOI: 10.12737/article_59b10b5ea417a6.00174966

The Drugs and Natural Antioxidants as the Components of Anti-Radiation Countermeasures During Space Flights

I.B. Ushakov1, M.V. Vasin2

1. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Russian Medical Academy of Continuous Professional Education of the Ministry of Health Care of the Russian Federation, Moscow

I.B. Ushakov – Chief Scientific Researcher, Member of RAS, Dr. Sc. Med., Prof., M.V. Vasin – Honoured Science Worker of the Russian Federation, Dr. Sc. Med., Prof.


Radiation situation for cosmonauts over long-term space flights is caused by low-rate radiation of galactic cosmic rays and solar cosmic rays consisting of high-energy proton as well as heavy particles (Z>10) within 1–2 % that is exclusively a threat of stochastic radiation effects (small increase of cancer risk and decrease of mean life span) for men. During interplanetary expedition periods the small probability of raised solar activity occurring approximately every 11 years there is a threat of exposure to astronauts at doses that cause deterministic radiation effects leading to the development of the disease as a clinical manifestation of radiation injuries. In a similar scenario it is necessary to have available to spaceship anti-radiation countermeasures for astronaut protection. Among personal radioprotective equipment can be provided with radiation protective agents and partial shielding of body separate section providing the best condition for post-radiation repair of radiosensitive body tissues. Preparation B-190 (indralin) is the most perspective from a small number of other radioprotectors permitting for men administration. Besides high radioprotective efficacy and large broadness of radioprotective action B-190 is well tolerated including the impact of extreme flight factors. Antiemetic agent latran (ondansetron) is most interesting among preparation for prophylaxis and reduction of prodromal radiation reaction. To accelerate post-radiation hematopoietic recovery after raised solar activity an administration of radiomitigators (riboxin et al.) is substantiated. Neupomax (neupogen) is recommended as a preparation for pathogenesis therapy of acute radiation syndrome. Possible consequences of long-term space voyages for oxidative stress development are taken into consideration. On their basis of natural antioxidants, preparations and nutrients as radiomodulators, fully qualitative nutrition including vegetable food enriched flavonoids, vitamins C, E and carotene potentially prevent a shorten of cosmonaut biological age induced by solar cosmic rays and galactic cosmic rays and stress factors of long-term cosmic voyages. Radiomodulators are low and non-toxic and have not side effects in recommended doses. Their radioprotective effect is directly induced by adaption reaction on cellular and organismic levels through gene expression modulation and in that way the increase of non-specific body tolerance. The implementation of radiomodulator action is possible through hormesis mechanism.

Key words: space radiation, manned space flights, radiation protective agents, indralin, latran (ondansetron), neupomax (filgrastim), natural antioxidants


  1. Comstock G.M., Fan C.Y., Simpson J.A. Energy spectra and abundances of the cosmic-ray nuclei helium to iron from the OGO-1 satellite experiment. Astrophys. J. 1969. Vol. 155. P. 609–617.
  2. Maalouf M., Durante M., Foray N. Biological effects of space radiation on human cells: history, advances and outcomes. A general review. J. Radiat. Res. 2011. Vol. 52. P. 126–246.
  3. Durante M. Physical and biomedical countermeasures for space radiation risk. Z. Med. Phys. 2008. Vol. 18. P. 244–252.
  4. Durante M., Cucinotta F. A. Heavy ion carcionegensis and human space exploration. Nature Rev. Cancer. 2008. Vol. 8. P. 465–472.
  5. Shafirkin A.V. [Biological effectiveness of fission spectrum neutrons and protons with energies 60–126 MeV during acute and prolonged irradiation]. Aviakosm. Ekolog. Med. 2015. Vol. 49. No. 6. P. 5–13. (In Russ.).
  6. Shafirkin A.V., Kolomenskii A.V., Mitrikas V.G., Petrov V.M. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development]. Aviacosm. Ecolog. Med. 2010. Vol. 44. No. 1. P. 5–14. (In Russ.).
