JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4

DOI:10.33266/1024-6177-2025-70-4-5-9

A.A. Melnikova1, 2, A.A. Afonin1, L.N. Komarova1, V.O. Saburov2

Investigation of the Combined Effect of Protons and the Chemotherapy Drug Doxorubicin on the Expression of BIRC5 (Survivin) Genes and PMAIP1 (Noxa) in MCF-7 Cells 

1 National Research Nuclear University MEPhI, Obninsk, Russia

2 A.F. Tsyb Medical Radiological Research Center, Obninsk, Russia

Contact person: A.A. Melnikova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: Analysis of PMAIP1 and BIRC5 gene expression in breast cancer cells after proton exposure, both as monotherapy and in combination with doxorubicin.

Material and methods: The object of the study was MCF-7 cells. Four study groups were formed: a group exposed to ionizing radiation; a group treated with doxorubicin; a group of combined exposure to ionizing radiation and doxorubicin; and an untreated control group. The cells were irradiated at the Prometheus proton radiation complex at the A.F. Tsyb MRSC, with a scanning proton beam at a dose of 4 Gy (proton energy of 100 MeV) in the center of the distributed Bragg peak. The cells were treated with the chemotherapy drug doxorubicin at a concentration of 0.004 mg/ml 24 hours before irradiation. Total RNA was isolated using an RNA Solo kit and quantified spectrophotometrically (NanoDrop ND-1000). Reverse transcription and amplification were performed simultaneously in real time using the OneTube RT-PCR kit with SYBR Green I as a fluorescent indicator.

Results: The analysis showed that doxorubicin suppresses the expression of BIRC5 (up to 0.02), which is consistent with its known apoptogenic activity. However, the combined effect of doxorubicin and radiation leads to an increase in BIRC5 expression (up to 0.63) and a simultaneous decrease in PMAIP1 expression (up to 0.0003). This indicates the launch of complex compensatory cell survival mechanisms aimed at suppressing apoptosis and enhancing DNA repair under conditions of combined cytotoxic stress. A less pronounced decrease in BIRC5 expression during ionizing radiation monotherapy (up to 0.16) compared with doxorubicin (0.02) is probably due to differences in the nature and kinetics of DNA damage induced by these agents. The data obtained indicate the nonlinear nature of the cellular response to combined exposure and emphasize the difficulty of predicting the effectiveness of combined radiotherapy.

Conclusion: The results demonstrate the antagonistic interaction of doxorubicin and ionizing radiation in the regulation of apoptosis in MCF-7 cells, emphasizing the need for further research to optimize combination cancer therapy.

Keywords: proton therapy, doxorubicin, combined action, Bcl-2 family proteins, MCF-7, BIRC5, PMAIP1

For citation: Melnikova AA, Afonin AA, Komarova LN, Saburov VO. Investigation of the Combined Effect of Protons and the Chemotherapy Drug Doxorubicin on the Expression of BIRC5 (Survivin) Genes and PMAIP1 (Noxa) in MCF-7 Cells . Medical Radiology and Radiation Safety. 2025;70(4):5–9. (In Russian). DOI:10.33266/1024-6177-2025-70-4-5-9

 

References

1. Состояние онкологической помощи населению России в 2023 году / Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. М.: МНИОИ им. П.А.Герцена, 2024. 262 с. [Sostoyaniye Onkologicheskoy Pomoshchi Naseleniyu Rossii v 2023 Godu = The State of Oncological Care for the Population of Russia in 2023. Ed. Kaprin A.D., Starinskiy V.V., Shakhzadova A.O. Мoscow. MNIOI im. P.A. Gertsena Publ., 2024. 262 p. (In Russ.)]. 

2. Keta O.D., Todorovic D.V., Bulat T.M., Cirrone P.G., Romano F., Cuttone G., Petrovic I.M., Ristic Fira A.M. Comparison of Human Lung Cancer Cell Radiosensitivity after Irradiations with Therapeutic Protons and Carbon Ions. Exp Biol Med (Maywood). 2017;242;10:1015-1024. doi:10.1177/1535370216669611.

3. Delgado Y., Torres A., Milian M. Apoptosis Activation Associated to BH3 only Domain and BCL-2 Homology Domain Proteins: New Way to Design Anti-Cancer Drugs. J. Cancer Prev Curr Res. 2019;10:54-59. doi: 10.15406/jcpcr.2019.10.00391. 

4. Greaves G., Milani M., Butterworth M., Carter R.J., Byrne D.P., Eyers P.A., Luo X., Cohen G.M., Varadarajan S. BH3-Only Proteins are Dispensable for Apoptosis Induced by Pharmacological Inhibition of Both MCL-1 and BCL-X L. Cell Death Differ. 2019;26:1037-1047. doi: 10.1038/s41418-018-0183-7. 

5. Huang K., O’Neill K.L., Li J., Zhou W., Han N., Pang X., Wu W., Struble L., Borgstahl G., Liu Z. BH3-only Proteins Target BCL-XL/MCL-1, Not BAX/BAK, to Initiate Apoptosis. Cell Res. 2019;29:942-952. doi: 10.1038/s41422-019-0231-y.

6. Hagenbuchner J., Ausserlechner M.J., Porto V., David R., Meister B., Bodner M., Villunger A., Geiger K., Obexer P. The Anti-Apoptotic Protein BCL2L1/Bcl-XL Is Neutralized by pro-Apoptotic PMAIP1/Noxa in Neuroblastoma, Thereby Determining Bortezomib Sensitivity Independent of Prosurvival MCL1 Expression. J Biol Chem. 2010;285:6904-6912. doi: 10.1074/jbc.M109.038331.

7. Lopez H., Zhang L., George N.M., Liu X., Pang X., Evans J.J., Targy N.M., Luo X. Perturbation of the Bcl-2 Network and an Induced Noxa/Bcl-XL Interaction Trigger Mitochondrial Dysfunction after DNA Damage. J Biol Chem. 2010;285:15016-15026. doi: 10.1074/jbc.M109.086231.

8. Zhang L., Lopez H., George N.M., Liu X., Pang X., Luo X. Selective Involvement of BH3-Only Proteins and Differential Targets of Noxa in Diverse Apoptotic Pathways. Cell Death Differ. 2011;18:864-873. doi: 10.1038/cdd.2010.152.

9. Warrier N.M., Agarwal P., Kumar P. Emerging Importance of Survivin in Stem Cells and Cancer: the Development of New Cancer Therapeutics. Stem Cell Rev Rep. 2020;16;5:828-852. doi:10.1007/s12015-020-09995-4.

10. Южаков В.В., Корчагина К.С., Фомина Н.К., Корякин С.Н., Соловьев А.Н., Ингель И.Э., Корецкая А.Е., Севанькаева Л.Е., Яковлева Н.Д., Цыганова М.Г. Действие γ-излучения и сканирующего пучка протонов на морфофункциональные характеристики саркомы М-1 крыс // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2020. №2. C. 101-114 [Yuzhakov V.V., Korchagina K.S., Fomina N.K., Koryakin S.N., Solov’yev A.N., Ingel’ I.E., Koretskaya A.Ye., Sevan’kayeva L.Ye., Yakovleva N.D., Tsyganova M.G. Effect of γ-Radiation and Scanning Proton Beam on the Morphofunctional Characteristics of Rat Sarcoma M-1. Radiatsiya i Risk Byulleten’ Prekrashcheniya Radiatsionno-epidemiologicheskogo Registra = Radiation and Risk Bulletin of the Termination of the Radiation Epidemiological Registry. 2020;2:101-114. (In Russ.)]. doi: 10.21870/0131-3878-2020-29-2-101-114.

