JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3
DOI:10.33266/1024-6177-2025-70-3-34-47
N.K. Shandala, A.S. Samoylov, V.A. Seregin, S.M. Kiselev,
Yu.E. Kvacheva, E.G. Metlyaev, O.A. Kochetkov, V.N. Klochkov,
A.V. Titov, A.E. Kolyshkin, M.P. Semenova
Radiation Health Physics to Assure Radiation Safety and Protection of the Public and Personnel:
Case Study of the SRC-FMBC
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: N.K. Shandala, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To describe, based on our original innovative developments, the role of radiation health physics in assuring radiation safety and protection of a) the public living near operating, decommissed and remediated radiation hazardous facilities and sites; and b) nuclear wor-
kers .
Material and methods: The objects of the study included radiation hazardous facilities at different stages of the life cycle (operating, decommissioned, remediated), nuclear and uranium legacy sites, where samples of environmental and marine media (water, soil, vegetation, algae, bottom sediments) were collected, as well as local foodstuffs and drinking water. The samples were examined using dosimetric, radiometric, gamma-spectrometric and radiochemical methods. When studying the health status of the public living in the vicinity of these facilities, methods of radiation epidemiology were used, supplemented by our original innovative development of the health assessment.
Results: The conducted long-term studies allowed not only characterizing the facilities and sites under study, but also identification the features of the spatial and temporal distribution of radioactive materials including at the nuclear legacy sites. The presence of large volumes of artificially contaminated soils has been detected, which in some cases are classified as radioactive waste in terms of their activity values. It has been shown that man-made contamination spreads into ground waters as well as into local areas of coastal marine waters. The results of public health monitoring allow us to state that radiation hazardous facilities in Russia are operating safely. Five innovative hardware, methodological and dosimetric complexes have been created to support radiation safety of workers.
Conclusions: The radiation health physics is the radiation safety science developed by some generations of scientists and professionals of the SRC-FMBC. Today, this science helps to support the whole cycle of medical and health physics safety of nuclear workers and the public living in the areas affected by nuclear facilities – from the science based development to its implementation in practice.
The interdisciplinary approach implemented in the SRC-FMBC helps to comprehensively solve many difficult tasks of radiation safety and protection of the public and workers.
Keywords: radiation health physics, radiation health physics monitoring, radiation safety and protection of public and workers, radio-ecological survey, health state assessment, regulation, comprehensive approach, A.I. Burnazyan FMBC
For citation: Shandala NK, Samoylov AS, Seregin VA, Kiselev SM, Kvacheva YuE, Metlyaev EG, Kochetkov OA, Klochkov VN, Titov AV, Kolyshkin AE, Semenova MP. Radiation Health Physics to Assure Radiation Safety and Protection of the Public and Personnel: Case Study of the SRC-FMBC. Medical Radiology and Radiation Safety. 2025;70(3):34–47. (In Russian). DOI:10.33266/1024-6177-2025-70-3-34-47
References
1. Shandala N.K., Kiselev S.M., Kvacheva Yu.Ye., Seregin V.A., Semenova M.P., Metlyayev Ye.G. Radiatsionnaya Gigiyena i Bezopasnost’ Naseleniya. Otdelu Radiatsionnoy Bezopasnosti Naseleniya 70 Let = Radiation Hygiene and Safety of the Population. The Department of Radiation Safety of the Population is 70 Years Old. Moscow, FMBTS im. A.I. Burnazyana FMBA Rossii Publ., 2024. 122 p. (In Russ.).
2. Il’in L.A., Shandala N.K., Savkin M.N., et al. Place and Role of Radiation-Hygienic Monitoring in the System of Social-Hygienic Monitoring. Gigiyena i Sanitariya = Hygiene and Sanitation. 2004;5:9-15 (In Russ.).
3. Shandala N., Sneve M., Seregin V., Filonova A. Radiation Survey and Environmental Impact Assessment at the Site of Temporary Storage at Andreeva Bay (16 Years of Studies). J. Radiol. Prot. 2021;41:406-426. doi: 10.1088/1361-6498/ac241c
4. Kiselev S., Shandala N., Laschenova T., Shlygin V., Zozul Yu., Akhromeev S., Gimadova T. Comprehensive Environmental Monitoring during Remediation of a Nuclear Legacy Site in the Far East of Russia. J. Radiol. Prot. 2021;41:216-229. doi: 10.1088/1361-6498/abecf4.
5. Bel’skikh Yu.S., Shandala N.K., Titov A.V., Isayev D.V., Semenova M.P., Os’kina K.Yu., Gushchina Yu.V., Filonova A.A. Study of the Radiation Situation at the Dumps of Mine No. 1 of the Almaz LPO 5 Years after Reclamation. Gigiyena i Sanitariya = Hygiene and Sanitation. 2022;101;7:736-740 (In Russ.). doi: 10.47470/0016-9900-2022-101-7-736-740
6. Seregin V.A., Gushchina Yu.V., Bel’skikh Yu.S., et al. Radiation and Hygienic Monitoring in the Areas of Location of Uranium Legacy Sites and Enterprises of Central Asian Countries during the Reclamation Period. Zdorov’ye i Okruzhayushchaya Sreda = Health and Environment. Proceedings of the International Scientific and Practical Conference. Minsk, November 23-24, 2023. Minsk, Nauchno-Issledvoatel’skiy Institut Gigeny, Toksikologii, Epidemiologii, Virusologii i Mikrobiololgii Publ, 2023. (In Russ.).
7. Shandala N.K., Starinskiy V.G., Semenova M.P., Filonova A.A., Salenko Yu.A., Starinskaya R.A., Isayev D.V., Seregin V.A., Gushchina Yu.V., Shitova A.A. The Role of the Federal State Budgetary Institution “SRC - Federal Medical Biophysical Center named after A.I. Burnazyan” of the Federal Medical and Biological Agency in Ensuring Sanitary and Epidemiological Well-Being and Radiation Safety in the Arctic Zone of the Russian Federation. Meditsina Katastrof = Disaster Medicine. 2023;1:5-8. doi: 10.33266/2070-1004-2023-1-5-8.
8. Ekspertnyye i Prognoznyye Otsenki Sostoyaniya Zdorov’ya Naseleniya v Rayonakh Razmeshcheniya Atomnykh Stantsiy = Expert and Forecast Assessments of the Health Status of the Population in Areas where Nuclear Power Plants are Located. Methodological Guidelines. MU 2.6.5.032-2014. Moscow, 2014. 30 p. (In Russ.).
9. Karev A.Ye. Apparaturno-Metodicheskiy Kompleks dlya Otsenki Ingalyatsionnogo Postupleniya Radioaktivnykh Gazo-Aerozol’nykh Smesey = Hardware and Methodological Complex for Assessing the Inhalation Intake of Radioactive Gas-Aerosol Mixtures. Abstract of Candidate Thesis (Tech. Sci.). Moscow, FMBTS im. A.I. Burnazyana FMBA Rossii Publ., 2018. 23 p. (In Russ.).
10. Kochetkov O.A., Tarasova Ye.YU., Shinkarev S.M., Rumyantsev Ye.A. Comparison of Dosimetric Systems of Photon and Neutron Radiation Used in Organizations of the State Corporation Rosatom for Monitoring in a Situation of Planned Irradiation. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2023;68; 6:118-124 (In Russ.). doi: 10.33266/1024-6177-2023-68-6-118-124.
11. Molokanov A.A., Kukhta B.A., Maksimova Ye.Yu. Comparative Analysis of Approaches to Standardization and Control of Internal Irradiation of Personnel. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2021;66;6:102–110 (In Russ.). doi: 10.12737/1024-6177-2021-66-6-102-110.
12. Rubtsov V.I., Klochkov V.N., Trebukhin A.B., et al. SIZ Personala Predpriyatiy Atomnoy Promyshlennosti i Energetiki = PPE for Personnel of Nuclear Industry and Energy Enterprises. Moscow Publ., 2020. 252 p. (In Russ.).
13. Kvacheva Yu.Ye., Shandala N.K., Parinov O.V., Metlyayev Ye.G., Lebedev A.O. Issues of Scientific Support for Radiation Safety Based on the Experience of Overcoming the Consequences of the Chernobyl Accident. Meditsina Katastrof = Disaster Medicine. 2021;3:10-19 (In Russ.). doi: 10.33266/2070-1004-2021-3-10-19.
14. Popova A.Yu. Information On the Assessment of the State of Ensuring Radiation Safety of the Population Within the Framework of Radiation-Hygienic Certification. Moscow, Rospotrebnadzor Publ., 2024. 3 p. (In Russ.).
15. Kiselev S.M. Zhukovskiy M.V, Stamat I.P., Yarmoshenko I.V. Radon: ot Fundamental’nykh Issledovaniy k Praktike Regulirovaniya = Radon: from Fundamental Research to Regulatory Practice: Monograph. Moscow, FMBTS im. A.I. Burnazyana FMBA Rossii Publ., 2016. 427 p. (In Russ.).
16. Simakov A.V., Abramov Yu.V. On the Development of new Editions of the Radiation Safety Standards and the Basic Sanitary Rules for Ensuring Radiation Safety. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2019;5:15-19 (In Russ.). doi: 10.12737/1024-6177-2019-64-5-15-19
17. Kochetkov O.A., Klochkov V.N., Samoylov A.S., Shandala N.K., Barchukov V.G., Shinkarev S.M. General Principles of Legal and Normative-Methodical Regulation of Radiation Safety. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2022;67;1:19–26 (In Russ.). doi: 10.12737/1024-6177-2022-67-1-19-26.
18. Parinov O.V., Lyaginskaya A.M., Galstyan I.A., Metlyayev Ye.G., et al. Temporary Recommendations for Conducting Medical Examinations of Workers in the Production of Fuel Additives: Organization Standard. Moscow, FMBTS im. A.I. Burnazyana FMBA Rossii Publ., 2023. 24 p. (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was financed under the Federal Target Programs “Nuclear and Radiation Safety for 2016-2020 and for the period until 2030” and “Industrial Decommissioning and Disposal of Weapons and Military Equipment of the Nuclear Complex”.
Contribution. Shandala N.K. – study conception and design, radiation health physics data collection and processing, writing the text; Samoylov A.S. – article conception and editing the text; Seregin V.A. – radiation health physics data collection and conducting radiation health physics monitoring at the uranium legacy sites in Central Asia; Kiselev S.M. – data collection on radiation health physics monitoring at the Russian nuclear legacy sites and on the public exposure assessment due to radon; Kvacheva Yu.E. – data collection on bio banking and medical nuclear forensics; Metlyaev E.G. – data collection on assessing the health status of the public and iodine prophylaxis; Kochetkov O.A. – data collection on radiation safety and protection of workers and regulatory framework for radiation safety; Klochkov V.N. – data collection on radiation safety and protection of workers and regulatory framework for radiation safety; Titov A.V. – collection and processing of data on radiation health physics monitoring at uranium legacy sites in Russia and Central Asia; A.E. Kolyshkin – data collection on nuclear power plants and comprehensive health physics assessment of occupational exposure; Semenova M.P. – data collection on radiation health physics monitoring at Russian uranium legacy sites, translation into English and text editing. All authors are responsible for approval of the final version of the article and integrity of all parts of the article.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3
DOI:10.33266/1024-6177-2025-70-3-48-53
V.I. Arkhipova, A.M. Lyaginskaya, O.V. Parinov, E.G. Metlyaev, A.S. Samoylov
The Current State and Problems of Health Protection
of Women Working in Conditions of Radiation Hazard
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Valeria I. Arkhipova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Relevance: In the existing international radiation safety system (ICRP) and in national RSS - 99/2009, the main principle of protection is the exclusion of tissue and reduction of stochastic effects to an acceptable level. Particular attention is paid to the protection of the gonads, including for the purpose of protecting future generations. When calculating the risk and harm of cancer and hereditary diseases, coefficients with gender averaging are used, but it is recognized that there are significant differences in the values of radiation risk between men and women.
