JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-81-87
P.V. Sychev1, Yu.D. Udalov1, 2, E.V. Mayakova1, Yu.A. Kaidash1, M.I. Shcherbakov1, I.A. Baryshnikov1
Epidemiological Analysis of Thyroid Cancer in the System of FMBA of Russia
1 Federal Scientific Clinical Center for Medical Radiology and Oncology, Dimitrovgrad, Russia
2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Petr Vladimirovich Sychev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: According to statistical data for 2022, thyroid cancer (TC) is in 3rd place in terms of detection frequency (9.4 %) in people under 30 years of age. At the same time, the frequency of malignant neoplasms (MNT) of the thyroid gland in young women from 0 to 29 years old is 13.6 %, which is more than the frequency of cervical cancer (8.4 %) [1]. According to the register of cancer patients of the Volga Federal District in 2022, the number of patients with cancer of the thyroid gland registered in oncology institutions with a diagnosis of cancer for the first time in their life is 2,231 people. By the end of this year, 20,908 patients had been registered for 5 years or more; mortality averaged 0.5 %.
The above circumstances dictate the need to find ways to improve the results of radioiodine therapy for thyroid cancer based on its timely diagnosis, prevention of secondary resistance and optimization of treatment tactics. This became the prerequisites for the development of a modern tool for epidemiological analysis of the results of the use of radionuclide therapy 131I in the treatment of thyroid cancer in the FMBA system of Russia and the implementation of applied research work according to the State assignment.
Material and methods: Over the course of a year and a half of research, data on radioiodine therapy for thyroid cancer at the Nuclear Medicine Centers of the Federal Medical and Biological Agency of Russia were studied for more than 900 patients from various regions of the Russian Federation. The necessary medical documentation of these patients was studied, data was generated, subjected to epidemiological analysis and entered into an electronic database.
Results: The study analyzed the criteria that most optimally reflect the patient’s condition upon admission, treatment parameters and indicators of its effectiveness. The result of this work is to optimize treatment parameters, which will allow us to determine a personalized approach to radionuclide therapy with 131I in the treatment of thyroid cancer.
Keywords: thyroid cancer, epidemiology, radioiodine therapy, 131I
For citation: Sychev PV, Udalov YuD, Mayakova EV, Kaidash YuA, Shcherbakov MI, Baryshnikov IA. Epidemiological Analysis of Thyroid Cancer in the System of FMBA of Russia. Medical Radiology and Radiation Safety. 2025;70(2):81–87. (In Russian). DOI:10.33266/1024-6177-2025-70-2-81-87
References
1. Zlokachestvennyye Novoobrazovaniya v Rossii v 2021 godu (Zabolevayemost’ i Smertnost’ = Malignant Neoplasms in Russia in 2021 (Morbidity and Mortality). Ed. A.D.Kaprin, V.V.Starinskiy, A.O. Shakhzadova. Moscow, MNIOI imeni P.A. Gertsena - branch of the National Medical Research Center of Radiology of the Ministry of Health of Russia Publ., 2022. 252 p. (In Russ.).
2. Volkova N.I., Merenkova M.D. Errors in the Treatment of Well-Differentiated Thyroid Cancer as an Interdisciplinary Problem. Meditsinskiy Vestnik Yuga Rossii = Medical Bulletin of the South of Russia. 2021;12;2:92-95 (In Russ.). doi: 10.21886/22198075-2021-12-2-92-95.
3. Dedov I.I. Endokrinologiya: Natsional’noye Rukovodstvo = Endocrinology: National Guide. Ed. I.I.Dedov, G.A.Melnichenko. Moscow: GEOTAR-Media Publ., 2019. 1112 p. (In Russ.). ISBN 978-5-9704-5083-3.
4. Thyroid Cancers Glenn D. MSD Manual Professional Version. Braunstein. URL: https://www.msdmanuals.com/professional/endocrine-and-metabolic-disorders/thyroid-disorders/thyroid-cancers.
5. Matyakin E.G., Podvyaznikov S.O. Opukholi Shchitovidnoy Zhelezy. Onkologiya: Spravochnik Praktikuyushchego Vracha = Tumors of the Thyroid Gland. Oncology. A Practitioner’s Handbook. Ed. I.V.Poddubnyy. Moscow, MEDpress-inform Publ., 2009. Pp. 177–185 (In Russ.).
6. Beltsevich D.G., Vanushko V.E., Rumyantsev P.O., et al. Russian Clinical Guidelines for the Diagnosis and Treatment of Well-Differentiated Thyroid Cancer in Adults, 2017. Endokrinnaya Khirurgiya = Endocrine Surgery. 2017;11;1:6-27 (In Russ.). doi: 10.14341/serg201716-27.
7. Differentsirovannyy Rak Shchitovidnoy Zhelezy = Differentiated Thyroid Cancer. Clinical Recommendations of the Ministry of Health of the Russian Federation. 2020. 47 p. (In Russ.).
8. Beltsevich D.G., Vanushko V.E., Melnichenko G.A., et al. Clinical Recommendations of The Russian Association of Endocrinologists for the Diagnosis and Treatment of Multi-Nodular Goiter in Adults (2015). Endokrinnaya Khirurgiya = Endocrine Surgery. 2016;10;1:5–12 (In Russ.). doi: 10.14341/serg201615-12. EDN WELZCF.
9. Demidova T.Yu., Drozdova I.N., Potekhin N.P., Orlov F.A. Principles of Diagnosis and Treatment of Nodular Goiter. Meditsinskiy sovet = Medical Council. 2016;3 (In Russ.). URL: https://cyberleninka.ru/article/n/printsipy-diagnostiki-i-lecheniya-uzlovogo-zoba (date of access: 28.08.2024).
10. Alexander E.K., Cooper D. The Importance, and Important Limitations, of Ultrasound Imaging for Evaluating Thyroid Nodules. JAMA Intern Med. 2013;173;19:1796-1797. doi:10.1001/jamainternmed.2013.8278.
11. Danese D., Sciacchitano S., Farsetti A., Andreoli M., Pontecorvi A. Diagnostic Accuracy of Conventional Versus Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Thyroid. 1998;8;1:15-21. URL: http://www.ncbi.nlm.nih.gov/pubmed/24205031. doi:10.1089/thy.1998.8.15.
12. Russ G., Bonnema S.J., Erdogan M.F., Durante C., Ngu R., Leenhardt L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: the EU-TIRADS. Eur Thyroid J. 2017 Sep; 6;5:225-237. doi: 10.1159/000478927. Epub 2017 Aug 8. PMID: 29167761; PMCID: PMC5652895.
13. Cooper D.S., Doherty G.M., Haugen B.R., et al. Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2006;16;2:109–142. doi:10.1089/thy.2006.16.109.
14. Vuong H.G., Altibi A.M.A., Duong U.N.P., Hassell L. Prognostic Implication of BRAF and TERT Promoter Mutation Combination in Papillary Thyroid Carcinoma - a Metaanalysis. Clin Endocrinol (Oxf). 2017;87;5:411–417. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28666074. doi:10.1111/cen.13413.
15. Geliashvili T.M., Vazhenin A.V., Afanasyeva N.G. Basics of the Use of Combined Positron Emission and Computed Tomography with 18-Fluorodeoxyglucose in Differentiated Thyroid Cancer after Primary Treatmen. Opukholi Golovy i Shei = Head and Neck Tumors. 2017;1 (In Russ.). URL: https://cyberleninka.ru/article/n/osnovy-primeneniya-sovmeschennoy-pozitronno-emissionnoy-i-kompyuternoy-tomografii-s-18-ftordezoksiglyukozoy-pri-differentsirovannom (date of access: 03.03.2023).
16. Feine U., Lietzenmayer R., Hanke J.P., Held J., Wöhrle H., Müller-Schauenburg W. Fluorine-18-FDG and Iodine-131-Iodide Uptake in Thyroid Cancer. J Nucl Med. 1996;37;9:1468-1472.
17. Odzharova A.A., Dolgushin M.B., Mudunov A.M., Romanov I.S., Tulin P.E., Nevzorov D.I. Combined Positron Emission and Computed Tomography with 18f-Fluorodeoxyglucose in Assessing the Effectiveness of Targeted Therapy for Radioiodine-Resistant Well-Differentiated Thyroid Cancer (Clinical Observation). Opukholi Golovy i Shei = Tumors of the Head and Neck. 2017;7;3:103-107 (In Russ.). doi: 10.17650/2222-1468-2017-7-3-103-107.