11. Calaf G.M., Crispin L.A., Muñoz J.P., Aguayo F., Narayan G., Roy D. Cell Adhesion Molecules Affected by Ionizing Radiation and Estrogen in an Experimental Breast Cancer Model. Int J Mol Sci. 2022;23;20:12674. doi:10.3390/ijms232012674.

12. Ritner C., Popovic J., Abouzeid A., Li Y., Paunesku T., Papineni R., Woloschak G. Gene Expression and Early Radiation Response of Two Distinct Neuroblastoma Cell Lines. Oncology. 2023;101;7:446-456. doi:10.1159/000530902. 

13. Kuchur O.A., Zavisrskiy A.V., Shtil A.A. Transcriptional Reprogramming Regulates Tumor Cell Survival in Response to Ionizing Radiation: a Role of p53. Bull Exp Biol Med. 2023;174;5:659-665. doi:10.1007/s10517-023-05764-8. 

14. Popescu R.C., Savu D.I., Bierbaum M., Grbenicek A., Schneider F., Hosser H., Vasile B.Ș., Andronescu E., Wenz F., Giordano F.A., Herskind C., Veldwijk M.R. Intracellular Delivery of Doxorubicin by Iron Oxide-Based Nano-Constructs Increases Clonogenic Inactivation of Ionizing Radiation in HeLa Cells. Int J Mol Sci. 2021;22;13:6778. doi:10.3390/ijms22136778. 

15. George N., Joshi M.B., Satyamoorthy K. DNA Damage-Induced Senescence is Associated with Metabolomic Reprogramming in Breast Cancer Cells. Biochimie. 2024;216:71-82. doi:10.1016/j.biochi.2023.09.021.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. A.A. Melnikova – conducting experiments, developing a theoretical basis for research; A.A. Afonin – conducting experiments; L.N. Komarova – development of the research concept, scientific supervision; V.O. Saburov – conducting experiments.

Article received: 20.03.2025. Accepted for publication: 25.04.2025.

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4

DOI:10.33266/1024-6177-2025-70-4-10-15

D.V. Molodtsova1, 2, E.A. Kotenkova3, E.K. Polishchuk4, A.A. Osipov2,
D.V. Guryev1, A.K. Chigasova1, 2, 5, N.Yu. Vorobyeva1, 2, A.N. Osipov1, 2, 3

Sensitivity to Chemoradiation Effects of Human Non-Small Cell Lung Cancer Cells Surviving Fractionated Irradiation with a Total Dose of 20 Gy

 

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia

3 Moscow Institute of Physics and Technology (National Research University), Moscow Region, Dolgoprudny, Russia

4 Experimental clinic and research laboratory for bioactive substances of animal origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia

5 N.M. Emanuel Institute for Biochemical Physics, Moscow, Russia

Contact person: D.V. Molodtsova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Objective: To obtain human non-small cell lung cancer (NSCLC) cells that survived and showed stable growth after fractionated exposure to X-rays at a total dose of 20 Gy and to evaluate their sensitivity to additional irradiation and cisplatin.

Material and methods: The NSCLC cell line A549 was used in the study, and it was irradiated in the fractionated mode (5 fractions of 4 Gy) to obtain a subline of surviving cells – A549IR. A549 and A549IR cells were subjected to testing exposure to X-rays or cisplatin. Then, proliferative activity, 2D migration capacity and the efficiency of DNA double-strand break (DSB) repair were analyzed using a quantitative assessment of residual foci of the γH2AX and 53BP1 proteins.

Results: The study yielded NSCLC cells that survived and showed stable growth after fractionated X-ray irradiation with a total dose of 20 Gy. The resulting A549IR cells had altered morphology, decreased proliferative activity, and increased migration capacity. Analysis of residual 53BP1 foci after test irradiation with a dose of 6 Gy indicates increased efficiency of repair of radiation-induced DNA DSBs. It was also found that A549IR cells are more resistant to cisplatin.

Conclusion: Overall, the study results show that combination CRT for the treatment of NSCLC should be prescribed with caution if studies based on the animal model support current conclusions. NSCLC cells that have survived IR exposure may acquire resistance to cisplatin. To select the appropriate therapy, it is important to assess both the existing radio- and chemo-resistance of tumor cells and their resistance to therapeutic effects that developed during treatment.

Keywords: NSCLC cells, Х-ray irradiation, сisplatin, γH2AX, 53BP1, residual foci, DNA double-strand breaks 

For citation: Molodtsova DV, Kotenkova EA, Polishchuk EK, Osipov AA, Guryev DV, Chigasova AK, Vorobyeva NYu, Osipov AN. Sensitivity to Chemoradiation Effects of Human Non-Small Cell Lung Cancer Cells Surviving Fractionated Irradiation with a Total Dose of 20 Gy. Medical Radiology and Radiation Safety. 2025;70(4):10–15. (In Russian). DOI:10.33266/1024-6177-2025-70-4-10-15

 

References

1. Watanabe S-i., Nakagawa K., Suzuki K., Takamochi K., Ito H., Okami J., et al. Neoadjuvant and Adjuvant Therapy for Stage III Non-Small Cell Lung Cancer. Japanese Journal of Clinical Oncology. 2017;47;12:1112-8. doi: 10.1093/jjco/hyx147.

2. Hao W., Wu L., Cao L., Yu J., Ning L., Wang J., et al. Radioresistant Nasopharyngeal Carcinoma Cells Exhibited Decreased Cisplatin Sensitivity by Inducing SLC1A6 Expression. Frontiers in Pharmacology. 2021;12:629264. doi: 10.3389/fphar.2021.629264.

3. Gomez-Casal R., Epperly M.W., Wang H., Proia D.A., Greenberger J.S., Levina V. Radioresistant Human Lung Adenocarcinoma Cells that Survived Multiple Fractions of Ionizing Radiation are Sensitive to HSP90 Inhibition. Oncotarget. 2015;6;42:44306-22. doi: 10.18632/oncotarget.6248.

4. Wang Y., Huang J., Wu Q., Zhang J., Ma Z., Ma S., et al. Downregulation of Breast Cancer Resistance Protein by Long-Term Fractionated Radiotherapy Sensitizes Lung Adenocarcinoma to SN-38. Investigational New Drugs. 2021;39;2:458-68. doi: 10.1007/s10637-020-01003-3.

5. Payton C., Pang L.Y., Gray M., Argyle D.J. Exosomes Derived from Radioresistant Breast Cancer Cells Promote Therapeutic Resistance in Naïve Recipient Cells. Journal of Personalized Medicine. 2021;11;12. doi: 10.3390/jpm11121310.