Purpose: To analyze the current state and problems of protecting the health of women working in radiation hazardous conditions.
Results: The analysis of the presented data on the current state of protection of the women’s health system aimed at protecting the unborn child does not fully meet the effectiveness of protecting the health of women working in high-tech production of new types of nuclear fuel and does not fully take into account new knowledge about non-chromosomal mutations as the second hereditary structure of the female body, which leads to the obvious conclusion: further study of the health parameters of workers in radiation hazardous industries and further improvement of measures to protect women’s health are required.
Keywords: radiation safety, women’s health, mitochondrial inheritance, radiation protection, gonads, genetics
For citation: Arkhipova VI, Lyaginskaya AM, Parinov OV, Metlyaev EG, Samoylov AS. The Current State and Problems of Health Protection of Women Working in Conditions of Radiation Hazard. Medical Radiology and Radiation Safety. 2025;70(3):48–53. (In Russian). DOI:10.33266/1024-6177-2025-70-3-48-53
References
1. Publication 103 of the International Commission on Radiological Protection (ICRP3). Ed. M.F.Kiselev, N.K.Shandala. Moscow, Alana Publ., 2009. 312 p. (In Russ.).
2. Normy Radiatsionnoy Bezopasnosti NRB-99/2009: Sanitarno-Epidemiologicheskiye Pravila i Normativy = Radiation Safety Standards NRB-99/2009: Sanitary and Epidemiological Rules and Regulations. Moscow, Federal’nyy Tsentr Gigiyeny i Epidemiologii Rospotrebnadzora Publ., 2009. 100 p. (In Russ.).
3. Petoyan I.M., Shandala N.K., Lyaginskaya A.M., Metlyayev Ye.G. Health Status of Newborn Children in Families of Male Personnel of Nuclear Power Plants. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2023;68;2:80-84. doi: 10.33266/1024–6177-2023-68-2-80-84 (In Russ.).
4. Parker L., Pears M.S., Dockinson H.O., Aitkin M., Craft A.W. Stillbirths among Offspring of Male Radiation Workers at Sellafield Nuclear Reprocessing Plant. Lancet. 1999 Oct 23;354;9188:1407–1414. doi:10.1016/S0140-6736(99)04138-0.
5. Lowell E.S., Ethel S.G., Nancy A.H., James M.M. A Case-Control Study of Congenital Malformations and Occupational Exposure to Low-Level Ionizing Radiation. Am. J. Epidemiology. 1988 Feb; 127;2:226-242. doi: 10.1093/oxfordjournals.aje.a114799.
6. Neel J.V., Kato H., Schull W.J. Mortality in the Children of Atomic Bomb Survivors and Controls. Genetics. 1974 Feb;76;2:311-36. doi:10.1093/genetics/76.2.311
7. Petrushkina N.P. Zdorov’ye Potomkov (1–2 Pokoleniye) Rabotnikov Pervogo Predpriyatiya Atomnoy Promyshlennosti Proizvodstvennogo Ob’yedineniya «Mayak» (Kliniko-Epidemiologicheskoye Issledovaniye) = Health of Descendants (1–2 Generations) of Workers of the First Nuclear Industry Enterprise, the Mayak Production Association (Clinical and Epidemiological Study). Doctor’s Thesis (Med). Moscow Publ., 2003. 371 p. (In Russ.).
8. Lyaginskaya A.M., Petoyan I.M., Yermalitskiy A.P., Kuptsov V.V., Karelina N.M. Radiation-Hygienic Aspects of the Reproductive Health of Male NPP Personnel. Gigiyena i Sanitariya = Hygiene and Sanitation. 2017;96;96:883-887 (In Russ.). doi: 10.47470/0016-9900-2017-96-9-883-887
9. Osipov V.A., Lyaginskaya A.M., Petoyan I.M., Yermalitskiy A.P., Karelina N.M. Congenital Malformations in Children of Smolensk NPP Personnel and their Relationship with Occupational Exposure of Fathers. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2014;59;4:18-24.
10. Petoyan I.M, Lyaginskaya A.M., Yermalitskiy A.P., Kuptsov V.V., Karelina N. M., Tsov’yanov A.G., Samoylov A.S. Reproductive Health Status of Male Personnel of the Kursk NPP. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2019;64;1:21-25 (In Russ.). doi:10.12737/article_5c55fb247614e5.98844114.
11. Radiatsionnaya Bezopasnost’ = Radiation Safety. ICRP Recommendations 1990. Publ. 60. Part 2. Moscow, Energoatomizdat Publ., 1994. 208 p. (In Russ.).
12. Ginter Ye.K., Puzyrev V.P., Skoblov M.Yu., Kutsev S.I. Meditsinskaya Genetika = Medical Genetics. National Guide. Moscow, Geotar-Media Publ., 2022. 896 p. (In Russ.).
13. Davydenko O.G. Nekhromosomnyye Mutatsii = Non-Chromosomal Mutations. Minsk, Nauka i Tekhnika Publ., 1984. 165 p. (In Russ.).
14. Petrov I.A., Dmitriyeva M.L., Tikhonovskaya O.A., Petrova M.S., Logvinov S.V. Tissue and Molecular Bases of Folliculogenesis. Ovarian Aging. Problemy Reproduktsii = Problems of Reproduction. 2017;23;4:18-23 (In Russ.). doi: 10.17116/repro201723418-23.
15. Palilova A.N. Nekhromosomnaya Nasledstvennost’ = Non-Chromosomal Heredity. Minsk, Nauka i Tekhnika Publ., 1981. 184 p.
(In Russ.).
16. Suomalainen A. Mitochondrial DNA and Disease. Annals of Medicine. 1997;29;3:235-246. doi: 10.3109/07853899708999341.
17. Chinnery P.F., Johnson M.A., Wardell T.M., Singh-Kler R., Hayes C., Brown D.T., Taylor R. W., Bindoff L.A., Turnbull D.M. The Epidemiology of Pathogenic Mitochondrial DNA Mutations. Ann Neurol. 2000;48;2:188-93.
18. Majamaa K., Moilanen J. S., Uimonen S., Remes A. M., Salmela P. I., Karppa M., Majamaa-Voltti K.A., Rusanen H., Sorri M., Peuhkurinen K.J., Hassinen I.E. Epidemiology of A3243G, the Mutation for Mitochondrial Encephalomyopathy, Lactic Acidosis, and Strokelike Episodes: Prevalence of the Mutation in an Adult Population. Am J Hum Genet. 1998;63;2:447–54.
19. Schapira A.H. Mitochondrial Diseases. Lancet. 2006;368;9529:70-82.
20. Radiation-Chemical, Molecular and Biochemical Bases of Biological Action of Radiation. Radiation Medicine. Ed. L.A.Il’in. Teoreticheskiye Osnovy Radiatsionnoy Meditsiny = Theoretical Bases of Radiation Medicine. Vol.1. Moscow, IzdAT Publ., 2004. P.122-157 (In Russ.).
21. Ivanov I.I. Bioenergetics in Tissues and Cells in Acute and Radiation Injury. Problemy Energetiki v Obluchennom Organizme = Problems of Energetics in the Irradiated Organism. Vol.VI. Moscow, Atomizdat Publ., 1977. P. 196-201 (In Russ.).
22. Manoylov S.Ye. Correlation Between Radiosensitivity and the State of Bioenergetics. Problemy Energetiki v Obluchennom Organizme = Problems of Energetics in the Irradiated Organism. Vol.VI. Moscow, Atomizdat Publ., 1977. P. 128-153 (In Russ.).
23. Abdullayev S.A. Postradiatsionnyye Mekhanizmy Funktsionirovaniya i Stabilizatsii Mitokhondrial’nogo Genoma = Post-Radiation Mechanisms of Functioning and Stabilization of the Mitochondrial Genome. Extended Abstract of Doctor’s Thesis (Biol.). Moscow Publ., 2023. 45 p. (In Russ.).
24. Forster L., Forster P., Lutz-Bonengel S., Willkomm H., Brinkmann B. Natural Radioactivity and Human Mitochondrial DNA Mutations. Proc Natl Acad Sci USA. 2002 Oct 15;99;21:13950-13954. doi: 10.1073/pnas.202400499.
25. UNSCEAR 2001 Report: Hereditary Effects of Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2001. Report to the General Assembly, with Scientific Annex. New York, 2001. 160 p.
26. Aylamazyan E.K., Belyayeva T.A., Vinogradova Ye.G., et al. Women’s Reproductive Health as a Criterion for Bioecological Assessment of the Environment. Vestnik Rossiyskoy Assotsiatsii Akusherov-Ginekologov = Bulletin of the Russian Association of Obstetricians and Gynecologists. 1997;3:72-78 (In Russ.).
27. Sustainable Development Progress Report. Moscow, Rosatom Publ., 2021. URL: https://report.rosatom.ru/go/rosatom/go_rosatom_2021/rosatom_esg_2021.pdf.
28. Parinov O.V., Lyaginskaya A.M., Shandala N.K., Metlyayev Ye.G., Kuptsov V.V. Problems of Assessing the Health Status of Personnel Working in Conditions of New Nuclear Fuel Production Technologies. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2001;6;3:9-12 (In Russ.). doi: 10.12737/1024-6177-2021-66-3-9-12.
29. Adamov Ye.O., Zabud’ko L.M., Matveyev V.I., Rachkov V.I., Troyanov B.M., Khomyakov Yu.S., Leonov V.N. Comparative Analysis of the Advantages and Disadvantages of Using Metallic and Nitride Mixed Uranium-Plutonium Fuel in Fast Reactors. Izvestiya Akademii Nauk, Energetika =Bulletin of the Academy of Sciences, Power Engineering. 2015;32:3-15 (In Russ.).
30. Batova Z.G., Kochetkov O.A., Monastyrskaya S.G., Sayapin N.P., Simakov A.V., Stepanov S.V., Isayev O.V. Occupational Hygiene in the Nuclear Industry and Energy. Radiatsionnaya Meditsina = Radiation Medicine. Vol. III. Ed. L.A.Il’in. Moscow, IzdAT Publ., 2002. P. 230-234 (In Russ.).
31. Adamov Ye.O., Vlaskin G.N., Lopatkin A.V., Rachkov V.I., Khomyakov Yu.S. Radiation-Equivalent Handling of Radioactive Radionuclides in the NFC - an Effective Alternative to the Deferred Solution to the Problem of SNF Accumulation. Izvestiya Akademii Nauk, Energetika = Bulletin of the Academy of Sciences, Power Engineering. 2015;6:15-25 (In Russ.).
