О ЖУРНАЛЕ
Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.
Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.
Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.
Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.
Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.
Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.
С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.
Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.
Выпуски журналов
Медицинская радиология и радиационная безопасность. 2025. Том 70. № 3
DOI:10.33266/1024-6177-2025-70-3-99-107
В.Ю. Усов1, С.М. Минин1, Ж.Ж. Анашбаев1, С.И. Сазонова2,
О.И. Беличенко3, Е.А. Головина4, Ю.Б. Лишманов2, А.М. Чернявский1
КОЛИЧЕСТВЕННАЯ ОФЭКТ/КТ ГОЛОВНОГО МОЗГА С 99MTс-ТЕХНЕТРИЛОМ В ВИЗУАЛИЗАЦИИ И ОЦЕНКЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ АДЕНОМ ГИПОФИЗА
1 НМИЦ им. Е.Н. Мешалкина, Новосибирск
2 НИИ кардиологии Томского НИМЦ РАН, Томск
3 Российский университет спорта «ГЦОЛИФК», Москва
4 Национальный исследовательский Томский политехнический университет, Томск
Контактное лицо: Владимир Юрьевич Усов, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. , Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Реферат
Цель: Адаптация методики количественной оценки накопления 99mTc-технетрила при аденомах гипофиза, представлени фармакокинетической модели расчета кровотока в гипофизе по накоплению 99mTc-технетрила и оценка их взаимосвязи с уровнем пролактина в крови при некоторых патологических состояниях.
Материал и методы: Опухолевый кровоток рассчитывался по стандартизированной величине поглощения радиофармпрепарата (СВП) и минутному объему сердца (МО) как РКрОп = СВП99mTc-технетрил × (МО / МассаТелаПациента) × 100, где 100 ‒ коэффициент перевода для представления результата в общепринятых единицах мл/мин/100 см3 ткани. Величина СВП99mTc-технетрил может быть определена с помощью современных цифровых томографических гамма-камер автоматически, используя калибровку источнком с градуированной удельной радиоактивностью, или с использованием фантомов с известной радиоактивностью, с построением регрессионной зависимости «локальная активность кБк/мл – сцинтилляционный счет на воксел» и определения по ней истинного накопления рфп в ткани опухоли, в единицах кБк/см3 ткани. ОФЭКТ/КТ головного мозга с 99mTc-технетрилом (185‒240 МБк, гамма-камеры Gemini 700 и GE Discovery NM / CT 670 Pro) была выполнена у 8 пациентов без патологии гипофиза (по 4 мужчины и женщины, 34‒63 лет) ‒ группа контроля, у 9 лиц с микроаденомами гипофиза (5 женщин и 4 мужчин, 32‒51 лет), и у 8 пациентов (5 женщин и 3 мужчин, 32‒56 лет) с макроаденомами гипофиза. У всех пациентов групп 2 и 3 было повышение уровня пролактина в крови > 35 мг/л, и все они затем получали терапию бромкриптином 2,5 мг/сут и выше.
Результаты: Визуально на ОФЭКТ/КТ-изображениях при микро и макроаденомах гипофиза отмечалось узелковое включение. Величины СВП высокодостоверно отличались между группами и составили соответственно в контрольной группе 1,23 ± 0,25 (0,85‒1,39), при микроаденомах – 7,20 ± 1,17 (4,5‒12,9) (p < 0,02 по сравнению с контролем), а при макроаденомах – 12,54 ± 3,62 (3,9‒14,85) (p < 0,005). Тканевой кровоток составил соответственно 9,2 ± 2,0 (6,9–14,2): 36,9 ± 7,3 (26,3‒72,3) (p < 0,01): и 68,3 ±14,9 (21,0–78,2)(p < 0,002). СВП 99mTc-технетрила > 5,8 для узлового образования гипофиза оказалась взаимосвязана с уровнем пролактина в крови более 200 мг/л (p = 0,045). Снижение в динамике терапии бромкриптином 2,5 мг/сут величины СВП 99mTc-технетрила гипофиза ниже 3,9 сочеталось со снижением уровня пролактина в крови ниже 150 мг/л (p = 0,0482).
Заключение: ОФЭКТ/КТ головного мозга с 99mTc-технетрилом является информативным дополнительным методом обследования пациентов с патологией гипоталамо-гипофизарной системы и позволяет определять стандартизованную величину поглощения радиофармпрепарата, а также гипофизарный кровоток. Целесообразно использовать ОФЭКТ/КТ головного мозга с 99mTc-технетрилом для проспективного контроля терапии патологии гипофиза, как дополнение к МРТ. Необходимо уточняющее исследование роли ОФЭКТ/КТ гипофиза с 99mTc-технетрилом в более широкой популяции эндокринологических пациентов, для включения в стандартный алгоритм и клинические рекомендации обследования пациентов.
Ключевые слова: ОФЭКТ/КТ, 99mTc-технетрил, аденомы гипофиза, динамическая ОФЭКТ, динамическая сцинтиграфия, гипофизарный кровоток
Для цитирования: Усов В.Ю., Минин С.М., Анашбаев Ж.Ж., Сазонова С.И., Беличенко О.И., Головина Е.А., Лишманов Ю.Б., Чернявский А.М. Количественная ОФЭКТ/КТ головного мозга с 99mTc-технетрилом в визуализации и оценке функционального состояния аденом гипофиза // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 3. С. 99–107. DOI:10.33266/1024-6177-2025-70-3-99-107
Список литературы
1. Дедов И.И., Юденич О.Н. Состояние и пути развития отечественной эндокринологии // Вестник Российской академии медицинских наук. 2006. Т.9. №10. С. 38-45. EDN HVUTAH.