6. Wang Y., Huang J., Wu Q., Zhang J., Ma Z., Zhu L., et al. Decitabine Sensitizes the Radioresistant Lung Adenocarcinoma to Pemetrexed Through Upregulation of Folate Receptor Alpha. Frontiers in Oncology. 2021;11:668798. doi: 10.3389/fonc.2021.668798.

7. Alhaddad L., Osipov A.N., Leonov S. The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. International Journal of Molecular Sciences. 2022;23;21:13577 doi: 10.3390/ijms232113577.

8. Molodtsova D., Guryev D.V., Osipov A.N. Composition of Conditioned Media from Radioresistant and Chemoresistant Cancer Cells Reveals miRNA and other Secretory Factors Implicated in the Development of Resistance. International Journal of Molecular Sciences. 2023;24;22:16498. doi: 10.3390/ijms242216498.

9. Babayan N., Grigoryan B., Khondkaryan L., Tadevosyan G., Sarkisyan N., Grigoryan R., et al. Laser-Driven Ultrashort Pulsed Electron Beam Radiation at Doses of 0.5 and 1.0 Gy Induces Apoptosis in Human Fibroblasts. International Journal of Molecular Sciences. 2019;20;20:51-40 doi: 10.3390/ijms20205140.

10. Shibata A., Jeggo P.A. Roles for 53BP1 in the Repair of Radiation-Induced DNA Double Strand Breaks. DNA Repair. 2020;93:102915. doi: 10.1016/j.dnarep.2020.102915.

11. Osipov A.N., Pustovalova M., Grekhova A., Eremin P., Vorobyova N., Pulin A., et al. Low Doses of X-Rays Induce Prolonged and ATM-Independent Persistence of γH2AX Foci in Human Gingival Mesenchymal Stem Cells. Oncotarget. 2015;6;29:27275-87. doi: 10.18632/oncotarget.4739.

12. Osipov A., Chigasova A., Yashkina E., Ignatov M., Vorobyeva N., Zyuzikov N., et al. Early and Late Effects of Low-Dose X-ray Exposure in Human Fibroblasts: DNA Repair Foci, Proliferation, Autophagy, and Senescence. International Journal of Molecular Sciences. 2024;25;15:8253 doi: 10.3390/ijms25158253.

13. Chigasova A.K., Pustovalova M.V., Osipov A.A., Korneva S.A., Eremin P.S., Yashkina E.I., et al. Post-Radiation Changes in The Number of Phosphorylated H2ax and Atm Protein Foci in Low Dose X-Ray Irradiated Human Mesenchymal Stem Cells. Medical Radiology and Radiation Safety. 2024;69;1:15-9. doi: 10.33266/1024-6177-2024-69-1-15-19.

14. Osipov A., Chigasova A., Belov O., Yashkina E., Ignatov M., Fedotov Y., et al. Dose Threshold for Residual γH2AX, 53BP1, pATM and p-p53 (Ser-15) Foci in X-Ray Irradiated Human Fibroblasts. International Journal of Radiation Biology. 2025;101;3:1-10. doi: 10.1080/09553002.2024.2445581.

15. Osipov A., Chigasova A., Yashkina E., Ignatov M., Fedotov Y., Molodtsova D., et al. Residual Foci of DNA Damage Response Proteins in Relation to Cellular Senescence and Autophagy in X-Ray Irradiated Fibroblasts. Cells. 2023;12;8:1209 doi: 10.3390/cells12081209.

16. Djuzenova C.S., Zimmermann M., Katzer A., Fiedler V., Distel L.V., Gasser M., et al. A Prospective Study on Histone γ-H2AX and 53BP1 Foci Expression in Rectal Carcinoma Patients: Correlation with Radiation Therapy-Induced Outcome. BMC Cancer. 2015;15;1:856. doi: 10.1186/s12885-015-1890-9.

17. Katsube T., Mori M., Tsuji H., Shiomi T., Wang B., Liu Q., et al. Most Hydrogen Peroxide-Induced Histone H2AX Phosphorylation is Mediated by ATR and is not Dependent on DNA Double-Strand Breaks. Journal of Biochemistry. 2014;156;2:85-95. doi: 10.1093/jb/mvu021.

18. Arcangeli S., Greco C. Hypofractionated Radiotherapy for Organ-Confined Prostate Cancer: is Less More? Nature Reviews Urology. 2016;13;7:400-8. doi: 10.1038/nrurol.2016.106.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The research was carried out with the support of the State Research Assignment cipher «Signal» (registration number in the EGISU R&D system: 123011200048-4).

Contribution. Writing: D.V. Molodtsova, A.N. Osipov; Experimental planning: D.V. Molodtsova, N.Yu. Vorobyeva, A.N. Osipov, D.V. Guryev; Experimental work: D.V. Molodtsova, N.Yu. Vorobyeva, E.A. Kotenkova, E.K. Polishchuk, A.A. Osipov, A.K. Chigasova; Vizualization: A.N. Osipov.

Article received: 20.03.2025. Accepted for publication: 25.04.2025.

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4

DOI:10.33266/1024-6177-2025-70-4-21-24

V.Yu. Soloviev, A.Yu. Bushmanov, I.B. Ushakov, O.V. Nikitenko, T.M. Bychkova,
A.A. Ivanov , Yu.A. Fedotov, M.L. Ganzhelyuk, L.Yu. Mershin, A.S. Kretov,
T.I. Gimadova, Dmitrij M. Alekseev, Daniil M. Alekseev, A.N. Osipov

Experimental Study of Radioprotective Efficiency of Indralin
in Outbred Mice icr (cd-1) spf-Category Irradiation
with Pulsed Bremsstrahlung X-Rays in Ultra-High Dose Rate (flash) Mode

A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

Contact person: V.Yu. Soloviev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Objective: To study the radioprotective efficacy of indralin when mice were irradiated with pulsed X-ray bremsstrahlung in the ultra-high dose rate (FLASH) mode.

Material and methods: Outbred ICR (CD-1) mice of the SPF category were used as the object of the study. All study groups were randomized by body weight at the preparatory stage. During the studies, a setup based on the ILU-14 pulsed linear resonance electron accelerator with a converter was used as a source of X-ray bremsstrahlung. The radiation dose was controlled by thermoluminescent dosimeters in the individual dosimetry mode. The 30-day survival of laboratory animals under conditions without the use of drugs and with the use of indralin, administered 15 minutes before irradiation, was considered as the effect under study. When assessing the dose–effect characteristic, two options were considered: peak dose rate of bremsstrahlung X-rays 12.5 Gy/s (normal mode) and 109–147 Gy/s (FLASH mode). The results of the dose–effect dependence with 80–90 % mortality of mice within 30 days were comparable. The effectiveness of the drug indralin was assessed in the FLASH mode (peak dose rate 147–153 Gy/s, average – 2.2–2.3 Gy/s). Irradiation of the control and study groups of animals was carried out simultaneously. 

Results: The study revealed high protective efficacy of indralin when outbred ICR (CD-1) SPF mice were irradiated with pulsed X-ray bremsstrahlung in the ultra-high dose rate mode (FLASH) at a dose of 8.9 Gy, the 30-day survival rate in the control was 40 %, and when using indralin – 100 %; at a dose of 9.1 Gy, there were no surviving animals in the control, and when using indralin, the survival rate was 70 %. 