32. Tsov’yanov A.G., Karev A.Ye., Shinkarev S.M., Korenkov I.P., Samoylov A.S., Stebel’kov V.A., Zhukov A.V., Izmest’yev K.M., Terent’yev S.G. Dispersity, Morphology and Elemental Composition of Aerosol Particles in the Production of Mixed Nitride Uranium-Plutonium Fuel. Meditsinskaya Radiologiya = Medical Radiology. 2020;3:59-65 (In Russ.). doi: 10.12737/1024-6177-2020-65-3-59-65.
33. Samoylov A.S., Shandala N.K., Bushmanov A.YU., Shinkarev S.M., Dov’yanov A.G., Gantsovskiy P.P., Karev A.Ye., Kukhta G.A., Simakov A.V., Klochkov V.N. Assessment of Radiation Doses to Personnel of Complex Experimental Facilities at the Siberian Chemical Combine in the Production of Mixed Nitride Uranium-Plutonium Fuel. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2020:6 (In Russ.).
34. Samoylov A.S., Metlyayev Ye.G., Lyaginskaya A.M. Galstyan I.A., Parinov O.V., Torubarov F.S., Karelina N.M., Yermalitskiy A.P., Petoyan I.M., Voskal’chuk H.C., Kaverina T.N. Zaklyucheniye o Sostoyanii Zabolevayemosti Rabotnikov Proizvodstva SNUP-Topliva po Rezul’tatam Provedennogo Sravnitel’nogo Analiza: Otchet o NIR «Razrabotka Vremennykh Rekomendatsiy po Provedeniyu Meditsinskikh Osmotrov Rabotnikov Proizvodstv SNUP-Topliva» = Conclusion on the Morbidity Rate of Workers in the Production of SNP Fuel Based on the Results of the Comparative Analysis: Report on R&D “Development of Temporary Recommendations for Conducting Medical Examinations of Workers in the Production of SNP Fuel” under contract No. 11/13917D dated 01.10.2020. 56 p. (In Russ.).
35. Plutoniy. Radiatsionnaya Bezopasnost’ = Plutonium. Radiation Safety. Ed. L.A.Il’in Moscow, IzdAT Publ., 2005. 415 p. (In Russ.).
36. Tekhnogennoye Oblucheniye i Bezopasnost’ Cheloveka = Man-Made Radiation and Human Safety. Ed. L.A.Il’in. Moscow, IzdAT Publ., 2006. 303 p. (In Russ.).
37. Pomerantseva M.D., Ramayya L.K., Shevchenko V.A., Lyaginskaya A.M., Dement’yev S.I. Induction of Genetic Damage by Incorporated 238Pu in Germ Cells. Radiobiologiya = Radiobiology. 1987;27:206-209 (In Russ.).
38. Pomerantseva M.D., Ramaya L.K., Vilkinf G.A., Shevchenko V.A., Lyaginskaya A.M. Evaluation of the Genetic Effects of 238Pu Incorporated into Mice. J. Mutation Res. 1986;226:93-98.
39. Pomerantseva M.D., Ramayya L.K., Shevchenko V.A., Lyaginskaya A.M. Evaluation of Genetic Effects of 238Pu Intake in Mammals. Genetika = Genetics. 1988;24;4:176-181. (In Russ.).
40. Nasledstvennost’ Cheloveka i Okruzhayushchaya Sreda = Human Heredity and the Environment. UNESCO Man and the Biosphere Programme. 1984. 199 p.
41. Ilʹin L.A., Samoylov A.S., Tsov’yanov A.G., Shynkarev S.M., Shandala N.K., Gantsovskiy P.P., Karev A.Ye., Kukhta B.A., Simakov A.V., Klochkov V.N., Korenkov I.P., Lyaginskaya A.M., Parinov O.V., Ivanov V.K., Chekin S.Yu., Menyaylo A.N., Tumanov K.A., Solomatin V.M., Izmest’yev K.M. Radiation and Hygienic Studies of the Experimental Production of Mixed Nitride Uranium-Plutonium Fuel at JSC “SKhK”. Part 2: Doses and Risks. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2022;67;1:39-45 (In Russ.). doi: 10.12737/1024–6177-2022-67-1-39-45.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3
DOI:10.33266/1024-6177-2025-70-3-70-82
A.N. Koterov1, L.N. Ushenkova1, A.A. Wainson2,
D.Yu. Usupzhanova1, A.Yu. Bushmanov1
‘Healthy Worker Effect’ In Employees of Medical-Biological and Chemical Laboratories: Comparison with Effects in Nuclear Workers, in other Professional Contingents (Meta-Analyses),
and the Role of the Radiation Factor
1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
2 N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
Contact person: Alexey N. Koterov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Based on a search in a supported database of sources for standardized mortality ratio (SMR; compared with the general population) for all causes and all cancer mortality for various professions and types of employment, in PubMed, the Cochrane Library, Elibrary, through Google, Google Scholar and in the reference lists of found sources, a complete/representative sample of studies of SMR all causes and SMR all cancer for personnel of biomedical, agricultural, chemical and some other research laboratories (a total of 39 sources and 3 reviews) was formed. Meta-analyses performed on the basis of this sample demonstrated a high Healthy Worker Effect (HWE) for all causes for the total group of workers, for the group including biomedical, sanitary and agricultural laboratories, and for the group of chemists. SMR (±95 % confidence intervals) were, respectively: 0.63 (0.58; 0.68); 0.65 (0.57; 0.74) and 0.62 (0.56; 0.68). For SMR all cancer HWE, although of a smaller value, it was demonstrated for the first and second groups: 0.85 (95 % CI: 0.75; 0.96) and 0.78 (95 % CI: 0.70; 0.88), respectively. At the same time, for chemists, no excess in mortality from all cancers was noted either: 0.88 (95 % CI: 0.74; 1.05).
The HWE values for laboratory workers were compared with those for occupations characterized by the highest HWE values (cosmonauts/astronauts, athletes, pilots, nuclear workers, and the military; individual studies, meta- and pooled analyses). It was found that the scientific laboratory personnel had a HWE level for SMR all causes comparable to that of athletes and nuclear workers. However, the SMR all cancer index for laboratory researchers was significantly higher than in all comparison groups, with the exception of the military, which is obviously due to contacts with a variety of carcinogenic factors when working in laboratories.
Due to the absence of prerequisites for the formation of HWE characteristic of the compared contingents for the researchers, an assumption was made that the decrease in overall mortality among laboratory personnel may be primarily due to a scientific mindset, which allows them to better navigate the causal dependencies of life and more adequately prevent various consequences, rather than a special lifestyle, increased socioeconomic status and a decrease in the frequency of smoking (as some authors suggest).
Analysis of the influence of the radiation factor (external and internal irradiation) on the studied mortality rates for laboratory workers revealed some effects in relation to certain types of malignant neoplasms (leukemia, myeloma, lung cancer, bone cancer, etc.), but a number of them were not previously recognized as radiation-induced and their increase may be a consequence of the effect of other carcinogenic factors of work in chemical, biochemical, molecular biological and other laboratories.
Keywords: laboratory researchers, biomedical laboratories, chemists, all cause mortality, all cancer mortality, healthy worker effect, radiation exposure
For citation: Koterov AN, Ushenkova LN, Wainson AA, Usupzhanova DYu, Bushmanov AYu. ‘Healthy Worker Effect’ In Employees of Medical-Biological and Chemical Laboratories: Comparison with Effects in Nuclear Workers, in other Professional Contingents (Meta-Analyses), and the Role of the Radiation Factor. Medical Radiology and Radiation Safety. 2025;70(3):70–82. (In Russian). DOI:10.33266/1024-6177-2025-70-3-70-82
References
1. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г. База данных по стандартизованному отношению смертности (SMR all causes и SMR all cancer) для различных профессий (706 когорт/групп): максимальный «эффект здорового работника» – у космонавтов и врачей. Мед. труда и пром. экология // 2023a. Т.63. № 3. С. 179–192. https://doi.org/10.31089/1026-9428-2023-63-3-179-192. Koterov A.N., Ushenkova L.N., Dibirgadzhiev I.G. Database on standardized mortality ratio (SMR all causes and SMR all cancer) for various professions (706 cohorts/groups): the maximum ‘effect of a healthy worker’ – in astronauts and doctors. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2023a;63(3):179–92. (In Russ. Engl. abstr.) https://doi.org/10.31089/1026-9428-2023-63-3-179-192.
2. Котеров А.Н., Ушенкова Л.Н. Смертность профессиональных водителей 9 стран: систематический обзор и мета-анализ // Мед. труда и пром. экол. 2023b. Т.63. № 5. С. 315–326. https://doi.org/10.31089/1026-9428-2023-63-5-315-326. Koterov A.N., Ushenkova L.N. Professional driver mortality in 9 countries: a systematic review and meta-analysis. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2023b;63(5):315–326. (In Russ. Engl. abstr.) https://doi.org/10.31089/1026-9428-2023-63-5-315-326.
3. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. «Эффект здорового работника» по показателям общей смертности и смертности от злокачественных новообразований у персонала предприятий ядерной и химической индустрии: мета-анализы. Мед. радиология и радиац. безопасность // 2023c. Т.68. №4. С. 43–50. https://doi.org/10.33266/1024-6177-2023-68-4-43-50. Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. The ‘Healthy worker effect’ on indexes of total mortality and malignant neoplasms mortality for nuclear and chemical workers: meta-analysis. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2023c;68(4):43–50. (In Russ. Engl. abstr.) https://doi.org/10.33266/1024-6177-2023-68-4-43-50.
4. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Дибиргаджиев И.Г. Профессии, наиболее отражающиеся на здоровье: ядерная индустрия на последних местах по вредности (синтетическое исследование). В сборнике материалов международной научно-практической конференции «Здоровье и окружающая среда» (Минск, 23–24 ноября 2023 г.). М-во здравоохр. Респ. Беларусь. Науч.-практ. центр гигиены; редкол.: С.И. Сычик (гл. ред.). Минск: Изд. центр БГУ. 2023d. С. 96–100. Koterov A.N., Ushenkova L.N., Kalinina M.V., Dibirgadzhiev I.G. Professions that most affect health: the nuclear industry is in last place in terms of harmfulness (synthetic study). In the Collection of materials of the International Scientific and Practical conference ‘Health and the Environment’ (Minsk, November 23–24, 2023). Ministry of Health Rep. Belarus. Scientific-practical hygiene center; editorial board: S.I. Sychik (Chief editor). Minsk: Publishing house. BSU center 2023d: 96–100. (In Russ. Engl. abstr.)
5. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Калинина М.В. Смертность от всех причин и от всех раков для работников ядерной индустрии и шахтеров урановых рудников сравнительно с наиболее вредными/опасными профессиями (синтетическое исследование) // В сб. научн. тр. «Здоровье и окружающая среда». Под ред. С.И. Сычика и др. – Гомель: Редакция газеты «Гомельская прауда», 2024. С. 59–69. Koterov A.N., Ushenkova L.N., Kalinina M.V., Dibirgadzhiev I.G. All causes mortality and all cancers among nuclear industry workers and uranium miners compared with the most harmful/dangerous professions (synthetic study). In the collection of scientific papers ‘Health and the Environment’. Ed. by: S.I. Sychik et al. – Gomel: Editorial office of the newspaper ‘Gomelskaya Prauda’,: 2004: 59–69. (In Russ. Engl. abstr.)