  7. Petrov V.M. Problems and conception of ensuring radiation safety during Mars missions. Adv. Space Res. 2004. Vol. 34. No. 6. P. 1451–1454. (In Russ.).
  8. Ushakov I.B., Petrov V.M., Shafirkin A.V., Shtemberg A.S. [Problems of ensuring human radiation safety during interplanetary flights] . Radiats. Biol. Radioecol. 2011. Vol. 51. No. 5. P. 595–610. (In Russ.).
  9. Shafirkin A.V., Grigoriev Yu. G. Radiobiological foundation of crew radiation risk for Mars mission to the problem of the space flight safety. Amer. J. Life Sci. Special issue: Space flight factors: from cell to body. 2015. Vol. 3. No. 1–2. P. 32–42. doi: 10.11648/j.ajls.s. 2015030102.16.
  10. Carnell L., Blatting S., Hu S. et al. Evidence Report: Risk of Acute Radiation Syndromes due to Solar Particle Events.. NASA Technical Report JSC-CN-35747. 2016. 66 p.
  11. Haskin F.E., Harper F.T., Gooseens L.H et al. Probabilistic accident consequence uncertainty analysis: Early health effects uncertainty assessment. Main Report. NUREG/CR-6545, EUR 15855 Vol. 1. Washington: US Nuclear Regulatory Commission, DC. 1997.
  12. Kim M.Y., De Angelis G., Cucinotta F.A. Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronautica. 2011. Vol. 68. P. 747–759.
  13. Romero-Weaver A.L., Wan X.S., Diffenderfer E.S. et al. Effect of SPE-like proton and photon radiation on the kinetics of mouse peripheral blood cells and radiation biological effectiveness determinations. Astrobiology. 2013. Vol. 13. P. 570–577.
  14. Ushakov I.B., Vasin M.V. [Radiation protectors within the radiation safety system for extended duration exploration missions]. Aviakosm. Ekolog. Med. 2011. Vol. 45. No. 3. P. 3–12. (In Russ.).
  15. Frank G.M., Saksonov P.P., Antipov V.V., Dobrov N.N. Radiobiological problems in space flights.. In: Proc. First Internat. Symposium on “Basic environmental problems of man in space”. Paris. 19.10–2.11 1962. Ed. By H. Bjurstadt. New York: Springer-Verlag. 1965. P. 240–264.
  16. Saksonov P.P., Antipov V.V., Shashkov V.S. et al. On the biological effects high-energy protons. 14th Int. Astronautical Congress. Paris. 25.09–1.10 1963. Washington: NASA Report CR 15202. 1963.
  17. Saksonov P.P., Antipov V.V., Davydov B.I. [Essay of space radiobiology. Problems of space biology]. Vol. 9. Moscow: Nauka. 1968. 532 p. (In Russ.).
  18. Saksonov P.P., Antipov V.V., Davydov B.I., Dobrov N.N. [Protection of cosmonauts from cosmic radiation by radioprotectors]. Kosm. Biol. Med. 1970. Vol. 4. No. 5. P. 17–19. (In Russ.).
  19. Saksonov P.P. Protection against radiation (biological, pharmacological, chemical, physical).. In: Foundation of Space Biology and Medicine. Vol. 3. Ed. by M. Calvin, O.G. Gazenko. Washington: NASA. 1975. P. 316–347.
  20. Saksonov P.P., Shashkov V.S., Sergeev P.V. [Radiation pharmacology]. Moscow: Medistina. 1976. 255 p. (In Russ.).
  21. Kuznestov V.I., Tank L.I. [Pharmacology and clinic application of aminothiols] / Moscow: Medistina. 1966. 169 p. (In Russ.).
  22. Shashkov V.S., Vasin M.V. Saksonov P.P., Kozlov V.A. [Pharmacological properties of radioprotective agents ]. Farmakol. Toksikol. 1967. Vol. 30. No. 1. P. 109–117. (In Russ.).
  23. Torrisi A.T., Kligerman P., Glover DJ. et al. I phase of clinical investigation of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F.Nygaard. New York: Acad. Press. 1983. P. 681–694.