2. Яковлев С.А., Поздняков А.В., Панфиленко А.Ф., Карлова Н.А., Тютин Л.А., Грантынь В.А. Динамическая контрастная МРТ в лучевой диагностике объемных образований головного мозга срединной локализации // Сибирский медицинский журнал. 2008. Т.23. №1-2. С. 92-96. EDN KZLDQT.
3. Макеев С.С., Семенова В.М. Возможности применения ОФЭКТ с туморотропными радиофармацевтическими препаратами в дифференциальной диагностике опухолей и неопухолевых очаговых образований головного мозга // Украинский неврологический журнал. 2007. Т.4. №5. С. 70-74. EDN RVBWNP.
4. Макеев С.С., Коваль С.С., Гук Н.А. Применение радиофармпрепаратов для однофотонной эмиссионной компьютерной томографии аденом гипофиза // Украинский нейрохирургический журнал. 2014. Т.5. №2. С. 20-24. EDN SEJOJZ.
5. Iglesias P., Cardona J., Díez J.J. The Pituitary in Nuclear Medicine Imaging // Eur J Intern Med. 2019. V.68. No.1. P. 6-12. https://doi.org/ 10.1016/j.ejim.2019.08.008.
6. Watanabe Y., Mawatari A., Aita K., Sato Y., Wada Y., Nakaoka T., Onoe K., Yamano E., Akamatsu G., Ohnishi A., Shimizu K., Sasaki M., Doi H., Senda M. PET Imaging of 11C-Labeled Thiamine tetrahydrofurfuryl Disulfide, Vitamin B1 Derivative: First-in-Human Study // Biochem Biophys Res Commun. 2021. V.555. No.1. P.7-12. https://doi.org/10.1016/j.bbrc.2021.03.119.
7. Naganawa M., Nabulsi N.B., Matuskey D., Henry S., Ropchan J., Lin S.F., Gao H., Pracitto R., Labaree D., Zhang M.R., Suhara T., Nishino I., Sabia H., Ozaki S., Huang Y., Carson R.E. Imaging Pituitary Vasopressin 1B Receptor in Humans with the PET Radiotracer 11C-TASP699 // J Nucl Med. 2022. V.63. No.4. P. 609-614. doi: 10.2967/jnumed.121.262430.
8. Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) c 99mTc-Tектротидом // Медицинская радиология и радиационная безопасность. 2020. Т.65. №2. С. 44-49. doi: 10.12737/1024-6177-2020-65-2-44-49. EDN FKEVLR.
9. Lybik N., Wale D.J., Wong K.K., Liao E., Viglianti B.L. 68Ga-DOTATATE PET/CT Imaging of Refractory Pituitary Macroadenoma Invading the Orbit // Clin Nucl Med. 2021. V.46. No.6. P. 505-506. doi: 10.1097/RLU.0000000000003589.
10. Balcerzyk M., Fernandez-Maza L., Mínguez J.J., De-Miguel M. Preclinical [18F]-Tetrafluoroborate-PET/CT Imaging of Pituitary Gland Hyperplasia // Jpn J Clin Oncol. 2018. V.48. No.2. P. 200-201. doi: 10.1093/jjco/hyx189.
11. Vukomanovic V.R., Matovic M., Doknic M., Ignjatovic V., Simic Vukomanovic I,. Djukic S., Peulic M., Djukic A. Clinical Usefulness of 99mTc-HYNIC-TOC, 99mTc(V)-DMSA, and 99mTc-MIBI SPECT in the Evaluation of Pituitary Adenomas // Nucl Med Commun. 2019. V.40. No.1. P. 41-51. doi: 10.1097/MNM.0000000000000931.
12. Кодина Г.Е., Малышева А.О. Контроль качества радиофармацевтических препаратов в медицинских организациях // Разработка и регистрация лекарственных средств. 2017. Т.18. №1. С. 88-92. EDN YKPHDZ.
13. Усов В.Ю., Сухов В.Ю., Бабиков В.Ю., Бородин О.Ю., Ворожцова И.Н., Лишманов Ю.Б., Удут В.В., Кривоногов Н.Г. Количественное определение тканевого кровотока миокарда методом однофотонной эмиссионной компьютерной томографии по данным абсолютной оценки накопления радиофармпрепарата 99mTc-Технетрила // Трансляционная медицина. 2022. Т.9. №1. С. 29-38. doi: 10.18705/2311-4495-2022-9-1-29-38.
14. Кривоногов Н.Г., Минин С.М., Крылов А.Л., Лишманов Ю.Б. Сцинтиграфическое определение величины миокардиального кровотока // Бюллетень сибирской медицины. 2013. Т.12. №3. С. 111-116.
15. Костеников Н.А., Поздняков А.В., Дубровская В.Ф., Миролюбова О.Ю., Илющенко Ю.Р., Станжевский А.А. Современные методы лучевой диагностики глиом // Лучевая диагностика и терапия. 2019. Т.10. №2. С.15-23.