6. Fawcett H.H. Exposures of personnel to laboratory hazards // Am. Ind. Hyg. Assoc. J. 1972. V.33. No.8. P. 559–567. https://doi.org/10.1080/0002889728506704. Fawcett H.H. Exposures of personnel to laboratory hazards. Am. Ind. Hyg. Assoc. J. 1972;33(8):559–67. https://doi.org/10.1080/0002889728506704.
7. Gusenbauer M., Haddaway N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources// Res. Synth. Methods. 2020. Vol.11. No.2. P. 181–217. https://doi.org/10.1002/jrsm.1378. Gusenbauer M., Haddaway N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods. 2020;11(2):181–217. https://doi.org/10.1002/jrsm.1378.
8. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses // Brit. Med. J. 2003. V.327. No.7414. P. 557–560. https://doi.org/10.1136/bmj.327.7414.557. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. Brit. Med. J. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
9. Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology // Int. J. Epidemiol. 1999. V.28. No.1. P. 1–9. https://doi.org/10.1093/ije/28.1.1. Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int. J. Epidemiol. 1999;28(1):1–9. https://doi.org/10.1093/ije/28.1.1.
10. Омельяновский В.В., Авксентьева М.В., Сура М.В., Хачатрян Г.Р., Федяева В.К. Методические рекомендации по проведению мета-анализа. М.: ФГБУ «ЦЭККМП» Минздрава России, 2017. 28 с. Omelyanovsky V.V., Avxentyeva M.V., Sura M.V., Khachatryan G.R., Fedyaeva V.K. Guidelines for conducting a meta-analysis. M.: FSBI ‘Center for Healthcare Quality Assessment and Control’ of the Ministry of Health of the Russian Federation, 2017. 28 p. (In Russ.)
11. Egger M., Davey Smith G., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test // Brit. Med. J. 1997. V.315. No.7109. P. 629–634. https://doi.org/10.1136/bmj.315.7109.629. Egger M., Davey Smith G., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. Brit. Med. J. 1997;315(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629.
12. Sterne J.A.C., Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis // J. Clin. Epidemiol. 2001. V.54. No.10. P. 1046–1155. https://doi.org/10.1016/s0895-4356(01)00377-8. Sterne J.A.C., Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 2001;54(10):1046–155. https://doi.org/10.1016/s0895-4356(01)00377-8.
13. Кокунин В.А. Статистическая обработка данных при малом числе опытов // Украинский биохимический журнал. 1975. Т.47. №6. С.776–790. Kokunin V.A. Statistical processing of data from a small number of experiments. Ukrainskiy biokhimicheskiy zhurnal = Ukrainian Journal of Biochemistry. 1975;47(6):776–91. (In Russ.)
14. Li F.P., Fraumeni J.F., Mantel N., Miller R.W. Cancer mortality among chemists // J. Natl. Cancer Inst. 1969. V.43. No.5. P. 1159–1164. Li F.P., Fraumeni J.F., Mantel N., Miller R.W. Cancer mortality among chemists. J. Natl. Cancer Inst. 1969;43(5):1159–64.
15. Dement J.M., Cromer J.R. Cancer and reproductive risks among chemists and laboratory workers: a review // Appl. Occupat. Environ. Hyg. 1992. V.7. No.2. P. 120–126. https://doi.org/10.1080/1047322X.1992.10388032. Dement J.M., Cromer J.R. Cancer and reproductive risks among chemists and laboratory workers: a review. Appl. Occupat. Environ. Hyg. 1992;7(2):120–6. https://doi.org/10.1080/1047322X.1992.10388032.
16. Burrows G.E. Health care of people at work: screening of workers in research laboratories // J. Soc. Occup. Med. 1980. V.30. No.4. P. 164–168. https://doi.org/10.1093/occmed/30.4.164. Burrows G.E. Health care of people at work: screening of workers in research laboratories. J. Soc. Occup. Med. 1980;30(4):164–8. https://doi.org/10.1093/occmed/30.4.164.
17. Hoar S.K., Pell S. A retrospective cohort study of mortality and cancer incidence among chemists // J. Occup. Med. 1981. V.23. No.7. P. 485–494. https://doi.org/10.1097/00043764-198107000-00016. Hoar S.K., Pell S. A retrospective cohort study of mortality and cancer incidence among chemists. J. Occup. Med. 1981;23(7):485–94. https://doi.org/10.1097/00043764-198107000-00016.
18. Walrath J., Li F.P., Hoar S.K., Mead M.W., Fraumeni J.F. Jr. Causes of death among female chemists // Am. J. Public Health. 1985. V.75. No.8. P. 883–885. https://doi.org/10.2105/ajph.75.8.883. Walrath J., Li F.P., Hoar S.K., Mead M.W., Fraumeni J.F. Jr. Causes of death among female chemists. Am. J. Public Health. 1985;75(8):883–5. https://doi.org/10.2105/ajph.75.8.883.
19. Checkoway H., Mathew R.M., Shy C.M., Watson J.E. Jr, Tankersley W.G., Wolf S.H. et al. Radiation, work experience, and cause specific mortality among workers at an energy research laboratory // Br. J. Ind. Med. 1985. V.42. No.8. P. 525–533. https://doi.org/10.1136/oem.42.8.525. Checkoway H., Mathew R.M., Shy C.M., Watson J.E. Jr, Tankersley W.G., Wolf S.H. et al. Radiation, work experience, and cause specific mortality among workers at an energy research laboratory. Br. J. Ind. Med. 1985;42(8):525–33. https://doi.org/10.1136/oem.42.8.525.
20. Chiazze L. Jr, Waif P., Ference L.D. An historical study of mortality among salaried research and development workers of the Allied Corporation // J. Occup. Med. 1986. V.28. No.11. P. 1185–1188. Chiazze L. Jr, Waif P., Ference L.D. An historical study of mortality among salaried research and development workers of the Allied Corporation. J. Occup. Med. 1986;28(11):1185–8.
21. Divine B.J., Barron V. Texaco mortality study. II. Patterns of mortality among white males by specific job groups // Am. J. Ind. Med. 1986. V.10. No.4. P. 371–381. https://doi.org/10.1002/ajim.4700100405. Divine B.J., Barron V. Texaco mortality study. II. Patterns of mortality among white males by specific job groups. Am. J. Ind. Med. 1986;10(4):371–81. https://doi.org/10.1002/ajim.4700100405.
22. Maher K.V., DeFonso L.R. An historical cohort study of mortality among chemical researchers // Arch. Environ. Health. 1986. V.41. No.2. P.109–116. https://doi.org/10.1080/00039896.1986.9937419. Maher K.V., DeFonso L.R. An historical cohort study of mortality among chemical researchers. Arch. Environ. Health. 1986;41(2):109–16. https://doi.org/10.1080/00039896.1986.9937419.
23. Delzell E., Macaluso M., Cole P. A follow-up study of workers at a dye and resin manufacturing plant // J. Occup. Med. 1989. V.31. No.3. P. 273–278. https://doi.org/10.1097/00043764-198903000-00016. Delzell E., Macaluso M., Cole P. A follow-up study of workers at a dye and resin manufacturing plant. J. Occup. Med. 1989;31(3):273–8. https://doi.org/10.1097/00043764-198903000-00016.
24. Arnetz B.B., Raymond L.W., Nicolich M.J., Vargo L. Mortality among petrochemical science and engineering employees // Arch. Environ. Health. 1991. V.46. No.4. P. 237–248. https://doi.org/10.1080/00039896.1991.9937455. Arnetz B.B., Raymond L.W., Nicolich M.J., Vargo L. Mortality among petrochemical science and engineering employees. Arch Environ Health. 1991;46(4):237–48. https://doi.org/10.1080/00039896.1991.9937455.
25. Delzell E., Sathiakumar N., Hovinga M., Macaluso M., Julian J., Larson R. et al. A follow-up study of synthetic rubber workers // Toxicology. 1996. V.28. No.113(1–3). P. 182–189. https://doi.org/10.1016/0300-483x(96)03443-9. Delzell E., Sathiakumar N., Hovinga M., Macaluso M., Julian J., Larson R. et al. A follow-up study of synthetic rubber workers. Toxicology. 1996;113(1–3):182–9. https://doi.org/10.1016/0300-483x(96)03443-9.
26. 37. Himmelstein M.W., Acquavella J.F., Recio L., Medinsky M.A., Bond J.A. Toxicology and epidemiology of 1,3-butadiene // Crit. Rev. Toxicol. 1997. V. 27. No.1. P. 1–108. https://doi.org/10.3109/10408449709037482. Himmelstein M.W., Acquavella J.F., Recio L., Medinsky M.A., Bond J.A. Toxicology and epidemiology of 1,3-butadiene. Crit. Rev. Toxicol. 1997;27(1):1–108. https://doi.org/10.3109/10408449709037482.
27. Rodu B., Delzell E., Beall C., Sathiakumar N. Mortality among employees at a petrochemical research facility // Am. J. Ind. Med. 2001. V.39. No.1. P. 29–41. https://doi.org/10.1002/1097-0274(200101)39:1<29::AID-AJIM3>3.0.CO;2-K. Rodu B., Delzell E., Beall C., Sathiakumar N. Mortality among employees at a petrochemical research facility. Am J Ind Med. 2001;39(1):29–41. https://doi.org/10.1002/1097-0274(200101)39:1<29::AID-AJIM3>3.0.CO;2-K.
28. Buffler P.A., Kelsh M., Chapman P., Wood S., Lau E., Golembesky A. et al. Primary brain tumor mortality at a petroleum exploration and extraction research facility // J. Occup. Environ. Med. 2004. V.46. No.3. P. 257–270. https://doi.org/10.1097/01.jom.0000116816.09199.6d. Buffler P.A., Kelsh M., Chapman P., Wood S., Lau E., Golembesky A., Wood R., Kalmes R., Brorby G. Primary brain tumor mortality at a petroleum exploration and extraction research facility. J. Occup. Environ. Med. 2004;46(3):257–70. https://doi.org/10.1097/01.jom.0000116816.09199.6d.
29. Kubale T., Hiratzka S., Henn S., Markey A., Daniels R., Utterback D. A cohort mortality study of chemical laboratory workers at Department of Energy Nuclear Plants // Am. J. Ind. Med. 2008. V.51. No.9. P. 656–667. https://doi.org/10.1002/ajim.20601. Kubale T., Hiratzka S., Henn S., Markey A., Daniels R., Utterback D. A cohort mortality study of chemical laboratory workers at Department of Energy Nuclear Plants. Am. J. Ind. Med. 2008;51(9):656–67. https://doi.org/10.1002/ajim.20601.