Conclusion: Significant protective efficacy of indralin was demonstrated when mice were irradiated with pulsed bremsstrahlung X-rays in the FLASH mode.

Keywords: bremsstrahlung X-rays, ultra-high dose rate (FLASH), mice, 30-day survival, indralin

For citation: Soloviev VYu, Bushmanov AYu, Ushakov IB, Nikitenko OV, Bychkova TM, Ivanov AA, Fedotov YuA, Ganzhelyuk ML, Mershin LYu, Kretov AS, Gimadova TI, Alekseev Dmitrij M, Alekseev Daniil M, Osipov AN. Experimental Study of Radioprotective Efficiency of Indralin in Outbred Mice icr (cd-1) spf-Category Irradiation with Pulsed Bremsstrahlung X-Rays in Ultra-High Dose Rate (flash) Mode. Medical Radiology and Radiation Safety. 2025;70(4):21–24. (In Russian). DOI:10.33266/1024-6177-2025-70-4-21-24

 

References

1. Ильин Л.А., Рудный Н.М., Суворов Н.Н., Чернов Г.А., Антипов В.В., Васин М.В. Давыдов Б.И., Михайлов П.П. Индралин – радиопротектор экстренного действия. Противолучевые свойства. Фармакология, механизм действия, клиника. М.: Институт биофизики, 1994. 436 с. [Il’in L.A., Rudnyy N.M., Suvorov N.N., Chernov G.A., Antipov V.V., Vasin M.V. Davydov B.I., Mikhaylov P.P. Indralin – eto Ekstrennoye Sredstvo Zashchity ot Radioizlucheniya. Protivoradiatsionnyye Svoystva. Farmakologiya, Mekhanizm Deystviya, Klinika = Indralin – Emergency Radioprotector. Antiradiation Properties. Pharmacology, Mechanism of Action, Clinical Features. Moscow, Institut Biofiziki Publ., 1994. 436 p. (In Russ.)]. 

2. Васин М.В., Ильин Л.А., Ушаков И.Б. Феномен противолучевой защиты индралином крупных животных (собак) и его экстраполяция на человека // Медицинская радиология и радиационная безопасность. 2022. Т.67. №3. С. 5-12 [Vasin M.V., Il’in L.A., Ushakov I.B. Phenomenon of Radiation Protection by Indralin of Large Animals (Dogs) and its Extrapolation to Humans. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2022;67;3:5-12 (In Russ.)]. doi:10.33266/1024-6177-2022-67-3-5-12.

3. Vasin M.V., Ushakov I.B. Comparative Efficacy and the Window of Radioprotection for Adrenergic and Serotoninergic Agents and Aminothiols in Experiments with Small and Large Animals. J Radiat Res. 2015 Jan;56;1:1-10. doi: 10.1093/jrr/rru087. Epub 2014 Oct 13. PMID: 25312329; PMCID: PMC4572585.

4. Bushmanov A.Y., Vorobyeva N.Y., Blokhina T.M., Andrianova I.E., Stavrakova N.M., Bychkova T.M., et al. Effects of Indralin on Immunohematological Parameters and DNA Damage in Irradiated ICR (CD-1) Outbred Mice. Biology Bulletin. 2020;46;11:1564-70. doi: 10.1134/s1062359019110104. 

5. Friedl A.A., Prise K.M., Butterworth K.T., Montay-Gruel P., Favaudon V. Radiobiology of the FLASH Effect. Med Phys. 2022 Mar;49;3:1993-2013. doi: 10.1002/mp.15184. Epub 2021 Sep 20. PMID: 34426981.

6. Babayan N., Grigoryan B., Khondkaryan L., Tadevosyan G., Sarkisyan N., Grigoryan R., et al. Laser-Driven Ultrashort Pulsed Electron Beam Radiation at Doses of 0.5 and 1.0 Gy Induces Apoptosis in Human Fibroblasts. International Journal of Molecular Sciences. 2019;20;20. doi: 10.3390/ijms20205140.

7. Chow J.C.L., Ruda H.E. Mechanisms of Action in FLASH Radiotherapy: a Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells. 2024;13;10. doi: 10.3390/cells13100835.

8. Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.F., Brito I., Hupé P., Bourhis J., Hall J., Fontaine J.J., Vozenin M.C. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response Between Normal and Tumor Tissue in Mice. Sci Transl Med. 2014 Jul 16;6;245:245ra93. doi: 10.1126/scitranslmed.3008973. Erratum in: Sci Transl Med. 2019 Dec 18;11(523):eaba4525. doi: 10.1126/scitranslmed.aba4525. PMID: 25031268.

9. Inada T., Nishio H., Amino S., Abe K., Saito K. High Dose-Rate Dependence of Early Skin Reaction in Mouse. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Aug;38;2:139-45. doi: 10.1080/09553008014551031. PMID: 6968733.

10. Acharya S., Bhat N.N., Joseph P., Sanjeev G., Sreedevi B., Narayana Y. Dose Rate Effect on Micronuclei Induction in Human Blood Lymphocytes Exposed to Single Pulse and Multiple Pulses of Electrons. Radiat Environ Biophys. 2011 May;50;2:253-63. doi: 10.1007/s00411-011-0353-1. Epub 2011 Jan 23. PMID: 21259020. 

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.03.2025. Accepted for publication: 25.04.2025.

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4

DOI:10.33266/1024-6177-2025-70-4-16-20

E.A. Mysina1, N.R. Popova1, A.E. Shemyakov1, 2, I.V. Savintseva1, N.N. Chukavin1, A.L. Popov1

Study of Proton Beam Influence on the Growth Dynamics and Viability of 3D Cell Spheroids Formed From 4T1 Carcinoma Cells

1 Institute of Theoretical and Experimental Biophysics, Pushchino, Russia

2 PTC LPI, Protvino, Russia

Contact person: A.L. Popov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Background: Proton therapy is considered one of the most promising methods in the treatment of complex localized tumors, but still has some shortcomings, which requires the development of new approaches to improve its effectiveness. One of the most promising approaches is the use of radiosensitizers that can enhance the radiation-induced effects of a proton beam. However, the use of 2D tumor cell models for screening potential radiosensitizers is insufficient for the effective translation of the experimental data to the in vivo level. 3D cellular spheroids are a convenient and relevant model for studying new approaches in the therapy of solid tumors, since they allow simulating the conditions of the microenvironment of tumor cells and simulating in vivo conditions, including the presence of an intercellular matrix and the formation of a certain zonality. 

Purpose: To create an experimental model of a tumor spheroid based on 4T1 tumor cells irradiated with a proton beam for screening potential nanoradiosensitizers.

Material and methods: In vitro biological activity was assessed using a 4T1 cell line (mouse carcinoma) culture. The hanging drop method was used to form cell spheroids. The spheroids were irradiated with a proton beam at the Bragg peak on at a dose of 0–12 Gr using the “Prometheus” therapeutic proton complex . The clonogenic test was used to analyze the viability and mitotic activity of the cells after irradiation. The growth dynamics of irradiated 3D spheroids has been assessing by analyzing micromorphometry for 8 days after irradiation.