16. Choudhary V., Bano S. Imaging of the Pituitary: Recent Advances // Indian J. Endocrinol Metab. 2011. V.3. No.2. P. 216-223.
17. Choudhury P.S., Savio E., Solanki K.K., Alonso O., Gupta A., Gambini J.P., Doval D., Sharma P., Dondi M. 99mTc Glucarate as a Potential Radiopharmaceutical Agent for Assessment of Tumor Viability: from Bench to the Bed Side // World J Nucl Med. 2012. V.11. No.2. P. 47-56.
18. Морозова Т.А., Зборовская И.А. Аденомы гипофиза: классификация, клинические проявления, подходы к лечению и тактике ведения больных // Лекарственный вестник. 2006. Т.3. №7. С.18-21. EDN YSPYQD.
19. Щербань А.Е., Черебилло В.Ю., Смирнова А.В. Предоперационное планирование пациентов с опухолями (аденомами) гипофиза по данным нейровизуализации // Вестник неврологии, психиатрии и нейрохирургии. 2023. Т.53. №2. С.145-160. doi:10.33920/med-01-2302-08. EDN YOUZXK.
20. Хорошавина А.А., Орлова Г.А., Рыжкова Д.В. Радиоизотопная диагностика эндогенного АКТГ-зависимого гиперкортицизма // Лучевая диагностика и терапия. 2023. Т.4. №14. С. 19-27. doi: 10.22328/2079-5343-2023-14-4-19-27. EDN ABPTOA.
21. Тимофеева Л.А., Алешина Т.Н. Лучевая диагностика непальпируемых узлов щитовидной железы // Российский электронный журнал лучевой диагностики. 2014. Т.4. №S2. С. 27-28. EDN MHCWNA.
22. Николаева Е.А., Тарачкова Е.В., Шейх Ж.В., Тюрин И.Е. Роль ПЭТ/КТ в онкогинекологии // Медицинская визуализация. 2023. Т.27. №1. С. 145–157. doi:10.24835/1607-0763-1198.
23. Mine A., Derya C., Bekir U., Alper D., Erman Ç. Clinical Significance of Incidental Pituitary Tc-99m MIBI Uptake on Parathyroid SPECT and Factors Affecting Uptake Intensity // Cancer Biother Radiopharm. 2018. V.33. No.7. P. 295-299. doi: 10.24835/1607-0763-1198. Epub 2018 Jun 20.
24. Усов В.Ю., Ярошевский С.П., Гарганеева А.А., Лищманов Ю.Б., Тепляков А.Т., Беличенко О.И. Возможности динамической ОФЭКТ с 99mTc-Технетрилом в количественной оценке фармакологической коррекции кровотока миокарда у больных ИБС // Терапевт. 2018. Т.14. №7. С. 4-15.
25. Золотницкая В.П., Амосов В.И., Бедров А.Я., Моисеев А.А., Литвинов А.П., Перлов Р.Б. Оценка артериального кровотока в микроциркуляторном русле нижних конечностей у пациентов с хронической ишемией методом ОФЭКТ // Регионарное кровообращение и микроциркуляция. 2024. Т.23. №1. С. 37–43. doi: 10.24884/1682-6655-2024-23-1-37-43.
26. Усов В.Ю., Бабиков В.Ю., Минин С.М., Сухов В.Ю., Костеников Н.А., Лучич М.А., Самойлова Е.А., Жеравин А.А., Чернявский А.М. Количественная ОФЭКТ головного мозга с 99mTc-Технетрилом в диагностике, оценке эффективности комплексной терапии низкодифференцированных глиом и прогнозе жизни пациентов // Российский нейрохирургический журнал имени профессора А.Л.Поленова. 2023. Т.15. №S1. С. 26-27. EDN QGPXKZ.
27. Белянин М.Л., Подъяблонский А.С., Бородин О.Ю., Белоусов М.В., Карпов Е.Н., Филимонов В.Д., Шимановский Н.Л., Усов В.Ю. Синтез и доклиническая оценка визуализационных возможностей 99mTc-ДТПА-ГДОФ как нового отечественного гепатотропного препарата для сцинтиграфических и ОФЭКТ-исследований // Медицинская радиология и радиационная безопасность. 2022. Т.67. №6. С. 44–50. doi: 10.33266/1024-6177-2022-67-6-44-50. EDN BQPVQN.
28. Наркевич Б.Я. Теоретические основы циркуляционного моделирования в радионуклидных исследованиях гемодинамики. Медицинская радиология. 1994. Т. 39. № 5.
С. 58–64.
29. Сапин М.Р., Никитюк Д.Б. Дмитрий Аркадьевич Жданов (к 100-летию со дня рождения) // Морфология. 2008. Т.133. № 4. С.47–49.
30. Минин С.М., Никитин Н.А., Шабанов В.В., Лосик Д.В., Михеенко И.Л., Покушалов Е.А., Романов А.Б. Радионуклидная оценка изменений симпатической активности миокарда у пациентов с фибрилляцией предсердий и здоровых волонтеров с использованием гамма-камеры на CZT детекторах // Российский электронный журнал лучевой диагностики. 2018. Т.8. №2. С. 30-39. doi: 10.21569/2222-7415-2018-8-2-30-39.