30. Alexander B.H., Mandel J.H., Scott L.L.F., Ramachandran G., Chen Y.C. Brain cancer in workers employed at a specialty chemical research facility // Arch. Environ. Occup. Health. 2013. V.68. No.4. P. 218–227. https://doi.org/10.1080/19338244.2012.701248. Alexander B.H., Mandel J.H., Scott L.L.F., Ramachandran G., Chen Y.C. Brain cancer in workers employed at a specialty chemical research facility. Arch. Environ. Occup. Health. 2013;68(4):218–27. https://doi.org/10.1080/19338244.2012.701248.
31. Collins J.J., Bender T.J., Bonner E.M., Bodner K.M., Kreft A.M. Brain cancer in workers employed at a laboratory research facility // PLoS One. 2014. V.9. No.12. Article e113997. 12 p. https://doi.org/10.1371/journal.pone.0113997. Collins J.J., Bender T.J., Bonner E.M., Bodner K.M., Kreft A.M. Brain cancer in workers employed at a laboratory research facility. PLoS One. 2014;9(12):Article e113997. 12 p. https://doi.org/10.1371/journal.pone.0113997.
32. Olin R. Leukaemia and Hodgkin’s disease among Swedish chemistry graduates // Lancet. 1976. V.2. No.7991. P. 916. https://doi.org/10.1016/s0140-6736(76)90589-4. Olin R. Leukaemia and Hodgkin’s disease among Swedish chemistry graduates. Lancet. 1976;2(7991):916. https://doi.org/10.1016/s0140-6736(76)90589-4.
33. Olin G.R. The hazards of chemical laboratory environment: a study of the mortality in two cohorts of Swedish chemists // Am. Ind. Hyg. Assoc. J. 1978. V.39. No.7. P. 557–562. https://doi.org/10.1080/0002889778507808. Olin G.R. The hazards of chemical laboratory environment: a study of the mortality in two cohorts of Swedish chemists. Am. Ind. Hyg. Assoc. J. 1978;39(7):557–62. https://doi.org/10.1080/0002889778507808.
34. Olin G.R., Ahlbom A. The cancer mortality among Swedish chemists graduated during three decades. A comparison with the general population and with a cohort of architects // Environ. Res. 1980. V.22. No.1. P. 154–161. https://doi.org/10.1016/0013-9351(80)90127-9. Olin G.R., Ahlbom A. The cancer mortality among Swedish chemists graduated during three decades. A comparison with the general population and with a cohort of architects. Environ. Res. 1980;22(1):154–61. https://doi.org/10.1016/0013-9351(80)90127-9.
35. Olin G.R., Ahlbom A. Cancer mortality among three Swedish male academic cohorts: Chemists, architects and mining engineers/metallurgists // In: ‘Brain Tumours in the Chemical Industry’. Ed. by I.J. Selikoff, E.C. Hammond. Ann. N.Y. Acad. Sci. 1982. V.381. P.197–201. https://doi.org/10.1111/j.1749-6632.1982.tb50385.x. Olin G.R., Ahlbom A. Cancer mortality among three Swedish male academic cohorts: Chemists, architects and mining engineers/metallurgists. In: ‘Brain Tumours in the Chemical Industry’. Ed. by I.J. Selikoff, E.C. Hammond. Ann. N.Y. Acad. Sci. 1982;381: 197–201. https://doi.org/10.1111/j.1749-6632.1982.tb50385.x.
36. Searle C.E., Waterhouse J.A.H. Epidemiological study of the mortality of British chemists // Br. J. Cancer. 1978. V.38. No.1. P. 192–193 (abstract). Searle C.E., Waterhouse J.A.H. Epidemiological study of the mortality of British chemists. Br. J. Cancer. 1978;38(1):192–93 (abstract).
37. Hunter W.J., Henman B.A., Bartlett D.M., Le Geyt I.P. Mortality of professional chemists in England and Wales, 1965–1989 // Am. J. Ind. Med. 1993. V.23. No.4. P. 615–627. https://doi.org/10.1002/ajim.4700230409. Hunter W.J., Henman B.A., Bartlett D.M., Le Geyt I.P. Mortality of professional chemists in England and Wales, 1965–1989. Am. J. Ind. Med. 1993;23(4):615–27. https://doi.org/10.1002/ajim.4700230409.
38. t’Mannetje A., McLean D., Cheng S., Boffetta P., Colin D., Pearce N. Mortality in New Zealand workers exposed to phenoxy herbicides and dioxins // Occup. Environ. Med. 2005. V.62. No.1. P. 34–40. https://doi.org/10.1136/oem.2004.015776. t’Mannetje A., McLean D., Cheng S., Boffetta P., Colin D., Pearce N. Mortality in New Zealand workers exposed to phenoxy herbicides and dioxins. Occup. Environ. Med. 2005;62(1):34–40. https://doi.org/10.1136/oem.2004.015776.
39. Brown T.P., Paulson J., Pannett B., Coupland C., Coggon D., Chilvers C.E., Sasco A.J. Mortality pattern among biological research laboratory workers // Br. J. Cancer. 1996. V.73. No.9. P. 1152–1155. https://doi.org/10.1038/bjc.1996.221. Brown T.P., Paulson J., Pannett B., Coupland C., Coggon D., Chilvers C.E., Sasco A.J. Mortality pattern among biological research laboratory workers. Br. J. Cancer. 1996;73(9):1152–5. https://doi.org/10.1038/bjc.1996.221.
40. Cordier S. Risk of cancer among laboratory workers (letter) // Lancet. 1990. V.335. No.8697. P. 1097. https://doi.org/10.1016/0140-6736(90)92670-d. Cordier S. Risk of cancer among laboratory workers (letter). Lancet. 1990;335(8697):1097. https://doi.org/10.1016/0140-6736(90)92670-d.
41. Cordier S., Mousel M.-L., Le Goaster C., Gachelin G., Le Moual N., Mandereau L. et al. Cancer risk among workers in biomedical research // Scand. J. Work Environ. Health. 1995. V.21. No.6. P. 450–459. https://doi.org/10.5271/sjweh.61. Cordier S., Mousel M.-L., Le Goaster C., Gachelin G., Le Moual N., Mandereau L. et al. Cancer risk among workers in biomedical research. Scand. J. Work Environ. Health. 1995;21(6):450–9. https://doi.org/10.5271/sjweh.61.
42. Guseva Canu I., Rogel A., Samson E., Benhamou S., Laplanche A., Tirmarche M. Cancer mortality risk among biology research workers in France: first results of two retrospective cohorts studies // Int. Arch. Occup. Environ. Health. 2008. V.81. No.6. P. 777–785. https://doi.org/10.1007/s00420-007-0260-6. Guseva Canu I., Rogel A., Samson E., Benhamou S., Laplanche A., Tirmarche M. Cancer mortality risk among biology research workers in France: first results of two retrospective cohorts studies. Int. Arch. Occup. Environ. Health. 2008;81(6):777–85. https://doi.org/10.1007/s00420-007-0260-6.
43. Wennborg H., Yuen J., Axelsson G., Ahlbom A., Gustavsson P., Sasco A.J. Mortality and cancer incidence in biomedical laboratory personnel in Sweden // Am. J. Ind. Med. 1999. V.35. No.4. P. 382–389. https://doi.org/10.1002/(sici)1097-0274(199904)35:4<382::aid-ajim9>3.0.co;2-f. Wennborg H., Yuen J., Axelsson G., Ahlbom A., Gustavsson P., Sasco A.J. Mortality and cancer incidence in biomedical laboratory personnel in Sweden. Am. J. Ind. Med. 1999;35(4):382–9. https://doi.org/10.1002/(sici)1097-0274(199904)35:4<382::aid-ajim9>3.0.co;2-f.
44. Gustavsson P., Reuterwall C., Sadigh J., Soderholm M. Mortality and cancer incidence among laboratory technicians in medical research and routine laboratories (Sweden) // Cancer Causes Control. 1999. V.10. No.1. P. 59–64. https://doi.org/10.1023/a:1008892830922. Gustavsson P., Reuterwall C., Sadigh J., Soderholm M. Mortality and cancer incidence among laboratory technicians in medical research and routine laboratories (Sweden). Cancer Causes Control. 1999;10(1):59–64. https://doi.org/10.1023/a:1008892830922.
45. Van Barneveld T.A., Sasco A.J., van Leeuwen F.E. A cohort study of cancer mortality among Biology Research Laboratory workers in The Netherlands // Cancer Causes Control. 2004. V.15. No.1. P. 55–66. https://doi.org/10.1023/B:CACO.0000016607.70457.47. Van Barneveld T.A., Sasco A.J., van Leeuwen F.E. A cohort study of cancer mortality among Biology Research Laboratory workers in The Netherlands. Cancer Causes Control. 2004;15(1):55–66. https://doi.org/10.1023/B:CACO.0000016607.70457.47.
46. Harrington J.M., Shannon H.S. Mortality study of pathologists and medical laboratory technicians // Br Med J. 1975. V.4. No.5992. P. 329–332. https://doi.org/10.1136/bmj.4.5992.329. Harrington JM, Shannon HS. Mortality study of pathologists and medical laboratory technicians. Br Med J. 1975 Nov 8;4(5992):329–32. https://doi.org/10.1136/bmj.4.5992.329.
47. Belli S., Comba P., De Santis M., Grignoli M., Sasco A.J. Cancer mortality patterns among laboratory workers // Lancet. 1990. V.335. No.8705. P. 1597–1598. https://doi.org/10.1016/0140-6736(90)91432-a. Belli S., Comba P., De Santis M., Grignoli M., Sasco A.J. Cancer mortality patterns among laboratory workers. Lancet. 1990;335(8705):1597–8. https://doi.org/10.1016/0140-6736(90)91432-a.
48. Belli S., Comba P., De Santis M., Grignoli M., Sasco A.J. Mortality study of workers employed by the Italian National Institute of Health, 1960–1989 // Scand. J. Work Environ. Health. 1992. V.18. No.1. P. 64–67. https://doi.org/10.5271/sjweh.1607. Belli S., Comba P., De Santis M., Grignoli M., Sasco A.J. Mortality study of workers employed by the Italian National Institute of Health, 1960–1989. Scand. J. Work Environ. Health. 1992;18(1):64–7. https://doi.org/10.5271/sjweh.1607.
49. Dosemeci M., Alavanja M., Vetter R., Eaton B., Blair A. Mortality among laboratory workers employed at the U.S. Department of Agriculture // Epidemiology. 1992. V.3. No.3. P. 258–262. https://doi.org/10.1097/00001648-199205000-00012. Dosemeci M., Alavanja M., Vetter R., Eaton B., Blair A. Mortality among laboratory workers employed at the U.S. Department of Agriculture. Epidemiology. 1992;3(3):258–62. https://doi.org/10.1097/00001648-199205000-00012.
50. Daly L., Herity B., Bourke G.J. An investigation of brain tumours and other malignancies in an agricultural research institute // Occup Environ Med. 1994. V.51. No.5. P. 295–298. https://doi.org/10.1136/oem.51.5.295. Daly L., Herity B., Bourke G.J. An investigation of brain tumours and other malignancies in an agricultural research institute. Occup Environ Med. 1994;51(5):295–8. https://doi.org/10.1136/oem.51.5.295.