Keywords: cell spheroid, tumor model, hadron therapy, protons

For citation: Mysina EA, Popova NR, Shemyakov AE, Savintseva IV, Chukavin NN, Popov AL. Study of Proton Beam Influence on the Growth Dynamics and Viability of 3D Cell Spheroids Formed From 4T1 Carcinoma Cells. Medical Radiology and Radiation Safety. 2025;70(4):16–20. (In Russian). DOI:10.33266/1024-6177-2025-70-4-16-20

 

References

1. Krukowski K., Grue K., Becker M., Elizarraras E., Frias E.S., Halvorsen A., Koenig-Zanoff McK., Frattini V., Nimmagadda H., Feng X., Jones T., Nelson G., Ferguson A.R., Rosi S. The Impact of Deep Space Radiation on Cognitive Performance: from Biological Sex to Biomarkers to Countermeasures. Sci Adv. 2021;7;42:eabg6702. doi:10.1126/sciadv.abg6702.

2. Weydert Z., et al. 3D Heterotypic Multicellular Tumor Spheroid Assay Platform to Discriminate Drug Effects on Stroma Versus Cancer Cells. Slas Discovery: Advancing the Science of Drug Discovery. 2020;25;3:265-276. doi: 10.1177/2472555219880194.

3. Zanoni M., et al. 3D Tumor Spheroid Models for in vitro Therapeutic Screening: a Systematic Approach to Enhance the Biological Relevance of Data Obtained. Scientific Reports 2016;6;1:19103. doi: 10.1038/srep19103.

4. Barbosa Mélanie A.G., et al. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers 2021;14;1:190. doi: 10.3390/cancers14010190.

5. Mittler F., et al. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Frontiers in Oncology. 2017;7:293. doi: 10.3389/fonc.2017.00293.

6. Kolmanovich D.D., Chukavin N.N., Pivovarov N.A., Ivanov V.K., Popov A.L. Cellular Uptake of FITC-Labeled Ce0.8Gd0.2O2-x Nanoparticles in 2D and 3D Mesenchymal Stem Cell Systems. Nanosystems: Phys. Chem. Math. 2024;15;3:352-360. doi: 10.17586/2220-8054-2024-15-3-352-360.

7. Brüningk S.C., Ziegenhein P., Rivens I., et al. A Cellular Automaton Model for Spheroid Response to Radiation and Hyperthermia Treatments. Sci Rep. 2019;9:17674. doi: 10.1038/s41598-019-54117-x.

8. Zavestovskaya I.N., Filimonova M.V., Popov A.L., Zelepukin I.V., Shemyakov A.E., et al. Bismuth Nanoparticles-Enhanced Proton Therapy Concept and Biological Assessment. Materials Today Nano. 2024;100508. doi: 10.1016/j.mtnano.2024.100508.

9. Popov A.L., Kolmanovich D.D., Chukavin N.N., et al. Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization. Molecules. 2024;29;16:39369. doi: 10.3390/molecules291639369. 

10. Kolmanovich D.D., Romanov M.V., Khaustov S.A., Ivanov V.K., Shemyakov A.E., Chukavin N.N., Popov A.L. Proton Beam-Induced Radiosensitizing Effect of Ce0.8Gd0.2O2-x Nanoparticles against Melanoma Cells in vitro. Nanosystems: Phys. Chem. Math. 2024;15;5:675-682. doi: 10.17586/2220-8054-2024-15-5-675-682.

11. Charalampopoulou A., Barcellini A., Magro G., Bellini A., Borgna S.S., Fulgini G., Ivaldi G.B., Mereghetti A., Orlandi E., Pullia M.G., et al. Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models. Curr. Oncol. 2025;32:49. doi: 10.3390/curroncol32010049.

12. Al-Ramadan A., Mortensen A.C., Carlsson J., Nestor M.V. Analysis of Radiation Effects in Two Irradiated Tumor Spheroid Models. Oncol Lett. 2018 Mar;15;3:3008-3016. doi:  10.3892/ol.2017.7716.

13. Khan S., Bassenne M., Wang J., Manjappa R., Melemenidis S., Breitkreutz D. Y., Pratx G. Multicellular Spheroids as in vitro Models of Oxygen Depletion during Flash Irradiation. International Journal of Radiation Oncology* Biology* Physics. 2021;110;3:833-844. doi: 10.1016/j.ijrobp.2021.01.050.

14. Brüningk S.C., Rivens I., Box C., et al. 3D Tumour Spheroids for the Prediction of the Effects of Radiation and Hyperthermia Treatments. Sci Rep. 2020;10:1653. 

15. Roohani S., Loskutov J., Heufelder J., Ehret F., Wedeken L., Regenbrecht M., Sauer R., Zips D., Denker A., Joussen A.M., Regenbrecht C.R.A., Kaul D. Photon and Proton irradiation in Patient-Derived, Three-Dimensional Soft Tissue Sarcoma Models. BMC Cancer. 2023 Jun 22;23;1:577. doi: 10.1186/s12885-023-11013-y.

16. Franken N., Rodermond H., Stap J. et al. Clonogenic Assay of Cells in vitro. Nat Protoc. 2006;1:2315–2319. doi: 10.1038/nprot.2006.339.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The article was prepared within the framework of the Russian Science Foundation grant No. 22-73-10231, https://rscf.ru/project/22-73-10231 /.

Contribution. E.A. Mysina – work with spheroids (cultivation, irradiation, viability analysis), N.R. Popova – scientific text editing, A.E. Shemyakov – radiation and dosimetry at the proton therapeutic complex Prometheus, I.V. Savintseva – cell culture, N.N. Chukavin – scientific text editing, A.L. Popov – research design development, scientific guidance.

Article received: 20.03.2025. Accepted for publication: 25.04.2025.

 

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 4

DOI:10.33266/1024-6177-2025-70-4-25-32

E.A. Kodintseva1, A.А. Akleyev2

The Contribution of Effector Cells of the Innate and Adaptive Immunity to the Pathogenesis of Radiation-Induced Carcinogenesis. Review (Part 1)

1 Urals Research Center for Radiation Medicine, Chelyabinsk, Russia

2 Southern-Urals State Medical University, Chelyabinsk, Russia

Contact person: E.A. Kodintseva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

CONTENTS

Background

1. Components of innate immunity and carcinogenesis

2. Tumor-associated myeloid cells and myeloid-derived suppressor cells

3. Tumor-associated neutrophils

4. Tumor-associated monocytes/macrophages

5. Natural killers of malignant neoplasm microenvironment

6. Conclusion

 

Keywords: peripheral blood cells, radiation exposure, malignant neoplasms, carcinogenesis, innate immunity, adaptive immunity, intercellular cooperation, radiosensitivity

For citation: Kodintseva EA, Akleyev AА. The Contribution of Effector Cells of the Innate and Adaptive Immunity to the Pathogenesis of Radiation-Induced Carcinogenesis. Review (Part 1). Medical Radiology and Radiation Safety. 2025;70(4):25–32. (In Russian). DOI:10.33266/1024-6177-2025-70-4-25-32

 

References

1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-Related Inflammation. Nature. 2008;454;7203:436-444. doi: 10.1038/nature07205.