18. Geliashvili T.M., Vazhenin A.V., Yaytsev S.V., Vasilyeva E.B. The Role of Post-Therapeutic Whole Body Scintigraphy with I-131 during a Course of Radioiodine Ablation in the Management of Patients with Differentiated Thyroid Cancer. Tavricheskiy Mediko-Biologicheskiy Vestnik = Tauride Medical and Biological Bulletin. 2017;20;3:68–73 (In Russ.). URL: https://cyberleninka.ru/article/n/rol-postterapevticheskoy-stsintigrafii-vsego-tela-s-i-131-na-kurse-radioyodablatsii-v-vedenii-bolnyh-differentsirovannym-rakom.
19. Luster M., Clarke S.E., Dietlein M., et al. Guidelines for Radioiodine Therapy of Differentiated Thyroid Cancer. Eur J Nucl Med Mol Imaging. 2008;35;10:1941–1959. doi:10.1007/s00259-008-0883-1.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was performed within the framework of the state assignment of the FMBA of the Russia registration No. R&D 1022060300090-7-3.2.21.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-88-106
A.N. Koterov, L.N. Ushenkova, T.M. Bulanova, N.A. Bogdanenko
Industry Bibliographical Databases: Perspectives of Use in the FMBA of Russia for Scientific Expertise in Decision-Making. Report 1. General Issues and Database on Health and Other Effects in Nuclear Workers
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Alexey N. Koterov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
The presented review of three reports is devoted to bibliographic databases on health and other effects and indexes in nuclear workers (NW) and uranium miners (U miners), developed within the framework of the research theme of the Federal Medical and Biological Agency of Russia (FMBA) and registered with the state in Rospatent. Report 1 sets out introductory issues of the theory of databases, as well as registers, and provides detailed information on the database for NW.
The purpose of the database for NW creating was to form a repository for accessible for abstract and full-text search published data on themes relevant for conducting research examinations for expertise in the system of the FMBA, in other healthcare institutions dealing with the radiation factor, and, more broadly, for conducting fundamental and applied research in the field of professional exposures.
The main parts of the database are two separate sub-databases for Russian and foreign NW (Russian NW and Foreign NW), in which the sources are collected in alphabetical order by the authors of the publication or the organizations that created the document. The structural form of information is a catalog that includes primary (main) units of information in the form of an information file about the source (DOC), which contains the title of the publication/document, an abstract (sometimes additional information), and the full original publication (PDF, rarely HTML), available for 88–91 % of sources (the Russian and Foreign sub-databases contain 2078 and 2145 sources, respectively, as of the end of January 2025). 51 % of the works in the database correspond to studies for Russian NW; followed by the USA, Great Britain, Canada, France, and Japan.
Visual and/or software search of the material in the database it is supposed to be carried out both through the information names of the catalogs, including the themes of research, carried out using the list of abbreviations (metadata for the database), and through all the texts of the sources included in the database using the proposed programs.
Auxiliary elements of the database are fragments of two sub-bases that have undergone hierarchical thematic cataloging in accordance with the identified areas of research on the effects and indexes for NW. These elements are intended, firstly, for initial familiarization with the subject of the database for NW, and, secondly, they are significant as a final thematic base with a certain number of sources, which can be used directly for operational purposes.
The developed database for NW has no analogues among industry databases/registers for NW in various countries, nor among bibliographic and search systems. PubMed, Cochrane Library, EMBASE, CINAHL, ISRCTN, Web of Science and Google revealed 5–24 times fewer sources on the theme than the proposed database, and in most cases the world search systems do not provide for the extraction of original publications (as for the IAEA INIS bibliographic database on radiation effects). The depth of the search for works on effects and indexes for NW in the world systems is significantly inferior to the developed database (1960–1970s versus 1940–1950s).
It is concluded that the presented database on NW is unique for examination within the framework of the FMBA and other healthcare institutions, and has no complete replacement as a scientific reference and expert depot of sources.
Keywords: bibliographic database; nuclear workers; health effects
For citation: Koterov AN, Ushenkova LN, Bulanova TM, Bogdanenko NA. Industry Bibliographical Databases: Perspectives of Use in the Fmba of Russia for Scientific Expertise in Decision-Making. Report 1. General Issues and Database on Health and Other Effects in Nuclear Workers. Medical Radiology and Radiation Safety. 2025;70(2):88–106. (In Russian). DOI:10.33266/1024-6177-2025-70-2-88-106
References
1. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А. Работники ядерной индустрии – к вопросу об унификации русскоязычной терминологии (краткое сообщение) // Медицинская радиология и радиационная безопасность. 2023. Т.68. № 3. С. 80–84. Koterov A.N., Ushenkova L.N.. Wainson A.A. Nuclear workers – on the question of unification of russian-language terminology (brief report). Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ (Medical Radiology and Radiation Safety; Moscow). 2023;68(3):80–4. (In Russ., Engl. abstr.) https://doi.org/10.33266/1024-6177-2023-68-3-80-84.
2. Archer V.E., Coons T., Saccomanno G., Hong D.Y. Latency and the lung cancer epidemic among United States uranium miners // Health Phys. 2004. V.87. No.5. P. 480–489. https://doi.org/10.1097/01.hp.0000133216.72557.ab. Archer V.E., Coons T., Saccomanno G., Hong D.Y. Latency and the lung cancer epidemic among United States uranium miners. Health Phys. 2004;87(5):480–9. https://doi.org/10.1097/01.hp.0000133216.72557.ab.
3. Дмитренко И.П., Краснова Ю.И. Экспертиза НИР. Актуальные проблемы гуманитарных и естественных наук. 2015. № 10. Часть I. С. 85–102. Dmitrenko I.P., Krasnova Yu.I. Research Expertise. Aktual’nyye problemy gumanitarnykh i yestestvennykh nauk (Actual Problems of Humanities and Natural Sciences; Moscow). 2015(10; Pt I):85–102. (In Russ.)
4. UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes. Annex A. Attributing health effects to ionizing radiation exposure and inferring risks. – New York. 2015. – 86 p.
5. Tranoy K.E. Science and ethics. Some of the main principles and problems. In: ‘The Moral Import of Science: Essays on Normative Theory, Scientific Activity and Wittgenstein’. Ed. by A.J.I. Jones. – Bergen, Sigma Forlag, 1988:111–36.
6. Howick J. The Philosophy of Evidence-Based Medicine. – Chichester: Wiley-Blackwell, 2011. – 248 p.
7. Sackett D.L., Rosenberg W.M., Gray J.A. et al. Evidence based medicine: what it is and what it isn’t // Brit. Med. J. 1996. V.312. No.7023. P. 71–72. https://doi.org/10.1136/bmj.312.7023.71. Sackett D.L., Rosenberg W.M., Gray J.A. et al. Evidence based medicine: what it is and what it isn’t. Brit. Med. J. 1996;312(7023):71–2. https://doi.org/10.1136/bmj.312.7023.71.
8. Boice J.D. Jr. Lauriston S. Taylor lecture: Radiation Epidemiology – the golden age and future challenges // Health Phys. 2011. V.100. No.1. P. 59–76. https://doi.org/10.1097/HP.0b013e3181f9797d. Boice J.D. Jr. Lauriston S. Taylor lecture: Radiation Epidemiology – the golden age and future challenges. Health Phys. 2011;100(1):59–76. https://doi.org/10.1097/HP.0b013e3181f9797d.
9. UNSCEAR 2017. Report to the General Assembly, with Scientific Annexes. Annex A. Principles and criteria for ensuring the quality of the Committee’s reviews of epidemiological studies of radiation exposure. United Nations. – New York, 2018. P. 17–64.
10. Guyatt G., Cairns J., Churchill D. et al. (The Evidence-Based Medicine Working Group). The evidence based medicine working group. Evidence based medicine: a new approach to teaching the practice of medicine // J. Am. Med. Assoc. 1992. V.268. No.17. P. 2420–2425. https://doi.org/10.1001/jama.1992.03490170092032. Guyatt G., Cairns J., Churchill D. et al. (The Evidence-Based Medicine Working Group). The evidence based medicine working group. Evidence based medicine: a new approach to teaching the practice of medicine. J. Am. Med. Assoc. 1992;268(17):2420–25. https://doi.org/10.1001/jama.1992.03490170092032.
11. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Буланова Т.М. Сравнение риска общей смертности для работников ядерной индустрии, шахтеров урановых рудников и других профессий с риском пассивного курения (мета-анализы) // Мед. радиология и радиац. безопасность. 2024. Т. 69. № 5. С. 75–86. https://doi.org/10.33266/1024-6177-2024-69-5-75-86. Koterov A.N., Ushenkova L.N., Dibirgadzhiev I.G., Bulanova T.M. Comparison of the total mortality risk for nuclear workers, uranium miners and other occupations with the risk of passive smoking (meta-analysis). Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ (Medical Radiology and Radiation Safety; Moscow). 2024;69(5):75–86. (In Russ. Engl. abstr.). https://doi.org/10.33266/1024-6177-2024-69-5-75-86.
12. Реброва О.Ю. Шкала достоверности доказательств эффективности и безопасности лечебных и профилактических вмешательств на основе дизайна и методологического качества исследований // Российский аллергологический журнал. 2018. Т. 15. № 3. С. 25–29. Rebrova O.Yu. Scale for efficacy and safety evidence based on design and methodological quality of treatments and preventive technologies trials. Rossiyskiy allergologicheskiy zhurnal (Russian Journal of Allergy; Moscow). 2018;15(3):25–9. (In Russ. Engl. abstr.)
13. Umbrella Reviews: Evidence Synthesis with Overviews of Reviews and Meta-Epidemiologic Studies. Ed. by G. Biondi-Zoccai. 1st Edition. Springer International Publishing, Switzerland, 2016. – 526 p.
14. Lilienfeld’s Foundations of Epidemiology. 4th Edition. Original Ed. by A.M. Lilienfeld; Ed. by D. Schneider, D.E. Lilienfeld. – New York: Oxford University Press, 2015. – 333 p.
15. Stewart A. Basic Statistics and Epidemiology A Practical Guide. 4th edition. – CRC Press, 2016. – 212 p.
16. Ward H., Toledano M.B., Shaddick G., Davies B. Elliott P. Oxford Handbook of Epidemiology for Clinicians. – Oxford: Oxford University Press, 2012. – 388.
17. Guzelian P.S., Victoroff M.S., Halmes N.C., James R.C., Guzelian C.P. Evidence-based toxicology: a comprehensive framework for causation // Hum. Exp. Toxicol. 2005. V.24. No.4. P. 161–201. https://doi.org/10.1191/0960327105ht517oa. Guzelian P.S., Victoroff M.S., Halmes N.C., James R.C., Guzelian C.P. Evidence-based toxicology: a comprehensive framework for causation // Hum. Exp. Toxicol. 2005;24(4):161–201. https://doi.org/10.1191/0960327105ht517oa.
18. Crichton M. Aliens cause global warming. Caltech Michelin Lecture. 2003. Site Stanford University. https://stephenschneider.stanford.edu/Publications/PDF_Papers/Crichton2003.pdf (дата обращения 23.11.2024). Crichton M. Aliens cause global warming. Caltech Michelin Lecture. 2003. Site Stanford University. https://stephenschneider.stanford.edu/Publications/PDF_Papers/Crichton2003.pdf (address data 2024/11/23).
19. Андреева Н.С., Реброва О.Ю., Зорин Н.А., Авксентьева М.В., Омельяновский В.В. Системы оценки достоверности научных доказательств и убедительности рекомендаций: сравнительная характеристика и перспективы унификации // Медицинские технологии. Оценка и выбор. 2012. № 4. С. 10–24. Andreeva N.S., Rebrova O.Y., Zorin N.A., Avxentyeva M.V., Omelyanovsky V.V. Systems for assessing the reliability of scientific evidence and the soundness of guidelines: comparison and prospects for unification. Meditsinskiye tekhnologii. Otsenka i vybor (Medical Technologies. Assessment and Choice; Moscow). 2012(4):10–24. (In Russ. Engl. abstr.)
20. Шуремов Е. Введение в базы данных. Коротко о главном. – Ridero, 2019. – 65 с. Shuremov E. Introduction to databases. Briefly about the main thing. – Ridero, 2019. – 65 p. (In Russ.)
21. Дейт К.Д. Введение в системы баз данных, 8-е издание.: Пер. с англ. – М., С-Пт., Киев: Издательский дом «Вильяме», 2005. – 1328 с. Date C.J. An Introduction to Database Systems. 8th Edition, – Boston etc.: Pearson Education, Inc. 2003. – 1040 p.
22. Жидченко Т.В. Базы данных: учебное пособие. – Зерноград: Азово-Черноморский инженерный институт ФГБОУ ВО Донской ГАУ, 2021. – 114 с. Zhidchenko T.V. Databases: a tutorial. – Zernograd: Azov-Black Sea Engineering Institute – branch of the Federal State Budgetary Educational Institution of Higher Education ‘Don State Agrarian University’, 2021. – 114 p.
23. Любицкий Ю.В. Базы данных: учебное пособие. – Хабаровск: РИЦ ХГАЭП, 2005. – 80 с. Lyubitsky Yu.V. Databases: a textbook. – Khabarovsk: RIC KGAEP, 2005. – 80 p. (In Russ.)
24. Гражданский кодекс Российской Федерации (часть четвертая). От 18.12.2006 № 230-ФЗ (ред. от 30.01.2024). https://www.consultant.ru/document/cons_doc_LAW_64629/26eaf5de7ca59025f4388fe2980d3dd03dd5e775/ (дата обращения 22.11.2024). Civil Code of the Russian Federation (Part Four). From 18.12.2006 No. 230-FZ (as amended on 30.01.2024). https://www.consultant.ru/document/cons_doc_LAW_64629/26eaf5de7ca59025f4388fe2980d3dd03dd5e775/ (address data 2024/11/22). (In Russ.)
25. ГОСТ 7.73-96: Система стандартов по информации, библиотечному и издательскому делу. Поиск и распространение информации. Термины и определения. Издание официальное. Межгосударственный совет по стандартизации, метрологии и сертификации. БЗ 3_96/143. Минск, 1996. – 15 с. GOST (Russian National Standard) 7.73-96: System of standards on information, librarianship and publishing. Information retrieval and dissemination. Terms and definitions. Official publication. The Interstate Council for Standardization, Metrology and Certification. BZ 3_96/143. Minsk, 1996. – 15 p. (In Russ.)
26. Ковязина Е.В. Библиографические базы данных, содержащие ссылки на полный текст документа // «Труды IX рабочего совещания по электронным публикациям (El-Pub2004). Новосибирск, 23–25 сентября 2004 г.» Вычислительные технологии. 2005. Т. 10. Спец. выпуск. С. 78–81. Kovyazina E.V. Bibliographic databases containing links to the full text of a document. ‘Proc of IX working conference on electronic publications (El-Pub2004). Novosibirsk, September 23–25, 2004’. Computing technologies. 2005;10(Spec. issue):78–81. (In Russ.)
27. Голубцов С.Б. Средства менеджмента библиографической информации. – СПб.: ИВЭСЭП, Знание, 2009. – 84 с. Golubtsov S.B. Bibliographic information management tools. – Saint Petersburg: IVESEP, Knowledge, 2009. – 84 p. (In Russ.)
28. INIS Repository. IAEA Nucleus. https://inis.iaea.org/search/search.aspx?search-option=everywhere&orig_q=%22nuclear%20workers%22 (дата обращения 24.11.2024). INIS Repository. IAEA Nucleus. https://inis.iaea.org/search/search.aspx?search-option=everywhere&orig_q=%22nuclear%20workers%22 (address data 2024/11/24).
29. Марцевич С.Ю., Кутишенко Н.П., Лукина Ю.В., Лукьянов М.М., Драпкина О.М. Наблюдательные исследования и регистры. Их качество и роль в современной доказательной медицине. Кардиоваскулярная терапия и профилактика. 2021;20(2):Статья 2786. – 6 p. https://doi.org/10.15829/1728-8800-2021-2786. Martsevich S.Yu., Kutishenko N.P., Lukina Yu.V., Lukyanov M.M., Drapkina O.M. Observational studies and registers. Their quality and role in modern evidence-based medicine. Kardiovaskulyarnaya terapiya i profilaktika (Cardiovascular Therapy and Prevention; Moscow). 2021;20(2):Article 2786. —6 p. https://doi.org/10.15829/1728-8800-2021-2786. (In Russ. Engl. abstr.)
30. Tricoci P., Allen J.M., Kramer J.M., Califf R.M., Smith S.C., Jr. Scientific evidence underlying the ACC/AHA clinical practice guidelines // J. Am. Med. Assoc. 2009. V.301. No.8. P. 831–841. https://doi.org/10.1001/jama.2009.205. Tricoci P., Allen J.M., Kramer J.M., Califf R.M., Smith S.C., Jr. Scientific evidence underlying the ACC/AHA clinical practice guidelines. J. Am. Med. Assoc. 2009;301(8):831–41. https://doi.org/10.1001/jama.2009.205.