31. Знаменский И.А., Долгушин М.Б., Юрченко А.А., Ростовцева Т.М., Каралкина М.А. Диагностика эпилепсии: от истоков до гибридного метода ПЭТ/МРТ // Клиническая практика. 2023. Т.14. №3. С. 80-94. doi: 10.17816/clinpract400254. EDN SXMSKF.
32. Masuda A., Yoshinaga K., Naya M., Manabe O., Yamada S., Iwano H., Okada T., Katoh C., Takeishi Y., Tsutsui H., Tamaki N. Accelerated (99m) Tc-sestamibi Clearance Associated with Mitochondrial Dysfunction and Regional Left Ventricular Dysfunction in Reperfused Myocardium in Patients with Acute Coronary Syndrome // EJNMMI Res. 2016. V.6. No.1. P. 41-44. doi: 10.1186/s13550-016-0196-5.
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.02.2025. Принята к публикации: 25.03.2025.
Медицинская радиология и радиационная безопасность. 2025. Том 70. № 3
DOI:10.33266/1024-6177-2025-70-3-108-116
Д.В. Арефьева, В.Б. Фирсанов, С.В. Ярмийчук, А.В. Петушок
ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО ДЛЯ ГРАДУИРОВКИ СЦИНТИЛЛЯЦИОННОГО СПЕКТРОМЕТРА ГАММА-ИЗЛУЧЕНИЯ
Научно-исследовательский институт промышленной и морской медицины, Санкт-Петербург
Контактное лицо: Дарья Владимировна Арефьева, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
РЕФЕРАТ
Цель: Разработка способа градуировки сцинтилляционного спектрометра гамма-излучения с применением метода Монте-Карло.
Материал и методы: Объектом исследования являлся спектрометр гамма-излучения, предназначенный для измерения энергетического распределения (спектра) и определения активности гамма-излучающих радионуклидов. Экспериментальные исследования проведены с набором образцовых мер активности специального назначения с радионуклидами 241Am, 152Eu, 60Co и 137Cs, равномерно осажденными на ионообменную смолу. Градуировку спектрометра осуществляли с применением программы MCC 3D (Monte-Carlo Calculations 3D), моделирование аппаратурного спектра выполняли с применением программы MCA (MultiChannel Analyzer).
Результаты: Сравнение экспериментальных и смоделированных спектров проводили в следующих энергетических интервалах: интервал, соответствующий суммарному пику полного поглощения (ППП) для гамма-линий энергий 1173,2 кэВ и 1332,5 кэВ для 60Co и ППП для гамма-линии энергии 661,7 кэВ для 137Cs; интервалы, отвечающие комптоновскому рассеянию в диапазоне углов (30–60)°, (60–90)° и (90–180)°(для 60Co рассматривалась средняя энергия гамма-излучения, равная 1252,9 кэВ); интервал, соответствующий многократному рассеянию гамма-квантов с энергией выше 100 кэВ. Установлено, что наибольшее отклонение смоделированного спектра от экспериментального составляет 12 % для интервала, соответствующего многократному рассеянию, что указывает на возможность идентичности спектров. Проверку данного предположения проводили для каждого энергетического интервала, используя критерий согласия Пирсона. Получено максимальное значение χ2, равное 6,6 для энергетического интервала, отвечающего комптоновскому рассеянию в диапазоне углов (60–90)°, что говорит о приемлемости гипотезы об идентичности экспериментальных и смоделированных спектров.
Валидация предложенного метода показала, что расхождение между расчетным и паспортным значениями активности образца составило не более 13 %, что свидетельствует о возможности использования метода для градуировки гамма-спектрометра. Рассчитаны зависимости эффективности регистрации гамма-излучения в ППП от плотности счетного образца с использованием смоделированных аппаратурных спектров единичной активности.
Заключение: Предложенный метод позволяет проводить градуировку спектрометра для вычисления удельной активности в образцах при различных плотностях и энергиях с применением спектрометрического оборудования, оснащенного неорганическими сцинтилляционными кристаллами.
Ключевые слова: гамма-спектрометр, метод Монте-Карло, градуировка, радиационная безопасность
Для цитирования: Арефьева Д.В., Фирсанов В.Б., Ярмийчук С.В., Петушок А.В. Применение метода Монте-Карло для градуировки сцинтилляционного спектрометра гамма-излучения // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 3. С. 108–116. DOI:10.33266/1024-6177-2025-70-3-108-116
Список литературы
1. Monte Carlo N-Particle Transport Code. URL: https://ru.wikipedia.org/wiki/MCNP.
2. Fluka Particle Transport Code. URL: https://ru.wikipedia.org/wiki/FLUKA.
3. Penelope. A Code System for Monte Carlo Simulation of Electron and Photon Transport URL: http://www.mcnpvised.com/visedtraining/penelope/penelope0.pdf.
4. Уроки и обучающие примеры по Geant4. Электронный ресурс: https://dev.asifmoda.com/geant4. (дата обращения: 24.09.2024)
5. Cinelli G., Tositti L., Mostacci D., Bare J. Calibration with MCNP of NaI Detector for the Determination of Natural Radioactivity Levels in the Field // Journal of Environmental Radioactivity 2019. V.155. No.156. P. 31-37
6. Mouhti I., Elanique A., Messous M.Y. Monte Carlo Modelling of a NaI(Tl) Scintillator Detectors Using MCNP Simulation Code // J. Mater. Environ. Sci. 2017. V.8. No.12. P. 4560-4565.