  24. Glick J.H., Glover D.J., Torrisi A.T. Phase I trials of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F. Nygaard. New York: Acad. Press. 1983. P. 719–734.
  25. Antipov V. cystamine V., Vasin M.V., Davydov B.I., Saksonov P.P. [The influence of overloads to cystamine sensitivity]. Izvestiia AN SSSR Ser. Biol. 1969. No. 3. P. 434–437. (In Russ.).
  26. Antipov V.V., Vasin M.V., Davydov B.I. et al. Study of reactivity of the organism exposed to transverse accelerations and radioprotectants. Aerosp. Med. 1971. Vol. 42. No. P. 837–839.
  27. Vasin M.V., Antipov V.V., Davydov B.I., Saksonov P.P. [Mouse sensitivity to radioprotectors from family of indolylalkylamines and aminothiols during afteraction of tranverse accelerations] . In. “Problems of space biology”. Eds. P.P. Saksonov, B.I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 53–57. (In Russ.).
  28. Davydov B.I., Daidamakin N.A. [The influence of radioprotective agents from the family of mercapthoalkylamines (cystamine S, b-aminoethylisothiuronium) to animal reactiveness transverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 1–29. (In Russ.).
  29. Davydov B.I., Kozlov V.A. [The influence of mononitrate salt g-amineethylthiophosphoric acid to animal resistance with transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 30–32. (In Russ.).
  30. Kozlov V.A., Davydov B.I. [The influence of radioprotectors from the family of aminothiols to guinea pig heart function during overloads] . In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 33–39. (In Russ.).
  31. Davydov B.I. [Reactivity of irradiated animals protected by mercapto-(cystamine, cystafos) and indolylalkylamines (mexamine, serotonin) to transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. Vol. 14. P. 410–421. (In Russ.).
  32. Kolemeeva L.Ya., Shashkov V.S., Egorov B.B. [Radioprotective effect of mexamine and cystamine in animals during hypokinesia and ionizing irradiation]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 6. P. 78–79. (In Russ.).
  33. Vorobyev E.I., Efimov V.I., Karsanova S.K. [Radioprotetor effect on body reactiveness during space flight factors]. Kosm. Biol. Aviakosm. Med. 1982. Vol. 16. No. 1. P. 4–12. (In Russ.).
  34. Vasin M.V., Lebedeva N.N. [Cystamine influence to men-operator capacity]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 5. P. 54–57. (In Russ.).
  35. Badyugin I.S., Zabrodskii P.F., Polyarush V.P. et al. [Military toxicology, radiology and protection from weapon of mass defeat]. Ed. I.S. Badyugin. Moscow: Military publishers. 1992. 336 p. (In Russ.).
  36. Belay V.E., Vasilyev P.V., Saksonov P.P. [Material to comparative pharmacological characteristic of various salts of mercamine]. Farmakol. Toksikol. 1960, Vol. 23. P. 450–453. (In Russ.).
  37. Yarmonenko S.P., Avrunina G,A., Shashkov V.S., Govorun R.D. [Study of biological protection from high energy proton irradiation. Radiobiologiia. 1962. Vol. 2. P. 188–192. (In Russ.).
  38. Shashkov V.S. Saksonov P.P., Antipov V.S. [Comparative radioprotective effects of mercapto- and indolylalkylamines during gamma-irradiation and proton irradiation of high energy 660 and 120 MeV]. Farmakol. Tiksikol. 1965. Vol. 28. No.3. P. 350–351.
  39. Shashkov V.S., Morosov V.S. Injurious effect of 660 and 120 MeV protons and the efficacy of pharmacological and chemical protection. NASA Technical Report No. 66-1926609-04. 1966.
  40. Rogozkin V.D., Sbitneva M.V. [To prophylactic and therapeutic effect of vitamins from family of B during acute radiation disease. In: Question of pathogenesis, experimental therapy and prophylaxis of radiation disease]. Moscow: Medgiz. 1960. P. 182–190. (In Russ.).