31. Gitt A.K., Bueno H., Danchin N., Fox K., Hochadel M., Kearney P. et al. The role of cardiac registries in evidence-based medicine // Eur. Heart J. 2010. V.31. No.5. P. 525–529. https://doi.org/10.1093/eurheartj/ehp596. Gitt A.K., Bueno H., Danchin N., Fox K., Hochadel M., Kearney P. et al. The role of cardiac registries in evidence-based medicine. Eur. Heart J. 2010;31(5):525–9. https://doi.org/10.1093/eurheartj/ehp596.
32. Pass H.I. Medical registries. Continued attempts for robust quality data // J. Thorac Oncol. 2010. V.5. No.6. Suppl. 2. S198–S199. https://doi.org/10.1097/JTO.0b013e3181dcf957. Pass H.I. Medical registries. Continued attempts for robust quality data. J. Thorac Oncol. 2010;5(6; Suppl 2):S198–9. https://doi.org/10.1097/JTO.0b013e3181dcf957.
33. Brooke E.M. The current and future use of registers in health information systems (WHO offset publication; no. 8). Geneva, World Health Organization, 1974. – 43 p.
34. Wagner G. History of cancer registration // In: ‘IARC-95. Cancer Registration: Principles and Methods. IARC Scientific Publications No. 95. Ed. by O.M. Jensen, D.M. Parkin, R. MacLennan, C.S. Muir, R.G. Skeet. – Lyon, France: IARC, 1991. P. 3–6. Wagner G. History of cancer registration. In: ‘IARC-95. Cancer Registration: Principles and Methods. IARC Scientific Publications No. 95. Ed. by O.M. Jensen, D.M. Parkin, R. MacLennan, C.S. Muir, R.G. Skeet. – Lyon, France; IARC, 1991:3–6.
35. Mitchell C.R., Azizova T.V., Hande M.P., Burak L.E., Tsakok J.M., Khokhryakov V.F. et al. Stable intrachromosomal biomarkers of past exposure to densely ionizing radiation in several chromosomes of exposed individuals // Rad. Res.. 2004. V.162. No.3. P. 257–263. https://doi.org/10.1667/RR3231. Mitchell C.R., Azizova T.V., Hande M.P., Burak L.E., Tsakok J.M., Khokhryakov V.F. et al. Stable intrachromosomal biomarkers of past exposure to densely ionizing radiation in several chromosomes of exposed individuals. Rad. Res.. 2004;162(3):257–63. https://doi.org/10.1667/RR3231.
36. A Dictionary of Epidemiology. Ed. by M. Porta. 6th ed. – New York: Oxford University Press, 2014. – 344 p. A Dictionary of Epidemiology. Ed. by M. Porta. 6th ed. – New York: Oxford University Press, 2014. – 344 p.
37. Котеров А.Н., Ушенкова Л.Н. База данных (база источников) об эффектах лучевых и нелучевых воздействий для работников ядерной индустрии различных стран мира: свидетельство о государственной регистрации № 2024623705 // Опубликовано 22.08.2024, Бюллетень № 2. Koterov A.N., Ushenkova L.N. Database (source database) on the effects of radiation and non-radiation exposure for nuclear workers in various countries of the world: state registration certificate No. 2024623705. Published 08.22.2024, Bulletin No. 2 (in Russ.).
38. Acquavella J.F., Wiggs L.D., Waxweiler R.J., Macdonell D.G., Tietjen G.L., Wilkinson G.S. Mortality among workers at the Pantex weapons facility // Health Phys. 1985. V.48. No.6. P. 735–746. https://doi.org/10.1097/00004032-198506000-00002. Acquavella J.F., Wiggs L.D., Waxweiler R.J., Macdonell D.G., Tietjen G.L., Wilkinson G.S. Mortality among workers at the Pantex weapons facility. Health Phys. 1985;48(6):735–46. https://doi.org/10.1097/00004032-198506000-00002.
39. Beral V., Inskip H., Fraser P., Booth M., Coleman D., Rose G. Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–1979 // Br. Med. J. (Clin. Res. Ed). 1985. V.291. No.6493. P. 440–447. https://doi.org/10.1136/bmj.291.6493.440. Beral V., Inskip H., Fraser P., Booth M., Coleman D., Rose G. Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–1979. Br. Med. J. (Clin. Res. Ed). 1985;291(6493):440–7. https://doi.org/10.1136/bmj.291.6493.440.
40. Ограничения ресурсов для отдельных баз данных при использовании модели приобретения DTU – База данных SQL Azure // Microsoft Build. 21–23 мая 2024 г. https://learn.microsoft.com/ru-ru/azure/azure-sql/database/resource-limits-dtu-single-databases?view=azuresql-db (дата обращения 25.11.2024). Resource Limits for Single Databases Using the DTU Purchasing Model - Azure SQL Database // Microsoft Build. May 21–23, 2024. https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-dtu-single-databases?view=azuresql-db (address data2024/11/25). (In Russ.)
41. Boddie K. How to Determine if the 10% Rule is Satisfied When Sampling Without Replacement // South Carolina College- and Career-Ready Standards for Mathematics (SCCCR) – Probability and Statistics Skills Practice. Study.com. 2024. https://study.com/skill/learn/determining-if-the-10-rule-is-satisfied-when-sampling-for-the-sample-mean-is-done-without-replacement-explanation.html (дата обращения 25.11.2024). Boddie K. How to Determine if the 10% Rule is Satisfied When Sampling Without Replacement. South Carolina College- and Career-Ready Standards for Mathematics (SCCCR) – Probability and Statistics Skills Practice. Study.com. 2024. https://study.com/skill/learn/determining-if-the-10-rule-is-satisfied-when-sampling-for-the-sample-mean-is-done-without-replacement-explanation.html (address data 2024/11/25).
42. Lindsay J.P., Stavraky K.M., Howe G.R. The Canadian Labour Force Ten Percent Sample Study. Cancer mortality among men, 1965–1979 // J. Occup. Med. 1993. V.35. No.4. P. 408–414. Lindsay J.P., Stavraky K.M., Howe G.R. The Canadian Labour Force Ten Percent Sample Study. Cancer mortality among men, 1965–1979. J. Occup. Med. 1993;35(4):408–14.
43. U.S. Atomic Energy Commission Report MDDC-1555, Technical Information Division, Oak Ridge, Tenn, March 1943.
44. Hempelmann L.H., Langham W.H., Voelz G.L., Richmond C.R. Biomedical follow-up of the Manhattan Project Plutonium Workers // In: ‘Proc. of Third International Congress of the International Radiation Protection Association’ (IRPA). CONF-730907-P1. USAEC. Office of Information Services, Technical Information Center, Oak Ridge, TN, 1973. P. 713–718. Hempelmann L.H., Langham W.H., Voelz G.L., Richmond C.R. Biomedical follow-up of the Manhattan Project Plutonium Workers // In: ‘Proc. of Third International Congress of the International Radiation Protection Association’ (IRPA). CONF-730907-P1. USAEC. Office of Information Services, Technical Information Center, Oak Ridge, TN, 1973. P. 713–718.
45. Voelz G/L. Plutonium and health: how great is the risk? // Los Alamos science. 2000. No.26. P. 74–89. https://fas.org/sgp/othergov/doe/lanl/pubs/00818013.pdf. Voelz G/L. Plutonium and health: how great is the risk? Los Alamos science. 2000(26):74–89. https://fas.org/sgp/othergov/doe/lanl/pubs/00818013.pdf.
46. Moss W. Eckhardt R. The human plutonium injection experiments // Los Alamos Science 1995. No.23. 176–233. https://fas.org/sgp/othergov/doe/lanl/pubs/00326640.pdf. Moss W. Eckhardt R. The human plutonium injection experiments. Los Alamos Science 1995(23):176–233. https://fas.org/sgp/othergov/doe/lanl/pubs/00326640.pdf.
47. Langham W.H., Bassett S.M., Harris P.S., Carter R.E., Distribution and excretion of plutonium administered intravenously to man. Los Alamos Scientific Laboratory Technical Report LA-1151. ON: DE90009108. 1950. – 45 p. Langham W.H., Bassett S.M., Harris P.S., Carter R.E., Distribution and excretion of plutonium administered intravenously to man. Los Alamos Scientific Laboratory Technical Report LA-1151. ON: DE90009108. 1950. – 45 p.