7. Багаев К.А., Козловский С.С., Новиков И.Э. Программа для имитационного трехмерного моделирования систем детектирования и регистрации ионизирующих излучений на базе развитого графического интерфейса // АНРИ. 2007. №.4. С. 35-40.
8. Спектрометры-радиометры гамма-, бета- и альфа-излучения МКГБ-01 «РАДЭК»: Руководство по эксплуатации. СПб.: Научно технический центр Радэк, 2012. 60 с.
9. Детекторы ионизирующих излучений сцинтилляционные на основе кристаллов натрия йодистого, активированного таллием: ТУ 2651-001-26083472-2015. Усолье-Сибирское: Кристалл. 2015. 10 с.
10. Капитонов М.И. Ядерная резонансная флуоресценция: Учебник. М.: МГУ им. М.В.Ломоносова., 2018. 128 с.
11. Арефьева Д.В., Фирсанов В.Б., Куруч Д.Д. и др. Градуировка сцинтилляционного спектрометра гамма-излучений с применением метода математического моделирования // Радиационная гигиена. 2020. Т.13. № 4. С. 93-100. doi: 10.21514/1998-426X-2020-13-4-93-100. EDN ZAAYGU.
12. Силантьев А.Н. Спектрометрический анализ радиоактивных проб внешней среды. Л.: Гидрометеорологическое издательство, 1969. 185 с.
13. Малышева Т.А. Численные методы и компьютерное моделирование. Лабораторный практикум по аппроксимации функций: Учеб.-метод. пособие. СПб.: Университет ИТМО, 2016. 33 с.
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.02.2025. Принята к публикации: 25.03.2025.
СОДЕРЖАНИЕ № 3 - 2025
Смотреть журнал целиком в PDF-формате
РАДИАЦИОННАЯ БИОЛОГИЯ |
5 |
Дешевой Ю.Б., Лебедев В.Г., Насонова Т.А., Добрынина О.А., Брунчуков В.А., Кобзева И.В., Астрелина Т.А., Самойлов А.С. |
|||
11 |
Корнева C.А., Чигасова А.К., Осипов А.А., Игнатов М.А., Воробьева Н.Ю., Сабуров В.О., Казаков Е.И., Корякин С.Н., Федотов Ю.А., Бушманов А.Ю., Осипов А.Н. |
||||
16 |
Мамина В.П. |
||||
22 |
Биологические реакции при комбинированном действии ионизирующего излучения с иными факторами Ромодин Л.А., Умников А.С., Самойлов А.С. |
||||
РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ |
34 |
Шандала Н.К., Самойлов А.С., Серегин В.А., Киселёв С.М., Квачева Ю.Е., Метляев Е.Г., Кочетков О.А., Клочков В.Н., Титов А.В., Колышкин А.Е., Семенова М.П. |
|||
48 |
Архипова В.И., Лягинская А.М., Паринов О.В., Метляев Е.Г., Самойлов А.С. |
||||
54 |
Анализ радиационной обстановки при авиационных полетах в условиях солнечных протонных событий Бурмистров В.И., Маткевич Е.И., Иванов И.В. |
||||
РАДИАЦИОННАЯ ЭПИДЕМИОЛОГИЯ |
70 |
Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А., Усупжанова Д.Ю., Бушманов А.Ю. |
|||
ЛУЧЕВАЯ ДИАГНОСТИКА |
83 |
Использование алгоритмов машинного обучения для автоматического выявления онкологических заболеваний Al-Rawi Muaayed F., Abboud Izz K., Al-Awad Nasir A. |
|||
ЛУЧЕВАЯ |
90 |
Коваль К.В., Токарев А.С., Каниболоцкий А.А., |
|||
ЯДЕРНАЯ МЕДИЦИНА |
99 |
Усов В.Ю., Минин С.М., Анашбаев Ж.Ж., Сазонова С.И., Беличенко О.И., Головина Е.А., Лишманов Ю.Б., |
|||
РАДИАЦИОННАЯ ФИЗИКА, ТЕХНИКА |
108 |
Применение метода Монте-Карло для градуировки сцинтилляционного спектрометра гамма-излучения Арефьева Д.В., Фирсанов В.Б., Ярмийчук С.В., Петушок А.В. |
|||
ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ |
117 |
О правовом регулировании специальностей радиология и радиотерапия в Российской Федерации Безверхов А.Г., Алехин Э.Н., Пышкина Ю.С., |
Медицинская радиология и радиационная безопасность. 2025. Том 70. № 3
DOI:10.33266/1024-6177-2025-70-3-117-120
А.Г. Безверхов1, Э.Н. Алехин2, Ю.С. Пышкина2, 3,
А.А. Станжевский4, А.В. Логвиненко2
О ПРАВОВОМ РЕГУЛИРОВАНИИ СПЕЦИАЛЬНОСТЕЙ РАДИОЛОГИЯ И РАДИОТЕРАПИЯ
В РОССИЙСКОЙ ФЕДЕРАЦИИ
1 Самарский национальный исследовательский университет им. академика С.П. Королева, Самара
2 Тюменский государственный медицинский университет Минздрава России, Тюмень
3 Самарский государственный медицинский университет Минздрава России, Самара
4 Российский научный центр радиологии и хирургических технологий им. академика А.М. Гранова Минздрава России, Санкт-Петербург
Контактное лицо: Юлия Сергеевна Пышкина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
РЕФЕРАТ
Цель: Изучить специфику нормативно-правового регулирования специальностей Радиология (ядерная медицина) и Радиотерапия в Российской Федерации с точки зрения определения номенклатуры и пути их дальнейшего регламентирования.