  41. Rogozkin V.D. [The use of vitamin-amino acid complex during proton irradiation in non-lethal doses // In: Biological effect of high energy proton]. Moscow: Atomizdat. 1967. P. 417–433. (In Russ.).
  42. Rogozkin V.D., Sbitneva M.V., Shapiro G.A. et al. [The experiance of prophylactic agent use during irradiation imitated radiation injury in space flight]. Kosm. Biol. Med. 1970. Vol. 4. No. 2. P. 20–24. (In Russ.).
  43. Rogozkin V.D., Tikhomirova M.V., Davydova S.A. et al. [The effectiveness of aminotetravit and adenosine triphosphate acid in the condition of prolonged irradiation]. Kosm. Biol. Aviakosm. Med. 1974. Vol. 8. No. 3. P. 11–14. (In Russ.).
  44. Tikhomirova M.V., Rogozkin V.D. [The effectiveness of use of ATP, antibiotics and vitamins during prolonged monkey irradiation]. Radiobiologiia. 1977. Vol. 17. No. 3. P. 400–403. (In Russ.).
  45. Tikhomirova M.V., Yashkin P.N. [Comparative radioprotective efficacy of adenylates during short-term and prolonged irradiation]. Radiobiologiia. 1983. Vil. 23. No. 1. P. 100–104. (In Russ.).
  46. Tikhomirova M.V., Yashkin P.N., Fedorenko B.S., Chertkov K.S. [Radioprotective efficacy of ATP and adenosine at high energy proton irradiation]. Kosm. Biol. Aviakosm. Med. 1984. Vol. 18. No. 5. P. 75–77. (In Russ.).
  47. Chertkov K.S., Petrov V.M. Pharmaco-chemical protection and substitutive therapy as composite part of cosmonaut radiation safety system during an expedition to Mars. Aviakosm. Ekolog. Med. 1993. Vol. 27. No. 5–6. P. 27–32. (In Russ.).
  48. Vasin M.V. Search and study of new effective agents of pharmaco-chemical body protection from ionizing radiation injury. Diss. D. Sc. Med. Moscow: State Sc test Institute of avation and space medicine. 1977. 510 p. (In Russ.).
  49. Ilyin L.A. Reality and myth. Moscow: ALARA Limited. 1994. 448 p. (In Russ.).
  50. Ilyin L.A., Rudny N.M., Suvorov N.N. et al. [Indralin – radioprotector of emergency action. Radioprotective properties, pharmacology, mechanism of action, clinic]. Moscow. 1994. 436 p. (In Russ.).
  51. Shashkov V.S., Efimov V.I., Vasin M.V. et al. [Indralin as new effective radioprotector during high energy proton irradiation]. Aviakosm. Ekolog. Med. 2010. Vol. 44. No. 1. P. 15–20. (In Russ.).
  52. Shashkov V.S., Karsanjva S.K., Yasnestov V.V. [Protective effect of radioprotectors and shielding during high energy proton irradiation on experiments with rats]. Aviakosm. Ekolog. Med. 2008. Vol. 42. No. 2. P. 58–60. (In Russ.).
  53. Bacq Z. Chemical protection against ionizing radiation. Springfield: Tomas Press.1965. Transf. on Russ. 1968. 263 p.
  54. Vladimirov V.G. [Radioprotectors and their modern classification]. Voenn-Med. Zhurn. 1978. No. 6. P. 39–43. (In Russ.).
  55. Vasin M.V. [Classification of radiation protective agents as a basis of modern radiation pharmacology]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 212–222. (In Russ.).
  56. Stone H., Moulder J., Coleman C. et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, Dec. 3–4. 2003. Radiat. Res. 2004. Vol. 162. No. 6. P. 711–728.
  57. Vasin M.V. [Classification of radiation protective agents as a reflection up-to-day state and perspective of radiation pharmacology development]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 5. P. 459–467. (In Russ.).
  58. Vladimirov V.G. Dzharakyan T.G. Radioprotective effects on animal and men. ˯scow: Energoatomizdat. 1982. 88 p. (In Russ.).