48. Wood J.K. Nuclear power // Students’ Quarterly Journal. 1956. V.26. No.103. P. 137–142. https://doi.org/10.1042ц0519/sqj.1956.0003. Wood J.K. Nuclear power. Students’ Quarterly Journal. 1956;26(103):137–42. https://doi.org/10.1049/sqj.1956.0003.
49. Freeman A.V. The development of international co-operation in the peaceful use of atomic energy (editorial comment). American Journal of International Law // 1960. V.54. No.2. P. 383–392. https://doi.org/10.2307/2195255. Freeman A.V. The development of international co-operation in the peaceful use of atomic energy (editorial comment). American Journal of International Law. 1960;54(2):383–92. https://doi.org/10.2307/2195255.
50. Гуськова А.К., Байсоголов Г.Д., Еманова Е.А., Дощенко В.Н. К вопросу о клинике и лечении острых и хронических лучевых поражений. М., 1954. Gus’kova A.K., Baysogolov G.D., Emanova E.A., Doshchenko V.N. On the clinical picture and treatment of acute and chronic radiation injuries. Moscow, 1954. (In Russ.)
51. Байсоголов Г.Д., Дощенко В.Н., Кошурникова Н.А. Из истории отечественной радиационной медицины (химический комбинат «Маяк» Челябинск-40) // Радиация и риск. 1995. № 5. С. 48–53. Baysogolov G.D., Doshchenko V.N., Koshurnikova N.A. From the history of domestic radiation medicine (chemical plant ‘Mayak’ Chelyabinsk-40). (Radiation and risk; Obninsk). 1995(5):48–53. (In Russ.)
52. Куршаков Н.А., Балабуха В.С., Глазунов И.С. Клиника и терапия лучевой болезни (1957) // Избранные материалы «Бюллетеня радиационной медицины», под общей редакцией Л.А. Ильина и А.С. Самойлова. – М.: ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России, 2016. Т. 1. С. 183–201. Kurshakov N.A., Balabukha V.S., Glazunov I.S. Clinic and therapy of radiation syndrome (1957) // Selected materials of the ‘Bulletin of Radiation Medicine’ (USSR), Ed. by L.A. Ilyin, A.S. Samoilov. – M.: State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency of Russia, 2016;1:183–201. (In Russ.)
53. Cardis E., Vrijheid M., Blettner M., Gilbert E, Hakama M., Hill C. et al. (52 authors). Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries // Brit. Med. J. 2005. V.331. No.7508. P. 77–80. https://doi.org/10.1136/bmj.38499.599861.E0. Cardis E., Vrijheid M., Blettner M., Gilbert E, Hakama M., Hill C. et al. (52 authors). Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Brit. Med. J. 2005;331(7508):77–80. https://doi.org/10.1136/bmj.38499.599861.E0.
54. Hirsch E. A Guide to Euratom // Bulletin of the Atomic Scientists. 1959. V.15. No.6. P. 250–252. https://doi.org/10.1080/00963402.1959.11453977. Hirsch E. A Guide to Euratom. Bulletin of the Atomic Scientists. 1959;15(6):250–2. https://doi.org/10.1080/00963402.1959.11453977.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2025. Accepted for publication: 25.03.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-113-118
P.V. Sychev1, Yu.D. Udalov1, 2
Results of Evaluation of Four Cycles of Radionuclide Therapy with a Domestic Radiopharmaceutical Based on Radium-223 Chloride for the Treatment of Bone Metastases
1 Federal Scientific Clinical Center for Medical Radiology and Oncology, Dimitrovgrad, Russia
2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Petr Vladimirovich Sychev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: The evaluation of the efficacy and safety of a domestic radiopharmaceutical drug based on Radium-223 chloride in patients with bone metastases in comparison with the original drug.
Material and methods: In the period from 2022 to 2023, a study was conducted that included 36 patients diagnosed with metastatic castration–resistant prostate cancer in the absence of visceral metastases, who underwent planar osteoscintigraphy in the whole body mode and PET/CT with 18F-PSMA. In all patients included in the study, the fact of metastatic skeletal lesions and the absence of visceral metastases were confirmed by diagnostic studies before inclusion in the study. The effectiveness was assessed by comparing the data of planar osteoscintigraphy and PET/CT before the start of treatment and after cycle 4, as well as by assessing the pain syndrome. The safety of the drug was monitored by assessing hematological toxicity in dynamics before and after each cycle. In the study group, 22 patients (84.6 %), and in the control group, 14 patients (93.3 %) received 4 cycles of treatment. The fatal outcome was found in the research group in 3 people (11.5 %), in the control group in 1 patient (6.7 %) with a diagnosis of Covid-19. The general condition of the patients at the time of the fourth treatment cycle was satisfactory, there were no side effects in the form of redness at the injection site, nausea and vomiting.
Results: There was a deviation from the lower limits of normal in the study group in terms of hemoglobin level in 9 patients (35 %), in the control group in 6 patients (40 %), in neutrophil levels in 1 patient in the study group (3.8 %), in platelet level in 6 patients in the study group (23 %), in 5 patients in the control group (33.3 %), in the level of lymphocytes in 6 patients in the study group (23 %), which is associated with the underlying disease. The minimum values of the indicators did not require correction.
Conclusions: The first results of therapy with a domestic drug based on radium-223 chloride are comparable with the original drug.
Keywords: castration-resistant prostate cancer (CRPC), bone metastases, radionuclide therapy, radium-223 chloride, single-photon emission computed tomography, positron emission tomography
For citation: Sychev PV, Udalov YuD. Results of Evaluation of Four Cycles of Radionuclide Therapy with a Domestic Radiopharmaceutical Based on Radium-223 Chloride for the Treatment of Bone Metastases. Medical Radiology and Radiation Safety. 2025;70(2):113–118. (In Russian). DOI:10.33266/1024-6177-2025-70-2-113-118
References
1. Lowrance W.T., Murad M.H., Oh W.K., Jarrard D.F., Resnick M.J., Cookson M.S. Castration-Resistant Prostate Cancer. AUA Guideline Amendment. J Urol. 2018 Dec;200;6:1264-1272. doi: 10.1016/j.juro.2018.07.090. Epub 2018 Aug 4. PMID: 30086276.
2. Yau V., Chow E., Davis L., et al. Pain Management in Cancer Patients with Bone Metastases Remains a Challenge. J Pain Symptom Manage. 2004;27:1-3.
3. Sartor O. Radiopharmaceutical and Chemotherapy Combinations in Metastatic Castrate-Resistant Prostate Cancer: a New Beginning? J Clin Oncol. 2009;27:2417-2418.
4. Bruland O.S., Nilsson S., Fisher D.R., et al. High-Linear Energy Transfer Irradiation Targeted to Skeletal Metastases by the Alpha-Emitter 223Ra: Adjuvant or Alternative to Conventional Modalities. Clin Cancer Res. 2006;12:6250s-6257s.
5. Henriksen G., Breistol K., Bruland O.S., et al. Significant Antitumor Effect from Bone-Seeking, Alpha-Particle-Emitting (223)Ra Demonstrated in an Experimental Skeletal Metastases Model. Cancer Res. 2002;62:3120-3125.
6. Saad F., Carles J., Gillessen S., Heidenreich A., Heinrich D., Gratt J., Lévy J., Miller K., Nilsson S., Petrenciuc O., Tucci M., Wirth M., Federhofer J., O’Sullivan J.M. Radium-223 International Early Access Program Investigators. Radium-223 and Concomitant Therapies in Patients with Metastatic Castration-Resistant Prostate Cancer: an International, Early Access, Open-Label, Single-Arm Phase 3b trial. Lancet Oncol. 2016 Sep;17;9:1306-16. doi: 10.1016/S1470-2045(16)30173-5.
7. Parker C., Nilsson S., Heinrich D., Helle S.I., O’Sullivan J.M., Fosså S.D., Chodacki A., Wiechno P., Logue J., Seke M., Widmark A., Johannessen D.C., Hoskin P., Bottomley D., James N.D., Solberg A., Syndikus I., Kliment J., Wedel S., Boehmer S., Dall’Oglio M., Franzén L., Coleman R., Vogelzang N.J., O’Bryan-Tear C.G., Staudacher K., Garcia-Vargas J., Shan M., Bruland Ø.S., Sartor O. ALSYMPCA Investigators. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N Engl J Med. 2013 Jul 18;369;3:213-23. doi: 10.1056/NEJMoa1213755.