Материал и методы: Радиология, также известная как ядерная медицина, зародилась в конце XIX века после открытия явления радиоактивности. Сегодня она активно применяется как в диагностических процедурах, так и в терапевтическом лечении. Однако существует значительная путаница в определении основных терминов и понятий, связанных с этим направлением медицины, что требует дополнительных уточнений. Авторами проанализированы литературные источники и законодательная база, посвящённые вопросам терминологической и нормативной неопределенности в сфере ядерной медицины (радиологии) в России. Обсуждаются различия в определениях ключевых терминов, таких как «ядерная медицина», «радиофармацевтический препарат», «радионуклидная терапия» и «радионуклидная диагностика». Также поднимается проблема отсутствия четких стандартов и правил в сфере ядерной медицины, что приводит к трудностям в регулировании и финансировании медицинских услуг.
Результаты: Предлагаются меры по улучшению ситуации, включая разработку единых терминов и стандартов, введения должности главного внештатного радиотерапевта, разработки профессиональных стандартов для радиологов и радиотерапевтов, а также привлечение профессиональных сообществ к решению данного вопроса.
Заключение: Проведенное исследование подчеркивает важность устранения существующих проблем в нормативно-правовом регулировании и терминологических несоответствиях в области радиологии и ядерной медицины в России. Акцентируется внимание на необходимость унификации терминов и определений, создания четких профессиональных стандартов для специалистов, а также разработки правил проведения радионуклидных исследований. Эти меры должны способствовать улучшению качества медицинской помощи, повышению эффективности работы специалистов и обеспечению правильного финансирования медицинских услуг через систему обязательного медицинского страхования. В статье предлагается решение выявленной проблемы путем разработки и утверждения терминологии в специальностях Радиология и Радиотерапия и внесения изменений в нормативную документацию.
Ключевые слова: радиология, ядерная медицина, радиотерапия, лучевая терапия, терминология, инструмент правового регулирования
Для цитирования: Безверхов А.Г., Алехин Э.Н., Пышкина Ю.С., Станжевский А.А., Логвиненко А.В. О правовом регулировании специальностей радиология и радиотерапия в Российской Федерации // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 3. С. 117–120. DOI:10.33266/1024-6177-2025-70-3-117-120
Список литературы
1. Najam H., Dearborn M.C., Tafti D. Nuclear Medicine Instrumentation. Treasure Island (FL): StatPearls, 2023.
2. Романовский Г.Б. Правовое регулирование ядерной медицины // Электронный научный журнал. Наука. Общество. Государство. 2017. Т.5. № 1. Электронный ресурс: http://esj.pnzgu.ru.
3. Международное агентство по атомной энергии. Секция ядерной медицины и диагностической визуализации. Электронный ресурс: https://www.iaea.org/ru/o-nas/sekciya-yadernoy-mediciny-i-diagnosticheskoy-vizualizacii.
4. Наркевич Б.Я., Ратнер Т.Г., Рыжов С.А., Моисеев А.Н. Глоссарий терминов, аббревиатур и понятий по медицинской радиологии и радиационной безопасности. М.: АМФР, 2022. 204 с.
5. Общество сотрудников ядерной медицины. Радионуклидная диагностика для практических врачей: Руководство / Под ред. Ю.Б. Лишманова, В.И. Чернова. Томск: STT, 2004. 387 с.
6. Голанов А.В. Нейрорадиохирургия на Гамма-ноже / Под ред. А.В. Голанова, В.В.Костюченко. М.: ИП «Т.А.Алексеева», 2018. 960 с.
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.02.2025. Принята к публикации: 25.03.2025.
Медицинская радиология и радиационная безопасность. 2025. Том 70. № 2
DOI:10.33266/1024-6177-2025-70-2-5-8
С.А. Абдуллаев1, 2, Н.Ф. Раева1, Д.В. Фомина1, Т.П. Калинин3,
Т.Н. Максимова4, Г.Д. Засухина1, 5
ТИМОХИНОН (КОМПОНЕНТ Nigella/Sativa) СНИЖАЕТ
ТОКСИЧНЫЕ ЭФФЕКТЫ ПРИ ЛУЧЕВОЙ ТЕРАПИИ
И ИМЕЕТ АНТИКАНЦЕРОГЕННЫЙ ПОТЕНЦИАЛ
1 Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России, Москва
2 Институт теоретической и экспериментальной биофизики РАН, Пущино
3 Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Москва
4 Первый Московский государственный медицинский университет им. И.М. Сеченова, Москва
5 Институт общей генетики им. Н.И. Вавилова РАН, Москва
Контактное лицо: Серажутдин Абдуллаевич Абдуллаев, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
РЕФЕРАТ
Проанализированы литературные сведения по биологическим свойствам тимохинона (ТХ) – компонента черного тмина (Nigella sativa), который широко используется (главным образом на Востоке) для профилактики и лечения ряда патологий, в том числе онкологии. Приведены многочисленные данные по радиопротекторным свойствам ТХ на экспериментальных животных, связанным с влиянием на оксидативный радиационно-индуцированный стресс, а также со стимуляции защитных систем клетки и организма. Показано действие ТХ при комбинированном воздействии с радиацией при опухолеобразовании. Учитывая безопасность ТХ по сравнению с синтетическими протекторами, авторы рекомендуют дальнейшие исследования по применению ТХ для профилактики и лечения при действии радиации.