51. Sasco A.J. Cancer risk in laboratory workers // Lancet. 1992a. V.339. No.8794. P. 684. https://doi.org/10.1016/0140-6736(92)90849-x. Sasco A.J. Cancer risk in laboratory workers. Lancet. 1992a;339(8794):684. https://doi.org/10.1016/0140-6736(92)90849-x.
52. Sasco A.J. International study of cancer risk in biology research laboratory workers in Europe. In: ‘Update of the protocol for the retrospective cohort study’ // International Agency for Research on Cancer, Lyon. 1992b. 34 p. Sasco A.J. International study of cancer risk in biology research laboratory workers in Europe. In: ‘Update of the protocol for the retrospective cohort study’. International Agency for Research on Cancer, Lyon. 1992b. 34 p.
53. Rachet B., Partanen T., Kauppinen T., Sasco A.J. Cancer risk in laboratory workers: an emphasis on biological research // Am. J. Ind. Med. 2000. V.38. No.6. P. 651–665. https://doi.org/10.1002/1097-0274(200012)38:6<651::aid-ajim6>3.0.co;2-j. Rachet B., Partanen T., Kauppinen T., Sasco A.J. Cancer risk in laboratory workers: an emphasis on biological research. Am. J. Ind. Med. 2000;38(6):651–65. https://doi.org/10.1002/1097-0274(200012)38:6<651::aid-ajim6>3.0.co;2-j.
54. Sasco A.J., Rachet B. Biology research laboratory workers. In: ‘Biennial Report, 1998–1999’ // World Health Organization; International Agency for Research on Cancer. IARC, Lyon, France, 2000. P. 28. Sasco A.J., Rachet B. Biology research laboratory workers. In: ‘Biennial Report, 1998–1999’. World Health Organization; International Agency for Research on Cancer. IARC, Lyon, France, 2000:28.
55. Miettinen O.S. Standardization of risk ratios // Am. J. Epidemiol. 1972. V.96. No.6. P. 383–388. https://doi.org/10.1093/oxfordjournals.aje.a121470. Miettinen O.S. Standardization of risk ratios. Am. J. Epidemiol. 1972;96(6):383–8. https://doi.org/10.1093/oxfordjournals.aje.a121470.
56. A dictionary of epidemiology. Ed. by M. Porta. 6th Edition. New York: Oxford University Press, 2014. 344 p. A dictionary of epidemiology. Ed. by M. Porta. 6th Edition. New York: Oxford University Press, 2014. 344 p.
57. Stewart W., Hunting K. Mortality odds ratio, proportionate mortality ratio, and healthy worker effect // Am. J. Ind. Med. 1988. V.14. No.3. P. 345–353. https://doi.org/10.1002/ajim.4700140312. 44. Stewart W., Hunting K. Mortality odds ratio, proportionate mortality ratio, and healthy worker effect. Am. J. Ind. Med. 1988;14(3):345–53. https://doi.org/10.1002/ajim.4700140312.
58. Vecchio D., Sasco A.J., Cann C.I. Occupational risk in health care and research // Am. J. Ind. Med. 2003. V.43. No.4. P. 369–397. https://doi.org/10.1002/ajim.10191. Vecchio D., Sasco A.J., Cann C.I. Occupational risk in health care and research. Am. J. Ind. Med. 2003;43(4):369–97. https://doi.org/10.1002/ajim.10191.
59. Соленова Л.Г. Эпидемиологический мониторинг онкологического риска у работников онкологического центра // Успехи молекулярной онкологии. 2019. Т.6. №3. С. 63–70. https://doi.org/10.17650/2313-805X-2019-6-3-63-70. Solenova L. G. Epidemiological monitoring of cancer risk in cancer center workers. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology. 2019;6(3):63–70. https://doi.org/10.17650/2313-805X-2019-6-3-63-70.
60. Moher D., Liberati A., Tetzlaff J., Altman D.G. ( PRISMA Group). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement // PLoS Med. 2009. V.6. No.7. Article e1000097. 6 p. https://doi.org/10.1371/journal.pmed.1000097. Moher D., Liberati A., Tetzlaff J., Altman D.G. ( PRISMA Group). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):Article e1000097. 6 p. https://doi.org/10.1371/journal.pmed.1000097.
61. Aschengrau A., Seage G.R., III. Epidemiology in Public Health. 3rd edition. Burlington: Jones & Bartlett Learning, LLC, 2014. 596 p. Aschengrau A., Seage G.R., III. Epidemiology in Public Health. 3rd edition. Burlington: Jones & Bartlett Learning, LLC, 2014. 596 p.
62. Takada S., Okamoto S., Yamada C., Ukai H., Samoto H., Ohashi F., Ikeda M. Chemical exposures in research laboratories in a university // Ind. Health. 2008. V.46. No.2. P. 166–173. https://doi.org/10.2486/indhealth.46.166. Takada S., Okamoto S., Yamada C., Ukai H., Samoto H., Ohashi F., Ikeda M. Chemical exposures in research laboratories in a university. Ind. Health. 2008;46(2):166–73. https://doi.org/10.2486/indhealth.46.166.
63. Ushakov I.B., Voronkov Y.I., Bukhtiyarov I.V. Tikhonova G.I., Gorchakova T.Yu., Bryleva M.S. A cohort mortality study among Soviet and Russian cosmonauts, 1961–2014 // Aerosp. Med. Hum. Perform. 2017. V.88. No.12. P. 1060–1065. https://doi.org/10.3357/AMHP.4701.2017. Ushakov I.B., Voronkov Y.I., Bukhtiyarov I.V. Tikhonova G.I., Gorchakova T.Yu., Bryleva M.S. A cohort mortality study among Soviet and Russian cosmonauts, 1961–2014. Aerosp. Med. Hum. Perform. 2017;88(12):1060–5. https://doi.org/10.3357/AMHP.4701.2017.
64. Reynolds R.J., Day S.M. Mortality of US astronauts: comparisons with professional athletes // Occup. Environ. Med. 2019. V.76. No.2. P. 114–117. https://doi.org/10.1136/oemed-2018-105304. Reynolds R.J., Day S.M. Mortality of US astronauts: comparisons with professional athletes. Occup. Environ. Med. 2019;76(2):114–7. https://doi.org/10.1136/oemed-2018-105304.
65. Gajewski A.K., Poznanska A. Mortality of top athletes, actors and clergy in Poland: 1924-2000 follow-up study of the long term effect of physical activity // Eur. J. Epidemiol. 2008. V.23. No.5. P. 335–340. https://doi.org/10.1007/s10654-008-9237-3. Gajewski A.K., Poznanska A. Mortality of top athletes, actors and clergy in Poland: 1924-2000 follow-up study of the long term effect of physical activity. Eur. J. Epidemiol. 2008;23(5):335–40. https://doi.org/10.1007/s10654-008-9237-3.
66. Hammer G.P., Auvinen A., De Stavola B.L., Grajewski B., Gundestrup M., Haldorsen T. et al. Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries // Occup. Environ. Med. 2014. V.71. No.5. P. 313–322. https://doi.org/10.1136/oemed-2013-101395. Hammer G.P., Auvinen A., De Stavola B.L., Grajewski B., Gundestrup M., Haldorsen T. et al. Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries. Occup. Environ. Med. 2014;71(5):313–22. https://doi.org/10.1136/oemed-2013-101395.
67. Qu S.G., Gao J., Tang B., Yu B., Shen Y.P., Tu Y. Low-dose ionizing radiation increases the mortality risk of solid cancers in nuclear industry workers: A meta-analysis // Mol. Clin. Oncol. 2018. V.8. No.5. P. 703–711. https://doi.org/10.3892/mco.2018.1590. Qu S.G., Gao J., Tang B., Yu B., Shen Y.P., Tu Y. Low-dose ionizing radiation increases the mortality risk of solid cancers in nuclear industry workers: A meta-analysis // Mol. Clin. Oncol. 2018;8(5):703–11. https://doi.org/10.3892/mco.2018.1590.
68. McLaughlin R., Nielsen L., Waller M. An evaluation of the effect of military service on mortality: quantifying the healthy soldier effect // Ann. Epidemiol. 2008. V.18. No.12. P. 928–936. https://doi.org/10.1016/j.annepidem.2008.09.002. McLaughlin R., Nielsen L., Waller M. An evaluation of the effect of military service on mortality: quantifying the healthy soldier effect. Ann. Epidemiol. 2008;18(12):928–36. https://doi.org/10.1016/j.annepidem.2008.09.002.
69. Kroenke C., Kawachi I. Socioeconomic disparities in cancer incidence and mortality // In: ‘Schottenfeld and Fraumeni Cancer Epidemiology and Prevention’. 4th Edition. Ed. by M.J. Thun, M.S. Linet, J.R. Cerhan, C. Haiman, D. Schottenfeld. – New York: Oxford University Press, Sheridan Books, Inc., USA, 2018. P. 141–168. Kroenke C., Kawachi I. Socioeconomic disparities in cancer incidence and mortality // In: ‘Schottenfeld and Fraumeni Cancer Epidemiology and Prevention’. 4th Edition. Ed. by M.J. Thun, M.S. Linet, J.R. Cerhan, C. Haiman, D. Schottenfeld. – New York: Oxford University Press, Sheridan Books, Inc., USA, 2018:141–68.
70. Steenland K., Pinkerton L.E. Mortality patterns following downsizing at Pan American World Airways // Am. J. Epidemiol. 2008. V.167. No.1. P. 1–6. https://doi.org/10.1093/aje/kwm328. Steenland K., Pinkerton L.E. Mortality patterns following downsizing at Pan American World Airways. Am. J. Epidemiol. 2008;167(1):1–6. https://doi.org/10.1093/aje/kwm328.
71. Ичас М. О природе живого: механизмы и смысл. Пер. с англ. – М.: Мир, 1994. – 496 с. Ycas M. The Nature of Life: Mechanisms and Meaning. – Moscow: Mir, 1994. – 496 p. (In Russ.)
72. Boice J.D., Jr. Ionizing Radiation // In: ‘Schottenfeld and Fraumeni Cancer Epidemiology and Prevention’. 3th edition. Ed. by D. Schottenfeld, J.F. Fraumeni. – New York: Oxford University Press. 2006. P. 259–293. Boice J.D., Jr. Ionizing Radiation. In: ‘Schottenfeld and Fraumeni Cancer Epidemiology and Prevention’. 3th edition. Ed. by D. Schottenfeld, J.F. Fraumeni. – New York: Oxford University Press. 2006:259–93.
73. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиология и радиац. безопасность. 2013. Т.58. №2. С. 5–21. Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ = Medical Radiology and Radiation Safety. 2013;58(2):5–21. (In Russ., Engl. abst.)
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3
DOI:10.33266/1024-6177-2025-70-3-54-69
V.I. Burmistrov1, E.I. Matkevich2, I.V. Ivanov1, 3
Analysis of the Radiation Situation in Aviation Flights under Conditions of Solar Proton Events
1 I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
3 N.F. Izmerov Research Institute of Occupational Medicine, Moscow, Russia
Contact person: I.V. Ivanov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
With a general analysis of the levels of ionizing radiation characteristic of outer space and causing radiation hazard factors for astronauts, the issues of assessing the radiation situation in air travel also remain relevant. The purpose of the study was to analyze the types and characteristics of ionizing radiation in airspace up to heights of 20 km above the Ground and possible radiation doses to flight personnel during flights under these conditions. The composition of ionizing radiation and the energy characteristics of proton events are analyzed. The radiation dose rates are estimated depending on the altitude and geographical latitude of the flight. To minimize the exposure of flight personnel and radiation risks, it is important to systematically take into account the forecast of solar activity, altitude and latitude of flight, control the total flight time per year, radiation protection conditions and other factors.