8. Shore N., Higano C.S., George D.J., et al. Concurrent or Layered Treatment with Radium-223 and Enzalutamide or Abiraterone/Prednisone: Real-World Clinical Outcomes in Patients with Metastatic Castration-Resistant Prostate Cancer. Prostate Cancer Prostatic. 2020;23:680–688. doi: 10.1038/s41391-020-0236-0.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-107-112
M.O. Shatalova, I.O. Tomashevskiy
X-Ray Computed Tomography in Complex Diagnosis of Thyroid Diseases
Central Clinical Hospital RZD-Medicine, Moscow, Russia
Contact person: I.O. Tomashevskiy, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
The literature review analyzed the use of X-ray computed tomography to assess thyroid function by X-ray density or with the use of special tomographs by the concentration of intrathyroidal iodine in absolute values (μg/g). Only the use of CT makes it possible to assess the risk of disruption of the hormone-forming function of the thyroid gland, diagnose hypothyroidism in the early stages, and, in case of dysfunction of the thyroid gland, determine the nature of the disorder: iodine-induced or iodine deficiency. For people living in regions with iodine deficiency, RCT makes it possible to assess the degree of iodine deficiency and, when carrying out iodine prophylaxis, to monitor its effectiveness.
Based on literature data, fluctuations in the concentration of intrathyroidal stable iodine (ITI) and thyroid density during euthyroidism were determined for Moscow and the Moscow region, which amounted to 200‒700 μg/g for ITI and 85-140 units.
Keywords: X-ray computed tomography thyroid density, intrathyroidal iodine, intrathyroidal hormonogenesis
For citation: Shatalova MO, Tomashevskiy IO. X-Ray Computed Tomography in Complex Diagnosis of Thyroid Diseases. Medical Radiology and Radiation Safety. 2025;70(2):107–112. (In Russian). DOI:10.33266/1024-6177-2025-70-2-107-112
References
1. Томашевский И.О., Лучшев А.И., Орлова Ю.В. и др. Необходимость использования рентгеновской компьютерной томографии для оценки интратиреоидного гормонообразования при заболеваниях щитовидной железы // Российский электронный журнал лучевой диагностики. 2016. Т.6. №2. С.340–341 [Tomashevskiy I.O., Luchshev A.I., Orlova Yu.V., et al. The Need to Use X-ray Computed Tomography to Assess Intrathyroid Hormone Formation in Thyroid Diseases. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiation Diagnostics. 2016;6;2:340–341 (In Russ.)].
2. Imanishi Y., Ehara N., Mori J., et al. Measurment of Thyroid Iodine by CT. Journal of Computer Assisted Tomography. 1991;15;2:287-290.
3. Meller J., Becker W. The Continuing Importance of Thyroid Scintigraphy in the Era of High-Resolution Ultrasound. Eur J Nucl Med Mol Imaging. 2002;29;2:S425-S438. doi: 10.1007/s00259-002-0811-8.
4. Chaudhary V., Bano S. Imaging of the Thyroid: Recent Advances. Indian J Endocrinol Metab. 2012;16;3:371-376. doi: 10.4103/2230-8210.95674.
5. Binh D.D., Nakajima T., Otake H., Higuchi T., Tsushima Y. Iodine Concentration Calculated by Dual-Energy Computed Tomography (DECT) as a Functional Parameter to Evaluate Thyroid Metabolism in Patients with Hyperthyroidism. BMC Med Imaging. 2017;17;1:43. doi: 10.1186/s12880-017-0216-6.
6. Mohácsik P., Zeöld A., Bianco A.C., Gereben B. Thyroid Hormone and the Neuroglia: Both Source and Target. J Thyroid Res. 2011:215718. doi: 10.4061/2011/215718.
7. Rousset B., Dupuy C., Miot F., Dumont J. Chapter 2 Thyroid Hormone Synthesis and Secretion. Ed. Feingold K.R., Anawalt B., Blackman M.R., et al. Endotext. South Dartmouth (MA): MDText.com, Inc. September 2, 2015.
8. Tomashevskiy I.O., Kurnikova I.A., Sargar R.V. The Use of X-ray Computed Tomography to Assess the Intrathyroidal Iodine Concentration and its Storage in the Thyroid Gland. Medical Radiology and Radiation Safety. 2020;65;3:73-6.
9. Imanishi Y., Ehara N., Shinagawa T., et al. Correlation of CT Values, Iodine Concentration, and Histological Changes in the Thyroid. J Comput Assist Tomogr. 2000;24;2:322-326. doi: 10.1097/00004728-200003000-00026.
10. Li Z.T., Zhai R., Liu H.M., Wang M., Pan D.M. Iodine Concentration and Content Measured by Dual-Source Computed Tomography are Correlated to Thyroid Hormone Levels in Euthyroid Patients: a Cross-Sectional Study in China. BMC Med Imaging. 2020;20;1:10. doi: 10.1186/s12880-020-0411-8.
11. Shao W., Liu J., Liu D. Evaluation of Energy Spectrum CT for the Measurement of Thyroid Iodine Content. BMC Med Imaging. 2016;16;1:47. doi: 10.1186/s12880-016-0151-y.
12. Pandey V., Reis M., Zhou Y. Correlation Between Computed Tomography Density and Functional Status of the Thyroid Gland. J Comput Assist Tomogr. 2016;40;2:316-319. doi: 10.1097/RCT.0000000000000360.
13. Li Z.T., Zhai R., Liu H.M., Wang M., Pan D.M. Iodine Concentration and Content Measured by Dual-Source Computed Tomography are Correlated to Thyroid Hormone Levels in Euthyroid Patients: a Cross-Sectional Study in China. BMC Med Imaging. 2020;20;1:10. doi: 10.1186/s12880-020-0411-8.
14. Zhao W., Han C., Shi X., Xiong C., Sun J., Shan Z., Teng W. Prevalence of Goiter and Thyroid Nodules before and after Implementation of the Universal salt Iodization Program in Mainland China from 1985 to 2014: a Systematic Review and Meta-Analysis. PLoS One. 2014 Oct 14;9;10:e109549. doi: 10.1371/journal.pone.0109549.
15. Трошина Е.А., Сенюшкина Е.С., Терехова М.А. Роль селена в патогенезе заболеваний щитовидной железы // Клиническая и экспериментальная тиреоидология. 2018. Т.14. №4. С. 192-205 [Troshina Ye.A., Senyushkina Ye.S., Terekhova M.A. The Role of Selenium in the Pathogenesis of Thyroid Diseases. Klinicheskaya i Eksperimental’naya Tireoidologiya = Clinical and Experimental Thyroidology. 2018;14;4:192-205 (In Russ.)]. doi: 10.14341/ket10157.
16. Kamijo K. Clinical Studies on Thyroid CT Number in Chronic Thyroiditis. Endocr J. 1994;41;1:19-23. doi: 10.1507/endocrj.41.19.
17. Ning Y., Cheng Y.J., Liu L.J., et al. What is the Association of Hypothyroidism with Risks of Cardiovascular Events and Mortality? A Meta-Analysis of 55 Cohort Studies Involving 1,898,314 Participants. BMC Med. 2017;15;1:21. doi: 10.1186/s12916-017-0777-9.
18. Chugh S.S., Roth G.A., Gillum R.F., Mensah G.A. Global Burden of Atrial Fibrillation in Developed and Developing Nations. Glob Heart. 2014;9;1:113-119. doi: 10.1016/j.gheart.2014.01.004.
19. Татарский Б.А., Попов С.В., Казеннова Н.В. Фибрилляция предсердий и сердечная недостаточность: подходы к антитромботической терапии // Российский кардиологический журнал. 2017. №7. С. 132-138 [Tatarskiy B.A., Popov S.V., Kazennova N.V. Atrial Fibrillation and Heart Failure: Approaches to Antithrombotic Therapy. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2017;7:132-138 (In Russ.)]. doi: 10.15829/1560-4071-2017-7-132-138.
20. Лебедева Е.А., Яблонская Ю.А., Булгакова С.В. Амиодарон-индуцированный тиреотоксикоз. Современный взгляд на проблему // Клиническая и экспериментальная тиреоидология. 2017. Т.13. №2. С.31-38 [Lebedeva Ye.A., Yablonskaya Yu.A., Bulgakova S.V. Amiodarone-Induced Thyrotoxicosis. Modern View on the Problem. Klinicheskaya i Eksperimental’naya Tireoidologiya = Clinical and Experimental Thyroidology. 2017;13;2:31-38 (In Russ.)]. doi: 10.14341/ket2017231-38.