Ключевые слова: тимохинон, радиопротектор, антиоксидант, лучевая терапия
Для цитирования: Абдуллаев С.А., Раева Н.Ф., Фомина Д.В., Калинин Т.П., Максимова Т.Н., Засухина Г.Д. Тимохинон (компонент Nigella/Sativa) снижает токсичные эффекты при лучевой терапии и имеет антиканцерогенный потенциал // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 2. С. 5–8. DOI:10.33266/1024-6177-2025-70-2-5-8
Список литературы
1. Stasiłowicz-Krzemień A., Gościniak A., Formanowicz D., Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci. 2024;25:6937. doi.org/10.3390/ijms25136937
2. Dogru S., Taysi S., Yugel A. Effects of Thymoquinone in the Lungs of Rats Against Radiation-Induced Oxidative Stress. Eur Rev Med Pharmacol Sci. 2024;28;1:191-198. doi: 10.26355/eurrev_202401_ 34904.
3. Guangmei D., Weishan H., Wenya L., Fasheng W., Jibing Ch. Evolution of Radiation-Induced Dermatitis Treatmеnt. Clin Transl Oncol. 2024;26;9:2142-2155. doi: 10.1007/s12094-024-03460-1.
4. Borah P., Baral A., Paul A.K., Ray U., Bharalee R., Upadhyaya H, et al. Traditional Wisdom in Modern Medicine: Unveiling the Anticancer Efficacy of Northeastern Indian spices. Journal of Herbal Medicine. 2024;100896. doi: 10.1016/j.hermed.2024.100896.
5. Shaban A.R. Molecular Modulation of Chemotherapeutic Agents – Choices for Thymoquinone Nano-Structured Lipid Carrier (Tq-Nls) on Human Liver Cancer Cells. World Journal Internal Medicine and Surgery. 2024;1:24-44.
6. Taysi S., Algburi F.Sh., Mohammed Z.R., Ali O.A., Taysi M.E. Thymoquinone: a Review on its Pharmacological Importance, and its Association with Oxidative Stress, Covid-19, and Radiotherapy. Mini Rev Med Chem. 2022;22;14:1847-1875. doi: 10.2174/1389557522666220104151225.
7. Aslani M., Saadat S., Boskabady M. Comprehensive and Updated Review on Anti-Oxidant Effects of Nigella Sativa and its Constituent, Thymoquinone, in Various Disorders. Iran J Basic Med Sci. 2024;27;8:923-951. doi: 10.22038/IJBMS.2024.75985.16453.
8. Sirinyildiz F., Unay S. N-Methyl-d-Aspartate Receptors and Thymoquinone Induce Apoptosis and Alteration in Mitochondria in Colorectal Cancer Cells. Med Oncol. 2024;41;5:123. doi: 10.1007/s12032-024-02348-y.
9. Pandey R., Natarajan P., Reddy U.K., Du W., Sirbu C., Sissoko M., Hankins G.R. Deciphering the Dose-Dependent Effects of Thymoquinone on Transcriptomic Changes and Cellular Proliferation in Glioblastoma. Preprints. 2024. 2024011894. doi: 10.20944/preprints202401.1894.v1.
10. Isaev N., Genrics E., Stelmashook E. Antioxidant Thymoquinone and its Potential in the Treatment of Neurological Diseases. Antioxidants (Basel). 2023;12;2:433. doi: 10.3390/antiox12020433.
11. Засухина Г.Д., Максимова Т.Н. Перспективы применения тимохинона (компонента Nigella sativa) в профилактике и лечении нейропатологии // Успехи современной биологии. 2024. Т.144. №2. С.165-170. [Zasukhina G.D., Maksimova T.N. Prospects for the Use of Thymoquinone (a Component of Nigella Sativa) in the Prevention and Treatment of Neuropathology. Uspekhi Sovremennoy Biologii = Advances in Modern Biology. 2024;144;2:165-170 (In Russ.)].
12. Ferizi R., Ramadan M., Maxhuni Q. Black Seeds (Nigella Sativa) Medical Application and Pharmaceutical Perspectives. J Pharm Bioallied Sci. 2023;15;2:63-67. doi: 10.4103/jpbs.jpbs_364_22.
13. Салеева Д.В., Раева Н.Ф., Абдуллаев С.А., Максимова Т.Н., Засухина Г.Д. Профилактический и терапевтический потенциал тимохинона при ряде патологий человека на основе определения активации клеточных компонентов, осуществляющих защитные функции по активности генов и некодирующих РНК // Госпитальная медицина: наука и практика. 2023. Т.6. №2. С.27-36. [Saleyeva D.V., Rayeva N.F., Abdullayev S.A., Maksimova T.N., Zasukhina G.D. Preventive and Therapeutic Potential of Thymoquinone in a Number of Human Pathologies Based on the Determination of the Activation of Cellular Components that Perform Protective Functions According to the Activity of Genes and Non-Coding RNA. Gospital’naya Meditsina: Nauka i Praktika = Hospital Medicine: Science and Practice. 2023;6;2:27-36 (In Russ.)]. https://doi.org/10.34852/GM3CVKG.2023.75.38.015.