  59. Vasin M.V. Radioprotective drugs. Moscow: Russian medical academy of post-graduated education. 2010. 180 p. (In Russ.).
  60. Vasin M.V., Ushakov I.B., Koroleva L.V., Antipov V.V. [The role of cell hypoxia in the effect of radiation protectors]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 238–248. (In Russ.).
  61. Wasserman T.H., Brizel D.M. The role of amifostine as a radio­protector. Oncol. (Williston Park) 2001. Vol. 15. P. 1349–1354.
  62. Copp R.R., Peebles D.D., Soref C.M. et al. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int. J. Radiat. Biol. 2013. Vol. 89. No. 7. P. 485–492.
  63. Vasin M.V., Antipov V.V., Chernov G.A. et al. [Studies of the radiation-protective effects of indralin on the hematopoietic system of different species of animals]. Radiats. Biol. Radioecol. 1996. Vol. 36. No. 2. P. 168–189. (In Russ.).
  64. Vasin M.V., Chernov G.A., Antipov V.V. [Width of radiation protective effects of indralin in comparative studies using different animal species]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 6. P. 896–904. (In Russ.).
  65. Vasin M.V., Semenov L.F., Suvorov N.N. et al. Protective effect and the therapeutic index of indralin in juvenile monkeys. J. Radiat. Res. 2014. Vol. 55. No. 6. P. 1048–1055. doi: 10.1093/jrr/rru046.
  66. Vasin M.V. Medicine for prophylaxis and therapy of radiation injuries. Moscow: Russian medical academy of post-graduated education. 2006. 340 p. (In Russ.).
  67. Vasin M.V., Chernov G.A., Koroleva L.V. et al. [Mechanism of the radiation-protective effect of indralin] // Radiats. Biol. Radioecol. 1996. Vol. 36. 1. P. 36–46.
  68. Vasin M.V., Ushakov I.B., Semenova L.A., Kovtun V.Iu. [Pharmacologic analysis of the radiation-protecting effect of indraline] // Radiats Biol Radioecol. 2001. Vol. 41. 3. P. 307–309.
  69. Vasin M.V., Ushakov I.B., Kovtun V.Yu. Radioprotector indralin at early and late manifestation of local radiation injuries // Vopr. Onkol. 2016. Vol. 62. 3. P. 406–412.
  70. Pomerantseva M.D., Ramaĭia L.K., Vasin M.V., Antipov V.V. [Effect of indralin on genetic disruption induced by radiation in mice]. Genetika. 2003. Vol. 39. No. 9. P. 1293–1296. (In Russ.).
  71. Vartanian L.P., Krutovskikh G.N., Pustovalov Iu.I., Gornaeva G.F. [The radioprotective effect of riboxine (inosine)]. Radiobiologiia. 1989. Vol. 29. No. 5. P. 707–709. (In Russ.).
  72. Legeza V.I., Abdul Iu.A., Antushevich A.E. et al. [Clinical and experimental investigation on the radioprotective effect of riboxine in low-dose fractionated irradiation]. Radiats. Biol. Radioecol. 1993. Vol. 33. No. 6. P. 800–807. (In Russ.).
  73. Gudkov S.V., Gudkova O.Y., Chernikov A.V., Bruskov V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine.. Int. J. Radiat. Biol. 2009. Vol. 85. No. 2. P. 116–125.
  74. Popova NR, Gudkov SV, Bruskov VI. [Natural purine compounds as radioprotective agents]. Radiats. Biol. Radioecol. 2014. Vol. 54. No. 1. P. 38–49. (In Russ.).
  75. Virag L., Scabo C. Purines inhibit poly (ADP-ribose) polymerase activation and modulate oxidant induced cell death. FACEB J. 2001. Vol. 15. P. 99–107.
  76. Buckley S. Barsky L., Weinber K. In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia induced DNA damage through MAP kinase signaling. Amer. J. Physiol. 2005. Vol. 288. P. L569–L575.
  77. Gudkov S.V., Bruskov V.I. [Guanosine and inosine (riboxin). Antioxidative and radioprotective properties. Saarbrucken: LAMBERT Acad. Publ. 2011. 177 p. (In Russ.).