21. Trohman R.G., Sharma P.S., McAninch E.A., Bianco A.C. Amiodarone and Thyroid Physiology, Pathophysiology, Diagnosis and Management. Trends Cardiovasc Med. 2019;29;5:285-295. doi: 10.1016/j.tcm.2018.09.005.
22. Geng D., Zhou Y., Su G.Y., et al. Influence of Sex, Age and Thyroid Function Indices on Dual-Energy Computed Tomography-Derived Quantitative Parameters of Thyroid in Patients with or without Hashimoto’s Thyroiditis. BMC Med Imaging. 2023;23;1:25. doi: 10.1186/s12880-023-00983-x.
23. Ishibashi N., Maebayashi T., Aizawa T., Sakaguchi M., Okada M., Matsushita J. Computed Tomography Density Change in the Thyroid Gland before and after Radiation Therapy. Anticancer Res. 2018;38;1:417-421. doi: 10.21873/anticanres.12238.
24. Fatourechi M.M., Hay I.D., McIver B., Sebo T.J., Fatourechi V. Invasive Fibrous Thyroiditis (Riedel Thyroiditis): the Mayo Clinic Experience, 1976-2008. Thyroid. 2011;21;7:765-772. doi: 10.1089/thy.2010.0453.
25. Hennessey J.V. Clinical Review: Riedel’s Thyroiditis: a Clinical Review. J Clin Endocrinol Metab. 2011;96;10:3031-3041. doi: 10.1210/jc.2011-0617.
26. Majety P., Hennessey J.V. Acute and Subacute, and Riedel’s Thyroiditis. Ed. Feingold K.R., Anawalt B., Blackman M.R., et al. Endotext. South Dartmouth (MA): MDText.com, Inc. July 25, 2022.
27. Томашевский И.О., Колосков С.А., Митоян М.Р. и др. Рентгенофлюоресцентный анализ интратиреоиднеого стабильного йода в оценке функции щитовидной железы // Медицинская радиология и радиационная безопасность. 2007. Т.52. №4. С.28-34 [Tomashevskiy I.O., Koloskov S.A., Mitoyan M.R., et al. X-ray Fluorescence Analysis of Intrathyroid Stable Iodine in the Assessment of Thyroid Function. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2007;52;4:28-34 (In Russ.)].
28. Томашевский И.О., Кузовлёв О.П., Зарьков К.А. и др. Определение функции щитовидной железы по концентрации интратиреоидного йода // Медицинская радиология и радиационная безопасность. 2007. Т.52. №3. С.25-32 [Tomashevskiy I.O., Kuzovlov O.P., Zar’kov K.A Determination of Thyroid Function by the Concentration of Intrathyroid Iodine. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2007;52;3:25-32 (In Russ.)].
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2
DOI:10.33266/1024-6177-2025-70-2-119-125
V.A. Manukova, I.P. Aslanidis, O.V. Mukhortova,
M.V. Metelkina, I.V. Ekaeva, A.S. Rumyantsev, A.V. Silchenko
11C-Methionine and 18F-Fluorodeoxyglucose PET/CT
in Multiple Myeloma Patients – One-Day Investigation
A.N. Bakulev Scientific Center for Cardiovascular Surgery, Moscow, Russia
Contact person: V.A. Manukova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Background: To evaluate the impact of PET/СT with 11C-Methionine (MET) and 18F-fluorodeoxyglucose (FDG) on physiological distribution of FDG in patients with multiple myeloma (MM).
Material and methods: 40 patients with a history of MM were included in the analysis, 60 PET/CT exams were conducted: in the 1st group – 20 doubled PET/CT (MET PET/CT followed by FDG PET/CT); in the 2nd group – 20 FDG PET/CT.
Results: Comparative analysis of the physiological accumulation of FDG in two groups of patients with MM – one group passed one day 11C-MET PET/CT followed by 18F-FDG PET/CT and another group passed standard 18F-FDG PET/CT – revealed no statistically significant difference. SULmax and SULmean was calculated in the right lobe of the liver, in the ascending aorta and in the head of the pancreas. The mean values of liver SULmax were: in the first group – 2.37 ± 0.36, in the second group – 2.46 ± 0.40, p = 0.1. The mean values of aortic SULmax were: in the first group – 1.42 ± 0.25, in the second group – 1.51 ± 0.37, p = 0.11. The mean SULmax values in the pancreatic head were: in the first group – 1.43 ± 0.26, in the second group – 1.59 ± 0.36, p = 0.08.
Conclusion: A one-day MET and FDG PET/CT does not affect the pharmacokinetics of FDG and can be used in MM patients.
Keywords: multiple myeloma, PET/CT, 11C-Methionine, 18F-Fluorodeoxyglucose, one-day investigation
For citation: Manukova VA, Aslanidis IP, Mukhortova OV, Metelkina MV, Ekaeva IV, Rumyantsev AS, Silchenko AV. 11C-Methionine and 18F-Fluorodeoxyglucose PET/CT in Multiple Myeloma Patients – One-Day Investigation. Medical Radiology and Radiation Safety. 2025;70(2):119–125. (In Russian). DOI:10.33266/1024-6177-2025-70-2-119-125
References
1. Пурсанова Д.М., Асланиди И.П, Мухортова О.В., Шурупова И.В., Екаева И.В., Трифонова Т.А. ПЭТ/КТ в диагностике инфекционного эндокардита: факторы, влияющие на информативность // Бюллетень НЦССХ им. А.Н.Бакулева РАН. Сердечно-сосудистые заболевания. 2022. Т.23. №S3. С.117 [Pursanova D.M., Aslanidi I.P, Mukhortova O.V., Shurupova I.V., Yekayeva I.V., Trifonova T.A. PET/CT in the Diagnosis of Infective Endocarditis: Factors Affecting the Information Content. Byulleten’ Nauchnogo Tsentra Serdechno-Sosudistoy Khirurgii im. A.N.Bakuleva RAN. Serdechno-Sosudistyye Zabolevaniya = Bulletin of the A.N.Bakulev Scientific Center of Cardiovascular Surgery. Russian Academy of Sciences. Cardiovascular Diseases. 2022;23;S3:117 (In Russ.)].
2. Асланиди И.П., Шурупова И.В., Мухортова О.В., Трифонова Т.А., Пурсанова Д.М., Шавман М.Г. Отдел ядерной диагностики центра им. А.Н.Бакулева: современные достижения и взгляд в будущее // Бюллетень НЦССХ им. А.Н.Бакулева РАН. Сердечно-сосудистые заболевания. 2021. Т.22. №2. С.162-170 [Aslanidi I.P., Shurupova I.V., Mukhortova O.V., Trifonova T.A., Pursanova D.M., Shavman M.G. Department of Nuclear Diagnostics of the A.N. Bakulev Center: Current Achievements and a Look into the Future. Byulleten’ Nauchnogo Tsentra Serdechno-Sosudistoy Khirurgii Im. A.N. Bakuleva RAN. Serdechno-Sosudistyye Zabolevaniya = Bulletin of the A.N.Bakulev Scientific Center of Cardiovascular Surgery. Russian Academy of Sciences. Cardiovascular Diseases. 2021;22;2:162-170 (In Russ.)].
3. Huang J., Chan S.C., Lok V., Zhang L., Lucero-Prisno D.E. 3rd, Xu W., Zheng Z.J., Elcarte E., Withers M., Wong M.C.S. Non-Communicable Disease Global Health Research Group, Association of Pacific Rim Universities. The Epidemiological Landscape of Multiple Myeloma: a Global Cancer Registry Estimate of Disease Burden, Risk Factors, and Temporal Trends. Lancet Haematol. 2022 Sep;9;9:e670-e677. doi: 10.1016/S2352-3026(22)00165-X. Epub 2022 Jul 14. PMID: 35843248.
4. Kwee T.C., Basu S., Saboury B., Ambrosini V., Torigian D.A., Alavi A. A New Dimension of FDG-PET Interpretation: Assessment of Tumor Biology. Eur J Nucl Med Mol Imaging. 2011 Jun;38;6:1158-70. doi: 10.1007/s00259-010-1713-9. Epub 2011 Jan 12. PMID: 21225422.
5. Rasche L., Angtuaco E., McDonald J.E., Buros A., Stein C., Pawlyn C., Thanendrarajan S., Schinke C., Samant R., Yaccoby S., Walker B.A., Epstein J., Zangari M., van Rhee F., Meissner T., Goldschmidt H., Hemminki K., Houlston R., Barlogie B., Davies F.E., Morgan G.J., Weinhold N. Low Expression of Hexokinase-2 is Associated with False-Negative FDG-Positron Emission Tomography in Multiple Myeloma. Blood. 2017 Jul 6;130;1:30-34. doi: 10.1182/blood-2017-03-774422. Epub 2017 Apr 21. PMID: 28432222. PMCID: PMC5501152.