Keywords: aviation flights, flight personnel, civil aviation, radiation situation, solar activity, proton events, radiation doses, dosimetry, anti-radiation protection
For citation: Burmistrov VI, Matkevich EI, Ivanov IV. Analysis of the Radiation Situation in Aviation Flights under Conditions of Solar Proton Events. Medical Radiology and Radiation Safety. 2025;70(3):54–69. (In Russian). DOI:10.33266/1024-6177-2025-70-3-54-69
References
1. Ushakov I.B., Zuyev V.G., Abramov M.M., Soldatov S.K., Galkin A.A., Chernov Yu.N., Popov V.I. Radiatsionnyy Risk v Aviatsionnykh Poletakh = Radiation Risk in Aviation Flights. Moscow-Voronezh, Istoki Publ., 2001. 44 p. (In Russ.).
2. Evaluation of the Cosmic Radiation Exposure of Aircraft Crew. A Background to Aircrew Dose Evaluation with Results Reported within the EC Contract FIGM-CT-2000-00068 (DOSMAX), Work Package 6. 2000. URL: https://cordis.europa.eu/docs/projects/files/FIGM/FIGM-CT-2000-00068/75331981-6_en.pdf
3. Dosimetry of Aircrew Exposure to Radiation During Solar Maximum (DOSMAX). Final Report. Project Summary. Appendix 2. Contract Number: FIGM-CT-2000-00068. 2004. URL: https://cordis.europa.eu/docs/projects/files/FIGM/FIGM-CT-2000-00068/fp5-euratom_dosmax_projsum_en.pdf
4. Radiation Protection 140. Cosmic Radiation Exposure of Aircraft Crew. Compilation of Measured and Calculated Data. Final Report of EURADOS WG 5 to the Group of Experts Established under Article 31 of the Euratom Treaty. European Commission, Luxembourg, Office for Official Publications of the European Communities, 2004. 271 p.
5. Morozova M.A., Lapshin V.B., Dorenskiy S.V., Syroyeshkin A.V. Dosimetry for Passenger Air Service. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2014;10:45-92 (In Russ.).
6. Copeland K., Friedberg W. Ionizing Radiation and Radiation Safety in Aerospace Environments. Final Report NoDOT/FAA/AM-21/8 Office of Aerospace Medicine. Washington, DC, Civil Aerospace Medical Institute FAA. 2021. 57 p. URL: https://www.faa.gov/sites/faa.gov/files/data_research/research/med_humanfacs/aeromedical/202108.pdf
7. Beck P. Overview of Research on Aircraft Crew Dosimetry during the Last Solar Cycle. Radiation Protection Dosimetry. 2009;136;4:244-250. doi: 10.1093/rpd/ncp158
8. Maurchev E.A., Balabin Yu.V. Model Complex for Studying Cosmic Rays RUSCOSMIC. Solnechno-Zemnaya Fizika = Solar-Terrestrial Physics. 2016;2;4:3-8 (In Russ.). doi: 10.12737/21289.
9. Maurchev Ye.A., Mikhalko Ye.A., Balabin Yu.V., Germanenko A.V., Gvozdevskiy B.B. Estimated Equivalent Radiation Dose at Different Altitudes in Earth’s Atmosphere. Solnechno-Zemnaya Fizika = Solar-Terrestrial Physics. 2022;8;3:27-31 (In Russ.). doi: 10.12737/stp-83202204
10. Maurchev Ye.A., Germanenko A.V., Balabin YU.V., Gvozdevskiy B.B. Estimation of the Equivalent Dose of Radiation in Real Time Based on Goes Satellite Data. Trudy Kol’skogo Nauchnogo Tsentra RAN. Seriya: Yestestvennyye i Gumanitarnyye Nauki = Proceedings of the Kola Science Center of the Russian Academy of Sciences. Series: Natural Sciences and Humanities. 2023;2;2:13-18 (In Russ.). doi: 10.37614/2949-1185.2023.2.2.002
11.Kalmykov N.N., Kulikov G.V., Roganova T.M. Galactic Cosmic Rays. Model’ Kosmosa = Model of Space. Vol. 1. Ed. M.I. Panasyuk. Moscow, Knizhnyy Dom Universitet Publ., 2007. P. 62-95 (In Russ.).
12. Bezrodnykh I.P., Morozova Ye.I., Petrukovich A.A., Semonov V.T. Evaluation of Optimal Parameters of Screens for Protection of Electronic Systems of Spacecraft from Ionizing Radiation. Voprosy Elektromekhaniki = Questions of Electromechanics. 2012;131;6:15-18 (In Russ.).
13. Bezrodnykh I.P. Faktory Kosmicheskogo Prostranstva, Vliyayushchiye na Issledovaniye i Osvoyeniye Luny = Space Factors Influencing the Exploration and Development of the Moon. Moscow, IKI RAN Publ., 2014. 39 p. URL: https://disk.yandex.ru/i/s1X7uZZTHMqeAQ (In Russ.).
14. Novikov L.S. Kosmicheskoye Materialovedeniye = Space Materials Science. Moscow, Maks Press Publ., 2014. 448p. (In Russ.).
15. Maurchev E.A., Shlyk N.S., Dmitriev A.V., Abunina M.A., Didenko K.A., Abunin A.A., Belov A.V. Comparison of Atmospheric Ionization for Solar Proton Events of the Last Three Solar Cycles. Atmosphere. 2024;15;2:151. doi: 10.3390/atmos15020151.
16. Belov A.V., Kurt V.G. Solar Cosmic Rays. Model’ Kosmosa = Model of Space. Vol. 1. Ed. M.I. Panasyuk. Moscow, Knizhnyy Dom Universitet Publ., 2007. P. 293-313 (In Russ.).
17. Maurchev Ye.A. Software Package RUSCOSMICS in Problems of Cosmic Rays Passage through the Earth’s Atmosphere. Trudy Kol’skogo Nauchnogo Tsentra RAN = Transactions of the Kola Science Centre of RAS. 2017;8;7-3:10-16 (In Russ.). EDN ZXPTKR
18 Kirillov A.S., Belakhovsky V.B., Maurchev E.A., Balabin Y.V., Germanenko A.V., Gvozdevsky B.B. Vibrational Kinetics of NO and N2 in the Earth’s Middle Atmosphere during GLE69 on 20 January 2005. J. Geophys. Res. Atmos. 2003;128:e2023JD038600.
19. Jackman C.H., Deland M.T., Labow G.J., Fleming E.L., Weisenstein D.K., Ko M.K.W., Sinnhuber M., Anderson J., Russell J.M. The Influence of the Several very Large Solar Proton Events in Years 2000–2003 on the Neutral Middle Atmosphere. Advances in Space Research. 2005;35;3:445-450. doi: 10.1016/j.asr.2004.09.006
20. Funke B., Baumgaertner A., Calisto M., Egorova T., Jackman C., Kieser J., Krivolutsky A., López-Puertas M., Marsh D., Reddmann T., Rozanov E., Päivärinta S-M., Sinnhuber M., Stiller G., Verronen P., Versick S., Von T., Vyushkova T., Wieters N., Wissing Jan. Composition Changes after the «Halloween» Solar Proton Event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study. Atmos. Chem. Phys. 2011;11;17:9089-9139. doi: 10.5194/acpd-11-9407-2011
21. Vashenyuk E.V., Balabin Yu.V., Gvozdevsky B.B. Features of Relativistic Solar Proton Spectra Derived from Ground Level Enhancement Events (GLE) Modeling. Astrophys. Space Sci. Trans. 2011;7;4:459–463. doi: 10.5194/astra-7-459-2011
22. Bütikofer R., Flückiger E.O., Desorgher L., Moser M.R. The Extreme Solar Cosmic Ray Particle Event on 20 January 2005 and its Influence on the Radiation Dose Rate at Aircraft Altitude. Sci Total Environ. 2008;391;2-3:177-83. doi: 10.1016/j.scitotenv.2007.10.021
23. Poje M, Vuković B, Radolić V, Miklavčić I, Planinić J. Neutron Radiation Measurements on Several International Flights. Health Phys. 2015;108;3:344-50. doi: 10.1097/HP.0000000000000192
24. Dorenskiy S.V., Minligareyev. V.T., Syroyeshkin A.V. Determination of the Total Equivalent Dose Rate Received by Passengers and Crew Members during Air Travel. Scientific Session of NRNU MEPhI-2015. Abstracts of Reports. Vol.1. Moscow, February 16-20, 2015. Moscow, Natsional’nyy Issledovatel’skiy Yadernyy Universitet «MIFI» Publ., 2015. P. 176 (In Russ.).
25. Ryabeva Ye.V., Idalov V.A., Minligareyev V.T., Kravchenok V.L. Monitoring the Dose and Spectrum of Neutrons at Air Travel Altitudes. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2020;25:37–44 (In Russ.).
26. Montagne C., Donne J.P., Pelcot D., Nguyen V.D., Bouisset P., Kerlau G. In Flight Radiation Measurements on Board French Airliners. Radiation Protection Dosimetry, 1993;48;1:79-83. doi: 10.1093/oxfordjournals.rpd.a081847
27. Reitz G. Radiation Environment in the Stratosphere. Radiation Protection Dosimetry. 1993;48;1;5-20. doi: 10.1093/oxfordjournals.rpd.a081837
28. Yerkhov V.I. Kontrol’ Urovney Ioniziruyushchego Izlucheniya v Nizhnikh Sloyakh Atmosfery = Monitoring Levels of Ionizing Radiation in the Lower Layers of the Atmosphere. Abstract Candidate Thesis (Phys). Moscow, Institut Prikladnoy Geofiziki Publ., 1994. 17 p. (In Russ.). URL: https://viewer.rsl.ru/ru/rsl01000042736?page=1&rotate=0&theme=white
29. Shafirkin A.V., Grigor’yev Yu.G., Nikitina V.N. Risk of Remote Consequences of Chronic Exposure to Ionizing and Non-Ionizing Radiation in Relation to Hygienic Standardization. Aviakosmicheskaya i Ekologicheskaya Meditsina = Aerospace and Environmental Medicine. 2004;38;1:56-62 (In Russ.).
30. Kliniko-Funktsional’naya Diagnostika, Profilaktika i Reabilitatsiya Professional’no Obuslovlennykh Narusheniy i Subklinicheskikh Form Zabolevaniy u Letnogo Sostava = Clinical and Functional Diagnostics, Prevention and Rehabilitation of Professionally Conditioned Disorders and Subclinical Forms of Diseases in Flight Personnel Practical Guide to Aviation Clinical Medicine. Ed. R.A.Vartbaronov. Moscow, APR Publ., 2011. 528 p. (In Russ.).