14. Isaev N.K., Chetverikov N.S., Stelmashook E.V., Genrikhs E.E., Khaspekov L.G., Illarioshkin S.N. Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. Biochemistry (Mosc). 2020;85;2:167-176. doi: 10.1134/S0006297920020042.
15. Silachev D.N., Plotnikov E.Y., Zorova L.D., Pevzner I.B., Sumbatyan N.V., Korshunova G.A., Gulyaev M.V., Pirogov Y.A., Skulachev V.P., Zorov D.B. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules. 2015;20;8:14487-503. doi: 10.3390/molecules200814487.
16. Zhang D., Zhang Y., Wang Z., Lei L. Thymoquinone Attenuates Hepatic Lipid Accumulation by Inducing Autophagy Via AMPK/mTOR/ULK1-Dependent Pathway in Nonalcoholic Fatty Liver Disease. Phytother Res. 2023;37;3:781-797. doi: 10.1002/ptr.7662.
17. Abdullaev S., Minkabirova G., Karmanova E., Bruskov V., Gaziev A. Metformin Prolongs Survival Rate in Mice and Causes Increased Excretion of Cell-Free DNA in the Urine of X-Irradiated Rats. Mutat Res Genet Toxicol Environ Mutagen. 2018;831:13-18. doi: 10.1016/j.mrgentox.2018.05.006.
18. Gaziev A., Abdullaev S., Minkabirova G., Kamenskikh K. X-Rays and Metformin Cause Increased Urinary Excretion of Cell-Free Nuclear and Mitochondrial DNA in Aged Rats. J Circ Biomark. 2016;25;5:1849454416670782. doi: 10.1177/1849454416670782.
19. Abdullaev S.A., Glukhov S.I., Gaziev A.I. Radioprotective and Radiomitigative Effects of Melatonin in Tissues with Different Proliferative Activity. Antioxidants (Basel). 2021;10;12:1885. doi: 10.3390/antiox10121885.
20. Abbas Idris Nour M, Abd-AL-Hassan ZI, Ibrahim Hassan DH. Application of Radiosensitizers in Cancer Radiotherapy, Nanomaterials of Heavy Metals, Drugs and Chemicals with Nanostructure. Current Clinical and Medical Education. 2024;2;5:258-266. https://www.visionpublisher.info/index.php/ ccme/article/view/95.
21. Михайлов В.Ф., Засухина Г.Д. Новый подход к стимуляции защитных систем организма малыми дозами радиации // Успехи современной биологии. 2020. Т.140. №3. С. 244-252. [Mikhaylov V.F., Zasukhina G.D. A New Approach to Stimulating the Body’s Defense Systems with Low Doses of Radiation. Uspekhi Sovremennoy Biologii = Advances in Modern Biology. 2020;140;3:244-252 (In Russ.)]. doi: 10.31857/S0042132420030060.
22. Салеева Д.В., Рождественский Л.М., Раева Н.Ф., Воробьева Е.С., Засухина Г.Д. Механизмы противоопухолевого действия малых доз радиации, связанные с активацией защитных систем клетки // Медицинская радиология и радиационная безопасность. 2023. Т. 68. №1. С. 15-18. [Saleyeva D.V., Rozhdestvenskiy L.M., Rayeva N.F., Vorob’yeva Ye.S., Zasukhina G.D. Mechanisms of Antitumor Action of Low Doses of Radiation Associated with Activation of Cellular Defense Systems. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2023;68;1:15-18 (In Russ.)]. doi:10.33266/1024-6177-2023-68-1-15-18.
23. Herrera F.G., Romero P., Coukos G. Lighting up the Tumor Fire with Low-Dose Irradiation. Trends in Immunology. 2022;43;3:173-179. doi 10.1016/j.it.2022.01.006.
24. Михайлов В.Ф., Салеева Д.В., Шуленина Л.В., Раева Н.Ф., Рождественский Л.М., Засухина Г.Д. Связь между динамикой роста перевивной карциномы Льюиса у мышей и изменением активности генов и некодирующих РНК после рентгеновского облучения в малых дозах // Радиационная биология. Радиоэкология. 2022. Т.62. №1. С. 28-41 [Mikhaylov V.F., Saleyeva D.V., Shulenina L.V., Rayeva N.F., Rozhdestvenskiy L.M., Zasukhina G.D. Relationship Between the Growth Dynamics of Transplantable Lewis Carcinoma in Mice and Changes in the Activity of Genes and Non-Coding RNAs After Low-Dose X-Ray Irradiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2022; 62;1:28-41 (In Russ.)]. doi:10.31857/S0869803122010088.
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Работа выполнена по теме ФГБУ ГНЦ ФМБЦ имени А.И. Бурназяна «Технология-3» (госзадание №123011300105-3).
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.12.2024. Принята к публикации: 25.01.2025.