2. Weinstein I.B. Mitogenesis is Only One Factor in Carcinogenesis. Science. 1991;251; 4992:387-388. doi: 10.1126/science.1989073.

3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006). Report to the General Assembly, with Scientific Annexes. V. 2. Annex C: Non-targeted and Delayed Effects of Exposure to Ionizing Radiation. New York, United Nations, 2008. 80 p.

4. Голивец Т.П., Коваленко Б.С., Волков Д.В. Актуальные аспекты радиационного канцерогенеза: проблема оценки эффектов воздействия «малых» доз ионизирующего излучения. Аналитический обзор // Научные ведомости Белгородского государственного университета. Медицина. Фармация». 2012. Т.19. №16. С. 5-13 [Golivets T.P., Kovalenko B.S., Volkov D.V. Current Aspects of Radiation Carcinogenesis: the Problem of Assessing the Effects of Exposure to «Small» Doses of Ionizing Radiation. Analytical Review. Nauchnyye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta. Meditsina. Farmatsiya = Scientific Bulletin of the Belgorod State University. Medicine. Pharmacy. 2012;19;16:5-13 (In Russ.)]. 

5. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR 2020/2021). Report to the General Assembly, with Scientific Annexes: Sources, Effects and Risks of Ionizing Radiation. New York, United Nations, 2021. 244 р.

6. Аклеев А.В., Аклеев А.А., Андреев С.С., Блинова Е.А. и др. Последствия радиоактивного загрязнения реки Течи: Монография / Под ред. А.В.Аклеева. Челябинск: Книга, 2016. 400 c. [Akleyev A.V., Akleyev A.A., Andreyev S.S., Blinova Ye.A., et al. Posledstviya Radioaktivnogo Zagryazneniya Reki Techi = Consequences of Radioactive Contamination of the Techa River. Monograph. Ed.by A.V.Akleyev. Chelyabinsk, Kniga Publ., 2016. 400 p. (In Russ.)].

7. Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д., Епифанова С.Б., Аклеев А.В. Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облучённого населения: 1956-2017 // Радиационная гигиена. 2020. Т.13. №3. С. 6-17 [Krestinina L.Yu., Silkin S.S., Mikryukova L.D., Yepifanova S.B., Akleyev A.V. Risk of Solid Malignant Neoplasms in the Ural Cohort of the Accident-Exposed Population: 1956-2017. Radiatsionnaya Gigiyena = Radiation Hygiene. 2020;13;3:6-17 (In Russ.)]. doi: 10.21514/1998-426X-2020-13-3-6-17.

8. Туков А.Р., Шафранский И.Л., Котеров А.Н., Зиятдинов М.Н., Прохорова О.Н., Михайленко А.М. Оценка радиационного риска смерти от сердечно-сосудистых заболеваний ликвидаторов последствий аварии на ЧАЭС – работников предприятий атомной промышленности по данным о дозах различных видов облучения // Медицинская радиология и радиационная безопасность. 2024. Т.69. №3. С. 53-56 [Tukov A.R., Shafranskiy I.L., Koterov A.N., Ziyatdinov M.N., Prokhorova O.N., Mikhaylenko A.M. Assessment of the Radiation Risk of Death from Cardiovascular Diseases in Liquidators of the Consequences of the Chernobyl Accident - Workers of Nuclear Industry Enterprises Based on Data on Doses of Various Types of Radiation. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2024;69;3:53-56 (In Russ.)]. doi:10.33266/1024-6177-2024-69-3-53-56.

9. Castelo-Branco C., Soveral I. The Immune System and Aging: a Review. Gynecological Endocrinology. 2013;30;1:16-22. doi: 10.3109/09513590.2013.852531.

10. Morrisette-Thomas V., Cohen A.A., Fülöp T., Riesco É., Legault V., Li Q., Milot E., Dusseault-Bélanger F., Ferrucci L. Inflamm-Aging does not Simply Reflect Increases in Pro-Inflammatory Markers. Mechanisms of Ageing and Development. 2014;139:49-57. doi: 10.1016/j.mad.2014.06.005.

11. Jackaman C., Tomay F., Duong L., Abdol Razak N.B., Pixley F.J., Metharom P., Nelson D.J. Aging and Cancer: the Role of Macrophages and Neutrophils. Ageing Research Reviews. 2017;36:105-116. doi: 10.1016/j.arr.2017.03.008.

12. Kim J.H., Brown S.L., Gordon M.N. Radiation-Induced Senescence: Therapeutic Opportunities. Radiation Oncology. 2023;18;10:1-11. doi:10.1186/s13014-022-02184-2.

13. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-Producing Gammadelta T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature. 2015;522:345-348. doi: 10.1038/nature14282.

14. Bronte V., Brandau S., Chen S.H. Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications. 2016;7:12150. doi: 10.1038/ncomms12150.

15. Патышева М.Р., Стахеева М.Н., Ларионова И.В., Тарабановская Н.А., Григорьева Е.С., Слонимская Е.М., Кжышковска Ю.Г., Чердынцева Н.В. Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии // Бюллетень сибирской медицины. 2019. Т.18. №1. C. 60-75 [Patysheva M.R., Stakheyeva M.N., Larionova I.V., Tarabanovskaya N.A., Grigor’yeva Ye.S., Slonimskaya Ye.M., Kzhyshkovska YU.G., Cherdyntseva N.V. Monocytes in Malignant Neoplasms: Prospects and Application Points for Diagnostics and Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2019;18;1:60-75 (In Russ.)]. doi: 10.20538/1682-0363-2019-1-60-75.

16. Strauss L., Sangaletti S., Consonni F.M., Szebeni G., Morlacchi S., Totaro M.G., Porta C., Anselmo A., Tartari S., Doni A., Zitelli F., Tripodo C., Colombo M.P., Sica A. RORC1 Regulates Tumor-Promoting “Emergency” Granulo-Monocytopoiesis. Cancer Cell. 2015;28;2:253-269. doi: 10.1016/j.ccell.2015.07.006.

17. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A Subset of Neutrophils in Human Systemic Inflammation Inhibits T Cell Responses Through MAC1. The Journal of Clinical Investigation. 2012;122;1:327-336. doi: 10.1172/JCI57990.

18. Brandau S., Dumitru C.A., Lang S. Protumor and Antitumor Functions of Neutrophil Granulocytes. Seminars in Immunopathology. 2013;35:163-176. doi: 10.1007/s00281-012-0344-6.

19. Fridlender Z.G., Sun J., Kim S. Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: N1 Versus N2 TAN. Cancer Cell. 2009;16;3:183-194. doi: 10.1016/j.ccr.2009.06.017.

20. Leliefeld P.H.C., Koenderman L., Pillay J. How Neutrophils Shape Adaptive Immune Responses. Frontiers in Immunology. 2015;6:471. doi: 10.3389/fimmu.2015.00471.

21. Batlle E., Massagué J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity. 2019;50;4:924-940. doi: 10.1016/j.immuni.2019.03.024.