  78. Gudkov S.V., Shtarkman I.N., Smirnova V.S. et al. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice.. Radiat. Res. 2006. Vol. 165. P. 538–545.
  79. Rasgovorov P.L., Saksonov P.P., Antipov V.V. et al. [Modification of animal reactivity to some pharmacologic agents at the shielding of body part during whole irradiation. In. “Problems of space biology”]. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 175–185. (In Russ.).
  80. Vasin M.V. Potential role of non-uniformity of body absorption of ionizing radiation energy in the efficacy of radiation protective drugs. Med. Radiol. Radiast. Bezop. 2011. Vol. 56. No. 4. P. 60–70. (In Russ.).
  81. >
  82. Vasin M.V., Ushakov I.B., Kovtun V.Iu. et al. [Radioprotective properties of a radioprotector of emergency action indraline at its adminisration after irradiation in conditions of local shielding of a rat abdomen]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 199–201. (In Russ.).
  83. King G.L., Rabin B.M., Weatherspoon J.K. 5-HT3 receptor antagonists ameliorate emesis in the ferret evoked by neutron or proton radiation. Aviat. Space Environ. Med. 1999. Vol. 70. P. 485–492.
  84. Rozhdestvenskii L.M. [Cytokines in the aspect of pathogenesis and therapy of acute radiation sickness]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 4. P. 590–596. (In Russ.).
  85. Rozhdestvenskii L.M., Korovkina E.P., Deshevoi Iu.B. [Recombinant human interleukine-1beta (betaleukine) usage for acute radiation sickness of severe degree treatment at canines]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 185–194. (In Russ.).
  86. Grebenyuk A.N., Legeza V.I. Radioprotective properties of interleukin-1. Saint Petersburg: Foliant. 2012. 215 p. (In Russ.).
  87. Gluzman-Poltorak Z., Vainstein V., Basile L.A. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure. Amer. J. Hematol. 2014. Vol. 89. No. 9. P. 868–873.
  88. Farese A.M. , Cohen M.V., Stead R.B. et al. Pegfilgrastim administered in an abbreviated schedule, significantly improved neutrophil recovery after high-dose radiation-induced myelosuppression in rhesus macaques. Radiat. Res. 2012. Vol. 178. No. 5. P. 403–413. doi: 10.1667/RR2900.1.
  89. Hankey K.G., Farese A.M., Blaauw E.C. et al. Pegfilgrastim improves survival of lethally irradiated nonhuman primates. Radiat. Res. 2015. Vol. 183. No. 6. P. 643–655.
  90. Farese A.M., Cohen M.V., Katz B.P. et al. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat. Res. 2013. Vol. 179. No. 1. P. 89–100. doi: 10.1667/RR3049.1.
  91. Rozhdestvenskii L.M., Shliakova T.G., Shchegoleva R.A. et al. [Evaluation of the treatment effectiveness of domestic G-SCF preparations in experiments on irradiated dogs]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 1. P. 47–54. (In Russ.).
  92. Selidovkin G.D. [Modern methods of therapy of the patients with acute radiation disease in specialized hospital]. Medicine Catastrophe. 1995. No. 1–2. P. 135–149. (In Russ.).
  93. Seligovkin G.D., Barabanjva A.V. [Therapy of acute radiation disease from uniform and non-uniform irradiation. Radiation medicine.] . In Ilyin L.A. (ed.). Moscow: Izd.AT. 2001. Vol. 2. P. 108–129. (In Russ.).
  94. Li M., Holmes V., Ni H. et al. Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during space flight. PLoS One. 2015. Vol. 10. No. 3. P, e0120126. doi: 10.1371/journal.pone.0120126.
  95. Wu H., Huff J.L., Casey R. et al. Risk of acute radiation syndrome due to solar particle events. In: Human Research Program Requierments Document HRP-47052.4.5. 2009. Chapter 5. P. 171–190.
  96. Sanzari J.K., Diffenderfer E.S., Hagan S. et al. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model. Life Sci. Space Res. (Amst). 2015. Vol. 6. P. 21–28. doi: 10.1016/j.lssr.2015.06.003.