31. Levchuk I.P., Borshchev A.N., Afanas’yev R.V., Dellalov N.N., Afanas’yev S.V., Rylin Yu.V. Radiation Risk as a Professional Factor in the Work of Civil Aviation Crews. Tverskoy Meditsinskiy Zhurnal = Tver Medical Journal. 2020;6:14-19 (In Russ.).
32. Ushakov I.B., Fedorov V.P. Radiation Risks of Helicopter Pilots during the Liquidation of the Consequences of the Accident at the Chernobyl Nuclear Power Plant: Early and Late Health Disorders. Meditsina Katastrof = Disaster Medicine. 2021;3:52-57 (In Russ.). doi: 10.33266/2070-1004-2021-3-52-57.
33. Pronin M.A., Soldatov S.K. Malyye Dozy Radiatsii i Zdorov’ye Lotchikov = Low Doses of Radiation and the Health of Pilots. Ed. I.B.Ushakov. Moscow, Fizmatlit Publ., 2023. 232 p. (In Russ.).
34. DeAngelis G., Wilson J.W. Chapter 18: Radiation-Related Risk Analysis for Atmospheric Flight Civil Aviation Flight Personnel. In: Wilson J.W., Jones I.W., Maiden D.L., Goldhagen P. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign. NASA/CP-2003-212155. March 2003. P.352-367. URL: https://www.researchgate.net/publication/24289925_Radiation-Related_Risk_Analysis_for_Atmospheric_Flight_Civil_Aviation_Flight_Personnel/references
35. Ushakov I.B., Fedorov V.P., Pomerantsev N.A. Radiatsiya. Aviatsiya. Chelovek (Ocherki Prakticheskoy Radiobiologii Cheloveka) = Radiation. Aviation. Man (Essays on Practical Human Radiobiology). Moscow, FMBTS im. A.I.Burnazyana FMBA Rossii Publ., 2024. 388 p. (In Russ.).
36. Bukhtiyarov I.V., Zibarev Ye.V., Kur’yerov N.N., Immel’ O.V. Sanitary and Hygienic Assessment of Working Conditions of Civil Aviation Pilots. Gigiyena i Sanitariya = Hygiene and Sanitation. 2021;100;10:1084-1094 (In Russ.). doi: 10.47470/0016-9900-2021-100-10-1084-1094
37. Bukhtiyarov I.V., Zibarev Ye.V., Kravchenko O.K. Problems of Hygienic Standardization of Working Conditions in Civil Aviation and Ways to Solve Them (Literature Review). Gigiyena i Sanitariya = Hygiene and Sanitation. 2022;101;10:1181-1189 (In Russ.). doi: 10.47470/0016-9900-2022-101-10-1181-1189
38. Armstrong T.W., Alsmiller R.G., & Barish J. Calculation of the Radiation Hazard at Supersonic Aircraft Altitudes Produced by an Energetic Solar Flare. Nuclear Science and Engineering. 1969;37;3:337–342. doi: 10.13182/NSE69-A19110
39. Istochniki, Effekty i Opasnost’ Ioniziruyushchey Radiatsii = Sources, Effects and Danger of Ionizing Radiation. Report of the UN Scientific Committee on the Effects of Atomic Radiation Vol.1. Moscow, Mir Publ., 1992. 552 p. (In Russ.). URL: https://rusneb.ru/catalog/000199_000009_001655454/
40. Bezrodnykh I.P., Kazantsev C.G., Semenov V.T. Radiation Conditions on Sun-Synchronous Orbits during the Period of Maximum Solar Activity. Voprosy Elektromekhaniki. Trudy VNIIEM = Questions of Electromechanics. Proceedings of VNIIEM. 2010;116;3:23-26 (In Russ.).
41. Bezrodnykh I.P., Tyutnev A.P., Semenov V.T. Radiatsionnyye Effekty v Kosmose = Radiation Effects in Space. Part1. Radiation in Near–Earth space. Moscow, Korporatsiya VNIIEM Publ., 2014. 105 p. (In Russ.).
42. Mishev A., Panovska S., Usoskin I. Assessment of the Radiation Risk at Flight Altitudes for an Extreme Solar Particle Storm of 774 AD. J. Space Weather Space Clim. 2023;13:22. doi: 10.1051/swsc/2023020.
43. Burov V.A. Air Transportation and Space Weather. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2013;5:43–52 (In Russ.).
44. Friedberg W., Copeland K. Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth. Report No. DOT/FAA/AM-11/9. FAA Civil Aerospace Medical Institute. Federal Aviation Administration. Oklahoma City, May 2011. Final Report. 28 p.
45. Copeland K. CARI-7A: development and validation. Radiation Protection Dosimetry. FAA (FAA’s Civil Aerospace Medical Institute) 2017. P.1–13. doi:10.1093/rpd/ncw369 URL: https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari7
46. Copeland K. CARI-7 documentation: particle spectra. Report № DOT/FAA/AM-21/4. Civil Aerospace Medical Institute FAA. March 2021. Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. Washington, DC 20591. 21 p. / Copeland K. CARI-7 documentation: radiation transport in the atmosphere. Report № DOT/FAA/AM-21/5 March 2021. Civil Aerospace Medical Institute FAA. Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave, S.W. Washington. 30 p. URL: http://www.faa.gov/go/oamtechreports/
47. Mares V., Maczka T., Leuthold G., Rühm W. Air Crew Dosimetry with a New Version of EPCARD. Radiat Prot Dosimetry. 2009;136;4:262-266. doi: 10.1093/rpd/ncp129.
48. Sovilj M.P., Vuković B., Radolić V., Miklavčić I., Stanić D. Potential Benefit of Retrospective Use of Neutron Monitors in Improving Ionising Radiation Exposure Assessment on International Flights: Issues raised by Neutron Passive Dosimeter Measurements and EPCARD Simulations during Sudden Changes in Solar Activity. Arh Hig Rada Toksikol. 2020;71;2:152-157. doi: 10.2478/aiht-2020-71-3403.
49. Kiefer J. On the Biological Significance of Radiation Exposure in Air Transport. Radiation Protection Dosimetry. 1993;48;1:107-110. doi: 10.1093/oxfordjournals.rpd.a081851
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3
DOI:10.33266/1024-6177-2025-70-3-83-89
Muaayed F. Al-Rawi, Izz K. Abboud, Nasir A. Al-Awad
Using Machine Learning Algorithms to Detect Cancer Automatically
College of Engineering, Mustansiriyah University, Baghdad, Iraq
Contact person: Muaayed F. Al-Rawi, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
The number of people diagnosed with cancer is growing all around the world. During the last twenty years, the overall cancer incidence in Iraq has doubled, leading to an increase in the number of diagnosed cancer fatalities. When it comes to deaths that occur in hospitals, cancer is the second-biggest cause. Therefore, a remedy to the issue should be an arrangement to decrease time waste, the right technique of directing the patient to notice symptoms, extremely accurate cancer detection, and a better monitoring system. The proposed method is an arrangement that lets and leads a patient to identify symptoms on their own, guiding them to a proper healthcare professional, correctly diagnosing cancer in its initial stages, and monitoring the patient throughout therapy. Currently, research into cancer detection systems only employs a single machine learning approach to identify cancer. The study that is being presented makes use of Convolutional Neural Networks (CNN), Random Forest, and the XGBoost Classifier, which are a machine learning algorithms that are applied to structured and tabular data in order to identify the existence of breast cancer, brain tumors, skin cancer, and lung cancer. These methods provide findings more quickly while also achieving a greater level of accuracy. Hosting this suggested solution in the cloud with a cutting-edge program will make it available to the public, providing an improved user experience and easier operation.
Keywords: radiation diagnostics, machine learning, CNN, Random Forest, XGBoost classifier, Cancer detection, Brain cancer, Skin cancer, Lung cancer
For citation: Al-Rawi Muaayed F., Abboud Izz K., Al-Awad Nasir A. Using Machine Learning Algorithms to Detect Cancer Automatically. Medical Radiology and Radiation Safety. 2025;70(3):83–89. DOI:10.33266/1024-6177-2025-70-3-83-89
References
1. Izz K. abboud, Muaayed F. Al-Aawi, Nasir A. Al-Awad. Digital Medical Image Encryption Approach in Real-Time Applications. System Research & Information Technologies. 2024;1:26-32.
2. URL: http://www.breastcancer.org/symptoms/understand_bc/what_is_bc.
3. Hotko Y.S. Male Breast Cancer: Clinical Presentation, Diagnosis, Treatment. Exp Oncol. 2022;35:303-10.
4. URL: https://www.biospectrumindia.com/views/21/15300/statistical-analysisof-breast-cancer-in-india.html.
5. Malvia S., Bagadi S.A., Dubey U.S., Saxena S. Epidemiology of Breast Cancer in Indian Women. Asia Pac J Clin Oncol. 2019;13;4:289-295.
6. Devi R.D.H., Devi M.I. Outlier Detection Algorithm Combined with Decision Tree Classifier for Early Diagnosis of Breast Cancer. Int. J. Adv. Eng. Tech. 2021;5;2:251-259.
7. Muaayed F. Al-Rawi, Izz K. Abboud, Nasir A. Al-Awad. Novel Approach Using Transfer Deep Learning for Brain Tumor Prediction. Medical Radiology and Radiation Safety. 2021;69;3:81-85.
8. Miller K.D., Ostrom Q.T., C Kruchko., Patil N., Tihan T., Cioffi G., Fuchs H.E., Waite K.A., Jemal A., Siegel R.L., Barnholtz S..Brain and other Central Nervous System Tumor Statistics. A Cancer Journal for Clinicians. 2021;71;5:381-406.
9. Bienkowski M., Furtner J., Hainfellner J.A. Clinical Neuropathology of Brain Tumors. Handb Clin Neurol. 2022;145;477–534.
10. Lotlikar V.S., Satpute N., Gupta A. Brain Tumor Detection Using Machine Learning and Deep Learning: A Review. Current Medical Imaging. 2022;18;6:1-19.
11. Monika M.K., Vignesh N.A., Kumari C.U. Skin Cancer Detection and Classification Using Machine Learning. Materials Today: Proceedings. 2021;33;7:4266-4270.
12. Fransen M., Karahalios A., Sharma N., English D.R., Giles G.G., Sinclair R.D. Non-Melanoma Skin Cancer in Australia. Med J Aust. 2018;197:565–8.
13. Deinlein T., Richtig G., Schwab C., et al. The Use of Dermatoscopy in Diagnosis and Therapy of Nonmelanocytic Skin Cance. J Dtsch Dermatol Ges. 2021;14:144–51.
14. Ferris G.R., Treadway D.C., Perrewé P.L., Brouer R.L., Douglas C., Sean Lux. Political Skill in Organizations. Journal of Management. 2007;33:290-320.
15. Chaturvedi P., Jhamb A., Vanani M., Nemade V. Prediction and Classification of Lung Cancer Using Machine Learning Techniques. IOP Publishing Ltd, Jaipur, India. 2022;5;3:288-300.
16. Rahman S.P. a. H.Z. A New Method for Lung Nodule Detection Using Deep Neural Networks for CT Images. Int. Conf. on Electrical, Computer and Communication Engineering (ECCE). 2022:1-6.
17. Pehrson N.M. a. A.L.C. Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database. A Systematic Review Diagnostics. 2020;4;11:659-669.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.