22. Palano M.T., Gallazzi M., Cucchiara M., De Lerma Barbaro A., Gallo D., Bassani B., Bruno A., Mortara L. Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis.Vaccines. 2021;99;12:1488. doi: 10.3390/vaccines9121488.

23. Bonavita O., Massara M., Bonecchi R. Chemokine Regulation of Neutrophil Function in Tumors. Cytokine & Growth Factor Reviews. 2016;30:81-86. doi: 10.1016/j.cytogfr.2016.03.012.

24. Kitamura T., Fujishita T., Loetscher P., Revesz L., Hashida H., Kizaka-Kondoh S., Aoki M., Taketo M.M. Inactivation of Chemokine (C-C motif) Receptor 1 (CCR1) Suppresses Colon Cancer Liver Metastasis by Blocking Accumulation of Immature Myeloid Cells in a Mouse Model. The Proceedings of the National Academy of Sciences. 2010;107;29:13063-13068. doi: 10.1073/pnas.1002372107.

25. Yang L., Huang J., Ren X., Gorska A.E., Chytil A., Aakre M., Carbone D.P., Matrisian L.M., Richmond A., Lin P.C., Moses H.L. Abrogation of TGF Beta Signaling in Mammary Carcinomas Recruits Gr-1+CD11b+. Myeloid Cells that Promote Metastasis. Cancer Cell. 2008;13:23-35. doi: 10.1016/j.ccr.2007.12.004.

26. Masucci M.T., Minopoli M., Del Vecchio S., Carriero M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology. 2020;11:1749. doi: 10.3389/fimmu.2020.01749.

27. Albrengues J., Shields M.A., Ng D., Park C.G., Ambrico A., Poindexter M.E., Upadhyay P., Uyeminami D.L., Pommier A., Küttner V., Bružas E., Maiorino L., Bautista C., Carmona E.M., Gimotty P.A., Fearon D.T., Chang K., Lyons S.K., Pinkerton K.E., Trotman L.C., Goldberg M.S., Yeh J.T., Egeblad M. Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science. 2018;361;6409:eaao4227. doi: 10.1126/science.aao4227.

28. Grayson P.C., Carmona-Rivera C., Xu L., Lim N., Gao Z., Asare A.L., Specks U., Stone J.H., Seo P., Spiera R.F., Langford C.A., Hoffman G.S., Kallenberg C.G., St Clair E.W., Tchao N.K., Ytterberg S.R., Phippard D.J., Merkel P.A., Kaplan M.J., Monach P.A. Neutrophil-Related Gene Expression and Low-Density Granulocytes Associated with Disease Activity and Response to Treatment in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatology. 2015;67:1922-1932. doi: 10.1002/art.39153.

29. Sagiv J.Y., Michaeli J., Assi S. Mishalian I., Kisos H., Levy L., Damti P., Lumbroso D., Polyansky L., Sionov R.V., Ariel A., Hovav A.H., Henke E., Fridlender Z.G., Granot Z. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports. 2015;10;4:562-573. doi: 10.1016/j.celrep.2014.12.039.

30. Mahiddine K., Blaisdell A., Ma S. Créquer-Grandhomme A., Lowell C.A., Erlebacher A. Relief of Tumor Hypoxia Unleashes the Tumoricidal Potential of Neutrophils. The Journal of Clinical Investigation. 2019;130;1:389-403. doi: 10.1172/JCI130952.

31. Campbell E.L. Hypoxia-Recruited Angiogenic Neutrophils. Blood. 2015;126;17: 1972-1973. doi: 10.1182/blood-2015-09-666578.

32. Powell D., Tauzin S., Hind L.E., Deng Q., Beebe D.J., Huttenlocher A. Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in Interstitial Tissues. Cell Reports. 2017;19;8:1572-1585. doi: 10.1016/j.celrep.2017.04.078.

33. Vono M., Lin A., Norrby-Teglund A., Koup R.A., Liang F., Loré K. Neutrophils Acquire the Capacity for Antigen Presentation to Memory CD4(+) T Cells in vitro and ex vivo. Blood. 2017;129;14:1991-2001. doi: 10.1182/blood-2016-10-744441.

34. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., Magri G., Knowles D.M., Tam W., Chiu A., Bussel J.B., Serrano S., Lorente J.A., Bellosillo B., Lloreta J., Juanpere N., Alameda F., Baró T., de Heredia C.D., Torán N., Català A., Torrebadell M., Fortuny C., Cusí V., Carreras C., Diaz G.A., Blander J.M., Farber C.M., Silvestri G., Cunningham-Rundles C., Calvillo M., Dufour C., Notarangelo L.D., Lougaris V., Plebani A., Casanova J.L., Ganal S.C., Diefenbach A., Aróstegui J.I., Juan M., Yagüe J., Mahlaoui N., Donadieu J., Chen K., Cerutti A. B Cell-Helper Neutrophils Stimulate the Diversification and Production of Immunoglobulin in the Marginal Zone of the Spleen. Nature Immunology. 2011;13:170-180. doi: 10.1038/ni.2194.

35. Metzemaekers M., Gouwy M., Proost P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cellular & Molecular Immunology. 2020;17:433-450. doi: 10.1038/s41423-020-0412-0.

36. Fine N., Tasevski N., McCulloch C.A., Tenenbaum H.C., Glogauer M. The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology. 2020;11:571085. doi: 10.3389/fimmu.2020.571085.

37. Evrard M., Kwok I.W.H., Chong S.Z., Teng K.W.W., Becht E., Chen J., Sieow J.L., Penny H.L., Ching G.C., Devi S., Adrover J.M., Li J.L.Y., Liong K.H., Tan L., Poon Z., Foo S., Chua J.W., Su I.H., Balabanian K., Bachelerie F., Biswas S.K., Larbi A., Hwang W.Y.K., Madan V., Koeffler H.P., Wong S.C., Newell E.W., Hidalgo A., Ginhoux F., Ng L.G. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, Effector Functions. Immunity. 2018;48;2:364-379.e8. doi: 10.1016/j.immuni.2018.02.002.

38. Zhu Y.P., Padgett L., Dinh H.Q., Marcovecchio P., Blatchley A., Wu R., Ehinger E., Kim C., Mikulski Z., Seumois G., Madrigal A., Vijayanand P., Hedrick C.C. Identification of an Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone Marrow. Cell Reports. 2018;24;9:2329-2341. doi: 10.1016/j.celrep.2018.07.097.

39. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil Ageing is Regulated by the Microbiome. Nature. 2015;525:528-532. doi: 10.1038/nature15367.

40. Szebeni G.J., Vizler C., Kitajka K., Puskas L.G. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflammation. 2017:9294018. doi: 10.1155/2017/9294018.

41. Грачев А.Н., Самойлова Д.В., Рашидова М.А., Петренко А.А., Ковалева О.В. Макрофаги, ассоциированные с опухолью: современное состояние исследований и перспективы клинического использования // Успехи молекулярной онкологии. 2018. Т.5. №4. C. 20-28 [Grachev A.N., Samoylova D.V., Rashidova M.A., Petrenko A.A., Kovaleva O.V. Tumor-Associated Macrophages: Current State of Research and Prospects for Clinical Use. Uspekhi Molekulyarnoy Onkologii = Advances in Molecular Oncology. 2018;5;4:20-28 (In Russ.)]. doi: 10.17650/2313-805X-2018-5-4-20-28.