  97. Langell J., Jennings R., dark J., Ward J.B. Jr. Phar­macological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
  98. Shin D.M., Kucia M., Ratajczak M.Z. Nuclear and chromatin reorganization during cell senescence and aging: A mini review. Gerontology. 2011. Vol. 57. No. 1. Р. 76–84. doi: 10.1159/000281882.
  99. Koltover V.K. [Antioxidative medicine: from chemistry of free radical to system biological mechanism]. Izvestiia Akad. Nauk. Ser. Chim. 2010. No. 1. P. 37–43.
  100. Meyers K.J., Rudolf J.L., Mitchell A.E. et al. Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem. 2008. Vol. 56. No. 3. Р. 830–838.
  101. Fiorani M., Guidarelli A., Blasa M. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J. Nutr. Biochem. 2010. Vol. 21. No. 5. P. 397–404. doi: 10.1016/j.jnutbio.2009.01.014.
  102. Janjua N.K., Siddiqa A., Yaqub A. Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions. Spectrochim. Acta Mol. Biomol. Spectrosc. 2009. Vol. 74. No. 5. P. 1135–1143.
  103. Lim J.C., Choi H.I., Park Y.S. et al. Irreversible oxidation of the active site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 2008. Vol. 283. No. 43. P. 28873–28880. doi: 10.1074/jbc.M804087200.
  104. Essler S., Dehne N., Brune B. et al. Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett. 2009. Vol. 583. No. 21. Р. 3531–3539.
  105. Smith M.R., Vayalil P., Zhou F. et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol. 2016. Vol. 8. P. 136–148. doi: 10.1016/j.redox.2016.01.002.
  106. Butterfield А., Perluigi М. Redox Proteomics: A key tool for new insights into protein modification with relevance to disease. Antioxid. Redox Signal. 2017. Vol. 26. No. 7. Р. 277–279. doi:10.1089/ars.2016.6919.
  107. Höhn A., König J., Jung T. Metabolic syndrome, redox state, and the proteasomal system. Antioxid. Redox Signal. 2016. Vol. 25. No. 16. P. 902–917.
  108. Frei B., Higdon J.V. Аntioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003. Vol. 133. No. 10. Р. 3275S–3284S.
  109. Chen J.C., Ho F.M., Pei Dawn L.C. et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor kappa b and STAT1, and depends on heme oxygenase 1 induction in mouse BV 2 microglia. Eur. J. Pharma Col. 2005. Vol. 521. No. 1–3. Р. 9–20.
  110. Ivanov V., Cha J., Ivanova S., Kalinovsky, T. Essential nutrients suppress inflammation by modulating key inflammatory gene expression. Int. J. Mol. Med. 2008. Vol. 22. No. 6. P. 731–741.
  111. Chung M.J., Kang A.Y., Lee K.M. et al. Water soluble genistin glycoside isoflavones upregulate antioxidant metallothionein expression and scavenge free radicals. J. Agric. Food Chem. 2006. Vol. 54. No. 11. Р. 3819–3826.
  112. Dröse S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta. 2014. Vol. 1844. No. 8. P. 1344–1354. doi: 10.1016/j.bbapap.2014.02.006.
  113. Ullmann K., Wiencierz A.M., Muller C. et al. A high throughput reporter gene assay to prove the ability of natural compounds to modulate glutathione peroxidase, superoxide dismutase and catalase gene promoters in V79 cells. Free Radic. Res. 2008. Vol. 42. No. 8. Р. 746–753. doi: 10.1080/10715760802337273.
  114. Singh V.K., Beattie L.A., Seed T.M. Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures. J. Radiat. Res. 2013. Vol. 54. No. 6. P. 973–988. doi: 10.1093/jrr/rrt048.
  115. Patak P., Willenberg H.S., Bornstein S.R. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 2004. Vol. 30. No. 4. P. 871–875.