6. Lapa C., Knop S., Schreder M., Rudelius M., Knott M., Jörg G., Samnick S., Herrmann K., Buck A.K., Einsele H., Lückerath K. 11C-Methionine-PET in Multiple Myeloma: Correlation with Clinical Parameters and Bone Marrow Involvement. Theranostics. 2016 Jan 1;6;2:254-61. doi: 10.7150/thno.13921. PMID: 26877783. PMCID: PMC4729773.
7. Okasaki M., Kubota K., Minamimoto R., Miyata Y., Morooka M., Ito K., Ishiwata K., Toyohara J., Inoue T., Hirai R., Hagiwara S., Miwa A. Comparison of (11)C-4’-Thiothymidine, (11)C-Methionine, and (18)F-FDG PET/CT for the Detection of Active Lesions of Multiple Myeloma. Ann Nucl Med. 2015 Apr;29;3:224-32. doi: 10.1007/s12149-014-0931-9. Epub 2014 Nov 25. PMID: 25421383; PMCID: PMC4385147.
8. Isoda A., Kaira K., Iwashina M., Oriuchi N., Tominaga H., Nagamori S., Kanai Y., Oyama T., Asao T., Matsumoto M., Sawamura M. Expression of L-Type Amino Acid Transporter 1 (LAT1) as a Prognostic and Therapeutic Indicator in Multiple Myeloma. Cancer Sci. 2014 Nov;105;11:1496-502. doi: 10.1111/cas.12529. Epub 2014 Oct 9. PMID: 25220100. PMCID: PMC4462375.
9. Filippi L., Frantellizzi V., Bartoletti P., Vincentis G., Schillaci O., Evangelista L. Head-to-Head Comparison between FDG and 11C-Methionine in Multiple Myeloma: A Systematic Review. Diagnostics (Basel). 2023 Jun 9;13;12:2009. doi: 10.3390/diagnostics13122009. PMID: 37370904. PMCID: PMC10296945.
10. Kluge R., Chavdarova L., Hoffmann M., Kobe C., Malkowski B., Montravers F., Kurch L., Georgi T., Dietlein M., Wallace W.H., et al. Inter-Reader Reliability of Early FDG-PET/CT Response Assessment Using the Deauville Scale after 2 Cycles of Intensive Chemotherapy (OEPA) in Hodgkin’s Lymphoma. PLoSONE. 2016;11:e0149072. doi: 10.1371/journal.pone.0149072.
11. Siefert J., Kaufmann J., Thiele F., Walter-Rittel T., Rogasch J., Biesen R., Burmester G.R., Amthauer H., Schneider U., Furth C. Performance of Deauville Criteria in [18F]FDG-PET/CT Diagnostics of Giant Cell Arteritis. Diagnostics (Basel). 2023 Jan 3;13;1:157. doi: 10.3390/diagnostics13010157. PMID: 36611449. PMCID: PMC9818714.
12. Lucignani G., Paganelli G., Bombardieri E. The Use of Standardized Uptake Values for Assessing FDG Uptake with PET in Oncology: a Clinical Perspective. Nucl Med Commun. 2004;25:651–656.
13. Sarikaya I., Albatineh A.N., Sarikaya A. Revisiting Weight-Normalized SUV and Lean-Body-Mass-Normalized SUV in PET Studies. J Nucl Med Technol. 2020 Jun;48;2:163-167. doi: 10.2967/jnmt.119.233353. Epub 2019 Oct 11. PMID: 31604893.
14. Riauka T.A., Baracos V.E., Reif R., Juengling F.D., Robinson D.M., Wieler M., McEwan A.J.B. Rapid Standardized CT-Based Method to Determine Lean Body Mass SUV for PET-A Significant Improvement over Prediction Equations. Front Oncol. 2022 Jul 7;12:812777. doi: 10.3389/fonc.2022.812777. PMID: 35875083. PMCID: PMC9302197.
15. Okasaki M., Kubota K., Minamimoto R., Miyata Y., Morooka M., Ito K., Ishiwata K., Toyohara J., Inoue T., Hirai R., Hagiwara S., Miwa A. Comparison of (11)C-4’-Thiothymidine, (11)C-Methionine, and (18)F-FDG PET/CT for the Detection of Active Lesions of Multiple Myeloma. Ann Nucl Med. 2015 Apr;29;3:224-32. doi: 10.1007/s12149-014-0931-9. Epub 2014 Nov 25. PMID: 25421383. PMCID: PMC4385147.
16. Morales-Lozano M.I., Rodriguez-Otero P., Sancho L., Nuñez-Cordoba J.M., Prieto E., Marcos-Jubilar M., Rosales J.J., Alfonso A., Guillen E.F., San-Miguel J., Garcia-Velloso M.J. 11C-Methionine PET/CT in Assessment of Multiple Myeloma Patients: Comparison to 18F-FDG PET/CT and Prognostic Value. Int J Mol Sci. 2022 Aug 31;23;17:9895. doi: 10.3390/ijms23179895. PMID: 36077292. PMCID: PMC9456410.
17. Bailly C., Leforestier R., Jamet B., Carlier T., Bourgeois M., Guérard F., Touzeau C., Moreau P., Chérel M., Kraeber-Bodéré F., Bodet-Milin C. PET Imaging for Initial Staging and Therapy Assessment in Multiple Myeloma Patients. Int J Mol Sci. 2017 Feb 18;18;2:445. doi: 10.3390/ijms18020445. PMID: 28218709. PMCID: PMC5343979.
18. Jamet B., Bailly C., Carlier T., Touzeau C., Nanni C., Zamagni E., Barré L., Michaud A.V., Chérel M., Moreau P., Bodet-Milin C., Kraeber-Bodéré F. Interest of Pet Imaging in Multiple Myeloma. Front Med (Lausanne). 2019 Apr 9;6:69. doi: 10.3389/fmed.2019.00069. PMID: 31024917. PMCID: PMC6465522.
19. Nakamoto Y., Kurihara K., Nishizawa M., Yamashita K., Nakatani K., Kondo T., Takaori-Kondo A., Togashi K. Clinical Value of 11C-Methionine PET/CT in Patients with Plasma Cell Malignancy: Comparison with 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:708-715. doi: 10.1007/s00259-012-2333-3.
20. Callander N.S., Baljevic M., Adekola K., Anderson L.D., Campagnaro E., Castillo J.J., Costello C., Devarakonda S., Elsedawy N., Faiman M., Garfall A., Godby K., Hillengass J., Holmberg L., Htut M., Huff C.A., Hultcrantz M., Kang Y., Larson S., Liedtke M., Martin T., Omel J., Sborov D., Shain K., Stockerl-Goldstein K., Weber D., Berardi R.A., Kumar R., Kumar S.K. NCCN Guidelines® Insights: Multiple Myeloma, Version 3.2022. J Natl Compr Canc Netw. 2022 Jan;20;1:8-19. doi: 10.6004/jnccn.2022.0002. PMID: 34991075.
21. Костина И.Э., Гитис М.К., Менделеева Л.П., Баграмян А.Ю., Соловьев М.В., Грибанова Е.О., Савченко В.Г. Рентгеновская компьютерная томография в диагностике и мониторинге поражения костей при множественной миеломе с использованием низкодозового и стандартного протоколов сканирования // Гематология и трансфузиология. 2018. Т.63. №2. С.113-123 [Kostina I.E., Gitis M.K., Mendeleyeva L.P., Bagramyan A.Yu., Solov’yev M.V., Gribanova Ye.O., Savchenko V.G. X-ray Computed Tomography in the Diagnosis and Monitoring of Bone Lesions in Multiple Myeloma Using Low-Dose and Standard Scanning Protocols. Gematologiya i Transfuziologiya = Hematology and Transfusiology. 2018;63;2:113-123 (In Russ.)]. doi: 10.25837/HAT.2018.13.2.002
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Development of the research concept and design, research methods, collection and analysis of literary material, statistical data processing, writing and scientific editing of the text – V.A. Manukova, I.P. Aslanidi, O.V. Mukhortova, M.V. Metelkina, I.V. Yekaeva, A.S. Rumyantsev, A.V. Silchenko – in equal parts.
Article received: 20.12.2024. Accepted for publication: 25.01.2025.