42. Becherini C., Lancia A., Detti B., Lucidi S., Scartoni D., Ingrosso G., Carnevale M.G., Roghi M., Bertini N., Orsatti C., Mangoni M., Francolini G., Marani S., Giacomelli I., Loi M., Pergolizzi S., Bonzano E., Aristei C., Livi L. Modulation of Tumor-Associated Macrophage Activity with Radiation Therapy: a Systematic Review. Strahlentherapie und Onkologie. 2023;199:1173-1190. doi: 10.1007/s00066-023-02097-3.

43. Kelly A., Gunaltay S., McEntee C.P., Shuttleworth E.E., Smedley C., Houston S.A., Fenton T.M., Levison S., Mann E.R., Travis M.A. Human Monocytes and Macrophages Regulate Immune Tolerance Via Integrin αvβ8-Mediated TGFβ Activation. Journal of Experimental Medicine. 2018;215;11:2725-2736. doi: 10.1084/jem.20171491.

44. Arwert E.N., Harney A.S., Entenberg D., Wang Y., Sahai E., Pollard J.W., Condeelis J.S. A Unidirectional Transition from Migratory to Perivascular Macrophage is Required for Tumor Cell Intravasation. Cell Reports. 2018;23:1239-1248. doi: 10.1016/j.celrep.2018.04.007.

45. Bron S., Henry L., Faes-Van’t Hull E., Turrini R., Vanhecke D., Guex N., Ifticene-Treboux A., Marina Iancu E., Semilietof A., Rufer N., Lehr H.A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-Expressing Monocytes are Lymphangiogenic and Associate Specifically with Lymphatics of Human Breast Cancer. Oncoimmunology. 2016;5;2:e1073882. doi: 10.1080/2162402X.2015.1073882.

46. Guilliams M., van de Laar L. A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology. 2015;6:406. doi: 10.3389/fimmu.2015.00406.

47. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии // Бюллетень сибирской медицины. 2017. Т.16. №4. C. 61-74 [Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheyeva M.N., Patysheva M.R., Zav’yalova M.V., Kzhyshkovskaya Yu.G. Macrophages and Tumor Progression: Towards Macrophage-Specific Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2017;16;4:61-74 (In Russ.)]. doi: 10.20538/1682-0363-2017-4-61-74.

48. Wynn T.A., Chawla A., Pollard J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature. 2013;496:445-455. doi: 10.1038/nature12034.

49. Sierra J.M., Secchiari F., Nunez S.Y., Iraolagoitia X.L.R., Ziblat A., Friedrich A.D., Regge M.V., Santilli M.C., Torres N.I., Gantov M., Trotta A., Ameri C., Vitagliano G., Pita H.R., Rico L., Rovegno A., Richards N., Domaica C.I., Zwirner N.W., Fuertes M.B. Tumor-Experienced Нuman NK Cells Express High Levels of PD-L1 and Inhibit CD8(+) T Cell Proliferation. Frontiers in Immunology. 2021;12:745939. doi: 10.3389/fimmu.2021.745939.

50. Stojanovic A., Cerwenka A. Natural Killer Cells and Solid Tumors. Journal of Innate Immunity. 2011;3;4:355-364. doi: 10.1159/000325465.

51. Habif G., Crinier A., Andre P., Vivier E., Narni-Mancinelli E. Targeting Natural Killer Cells in Solid Tumors. Cellular & Molecular Immunology. 2019;16:415-422. doi: 10.1038/s41423-019-0224-2.

52. Levi I., Amsalem H., Nissan A., Darash-Yahana M., Peretz T., Mandelboim O., Rachmilewitz J. Characterization of Tumor Infiltrating Natural Killer Cell Subset. Oncotarget. 2015;6:13835-13843. doi: 10.18632/oncotarget.3453.

53. Cózar B., Greppi M., Carpentier S., Narni-Mancinelli E., Chiossone L., Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discovery. 2021;11:34-44. doi: 10.1158/2159-8290.CD-20-0655.

54. Gallazzi M., Baci D., Mortara L., Bosi A., Buono G., Naselli A., Guarneri A., Dehò F., Capogrosso P., Albini A., Noonan D.M., Bruno A. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors. Frontiers in Immunology. 2020;11:586126. doi: 10.3389/fimmu.2020.586126.

55. Bruno A., Bassani B., D’Urso D.G., Pitaku I., Cassinotti E., Pelosi G., Boni L., Dominioni L., Noonan D.M., Mortara L., Albini A. Angiogenin and the MMP9-TIMP2 Axis are Up-Regulated in Proangiogenic, Decidual NK-Like Cells from Patients with Colorectal Cancer. Federation of American Societies for Experimental Biology Journal. 2018;32:5365-5377. doi: 10.1096/fj.201701103R.

56. Gotthardt D., Putz E.M., Grundschober E., Prchal-Murphy M., Straka E., Kudweis P., Heller G., Bago-Horvath Z., Witalisz-Siepracka A., Cumaraswamy A.A., Gunning P.T., Strobl B., Müller M., Moriggl R., Stockmann C., Sexl V. STAT5 is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discovery. 2016;6:414-429. doi: 10.1158/2159-8290.CD-15-0732.

57. Корнева Е.А. Пути взаимодействия нервной и иммунной систем: история и современность, клиническое применение // Медицинская иммунология. 2020. Т. 22. №3. С. 405-418 [Korneva Ye.A.  Pathways of Interaction between the Nervous and Immune Systems: History and Modernity, Clinical Application. Meditsinskaya Immunologiya = Medical Immunology. 2020;22;3:405-418 (In Russ.)]. doi: 10.15789/1563-0625-PON-1974.

58. Stakheyeva M., Eidenzon D., Slonimskaya E., Patysheva M., Bogdashin I., Kolegova E., Grigoriev E., Choinzonov E., Cherdyntseva N. Integral Characteristic of the Immune System State Predicts Breast Cancer Outcome. Experimental Oncology. 2019;41;1:32-38.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The research work was carried out within the framework of the state assignment of the Federal Medical and Biological Agency of Russia on the topic ‘Study of the functional state of effector cells of human antitumour immunity during the implementation of carcinogenic effects of chronic radiation exposure’ (Agreement on granting a subsidy from the federal budget for financial provision of the state assignment for public services (works) No. 388-03-2025-085 dated 24 January 2025).

Contribution. All authors confirm that their authorship meets the international ICMJE criteria. Kodintseva Е.А. – conceived and designed the study, prepared the first draft of the article, read and approved the final version before publication. Akleуev А.А. – conceived and designed the study, scientific editing, read and approved the final version before publication.

Article received: 20.03.2025. Accepted for publication: 25.04.2025.

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2926278
Today
Yesterday
This week
Last week
This month
Last month
For all time
1295
2221
3516
33458
24574
113593
2926278

Forecast today
1992


Your IP:216.73.216.82