  116. Hafidh R.R., Abdulamir A.S., Abu Bakar F. Antioxidant research in Asia in the period from 2000–2008. Amer. J. Pharmacol. Toxicol. 2009. Vol. 4. No. 3. P. 48–66.
  117. Batra P., Sharma A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech. 2013. Vol. 3. No. 6. P. 439–459. doi: 10.1007/s13205-013-0117-5.
  118. Lee J.H., Khor T.O., Shu L. et al. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 2013. Vol. 137. No. 2. P. 153–171.
  119. Izzi V., Masuelli L., Tresoldi I. et al. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosc. 2012. Vol. 17. P. 2396–2418.
  120. Schmidt H.H., Stocker R., Vollbracht C. et al. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015. Vol. 23. No. 14. P. 1130–1143. doi: 10.1089/ars.2015.6393.
  121. Yokozawa T., Kim H.Y., Kim H.J. et al. Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Brit. J. Nutr. 2007. Vol. 97. No. 6. P. 1187–1195.
  122. Brusselmans K., Vrolix R., Verhoeven G., Swinnen J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005. Vol. 80. No. 7. P. 5636–5645.
  123. Schroeter H., Boyd C., Spencer J.P. et al. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol. Aging. 2002. Vol. 23. P. 861–880.
  124. Yoshizumi M., Tsuchiya K., Suzaki Y. et al. Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem. Biophys. Res. Commun. 2002. Vol. 293. P. 1458–1465.
  125. Ahn S.C., Kim G.Y., Kim J.H. et al. Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells though inhibition of mitogen-activated-protein kinases and NF-kB. Biochem. Biophys. Res. Commun. 2004. Vol. 313. P. 148–155.
  126. Berkovich Y.A., Krivobok N.M., Sinyak Y.Y. et al. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplane­tary missions. Adv. Space Res. 2004. Vol. 34. No. 7. P. 1552–1557.
  127. Oh M.M., Carey E.E., Rajashekar C.B. et al. Environmental stresses induce health promoting to chemicals in lettuce. Plant. Physiol. Biochem. 2009. Vol. 47. No. 7. P. 578–583. DOI: 10.1016/j.plaphy.2009.02.008.
  128. Guan, J., Wan, X.S., Zhou Z. Effects of dietary supplements on space radiation induced oxidative stress in Sprague–Dawley rats. Radiat. Res. 2004. Vol. 162. No. 5. P. 572–579.
  129. Kennedy A.R., Guan J., Ware J.H. Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys. 2007. Vol. 46. No. 2. P. 201–203.
  130. Rabin B.M., Shukitt-Hale B., Joseph J., Todd P. Diet as a factor in behavioral radiation protection following expo­sure to heavy particles. Gravit. Space Biol. Bull. 2005. Vol. 18. No. 2. P. 71–77.
  131. Yang T.C., Tobias C.A. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents. Adv. Space Res. 1984. Vol. 4. No. 10. P. 207–213.
  132. Kennedy A.R. Biological effects of space radiation and development of effective countermeasures. Life Sci. Space Res. 2014. Vol. 1. P. 10–43.
  133. Kennedy A.R., Todd P. Biological countermeasures in space radiation health. Gravit. Space Biol. Bull. 2003. Vol. 16. No. 2. P. 37–44.
  134. Kennedy A.R., Zhou Z., Donahue J.J., Ware J.H. Protection against adverse biological effects induced by space radiation by the Bowman-Birk inhibitor and antioxidants. Radiat. Res. 2006. Vol. 166. No. 2. P. 327–332.
  135. Langell J., Jennings R., Clark J., Ward J. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
  136. Epperly M.W., Wang H., Jones J.A. et al. Antioxidant chemoprevention diet ameliorates late effects of total body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat. Res. 2011. Vol. 175. P. 759–765.

For citation: Ushakov IB, Vasin MV. The Drugs and Natural Antioxidants as the Components of Anti-radiation Countermeasures during Spase Flightss. Medical Radiology and Radiation Safety. 2017;62(4):66-78. Russian. DOI: 10.12737/article_59b10b5ea417a6.00174966

PDF (RUS) Full-text article (in Russian)