JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3

DOI:10.33266/1024-6177-2025-70-3-90-98

K.V. Koval, A.S. Tokarev, A.A. Kanibolotskiy, O.L. Evdokimova, A.A. Grin 

Pathomorphological Changes in Cell Structures of Cerebral Metastasis of Lung Adenocarcinoma after Neoadjuvant Gamma Knife Radiosurgy. A Case Report

N.V. Sklifosovsky Scientific Research Institute of First Aid, Moscow, Russia

Contact person: K.V. Koval, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Purpose: To identify and describe morphological changes in the cells of lung adenocarcinoma metastasis to the brain after preoperative (neoadjuvant) Gamma Knife radiosurgery.

Material and methods: A 63-year-old female patient with brain metastases of lung adenocarcinoma including large metastasis in the right frontal lobe. Neoadjuvant stereotactic radiosurgery was performed by Leksell Gamma Knife Icon. Histological and immunohistochemical studies were performed after microsurgical removal of the metastasis in the right frontal lobe. The analysis of scanned images was performed using the NDP.view2 program of the Image Viewing software (© Hamamatsu Photonics K.K.).

Results: The result of histological and immunohistochemical studies is TTF-I+, ROS- lung adenocarcinoma. The most significant changes were coagulation necrosis, vasculopathy, altered blood vessels with endothelial damage, affected cells with pyknotic nuclei, and islets of coagulation necrosis with cells of adenocarcinoma. Despite the descriptive characteristics of early post-radiation changes, apparently caused by radiosurgical exposure, the specific mechanism of post-radiation reactions occurring in malignant cells of cerebral metastases remains to be understood. It is necessary to include the series of cases, in particular, with subsequent analysis of ultramicroscopic findings obtained by electron microscopy.

Keywords: cerebral metastases, neoadjuvant radiosurgery, stereotactic radiosurgery, immunohistochemistry, molecular genetic testing, gamma knife

For citation: Koval KV, Tokarev AS, Kanibolotskiy AA, Evdokimova OL, Grin AA. Pathomorphological Changes in Cell Structures of Cerebral Metastasis of Lung Adenocarcinoma after Neoadjuvant Gamma Knife Radiosurgy. A Case Report. Medical Radiology and Radiation Safety. 2025;70(3):90–98. (In Russian). DOI:10.33266/1024-6177-2025-70-3-90-98

 

References

1.Вторичное злокачественное новообразование головного мозга и мозговых оболочек: Клинические рекомендации. М., 2020. Электронный ресурс: https://cr.minzdrav.gov.ru/recomend/534_2 (Дата обращения 19.11.2024) [Secondary Malignant Neoplasm of the Brain and Meninges: Clinical Guidelines. Moscow Publ., 2020. URL: https://cr.minzdrav.gov.ru/recomend/534_2 (Accessed 11/19/2024) (In Russ.)].

2.Банов С.М., Голанов А.В., Долгушин М.Б., Бекяшев А.Х., Ветлова Е.Р., Дургарян А.А. Метастатическое поражение головного мозга: современные клинические рекомендации // Онкологический журнал: лучевая диагностика, лучевая терапия. 2018. Т.1. №3. С.75-84 [Banov S.M., Golanov A.V., Dolgushin M.B., Bekyashev A.Kh., Vetlova Ye.R., Durgaryan A.A. Metastatic Brain Damage: Current Clinical Guidelines. Onkologicheskiy Zhurnal: Luchevaya Diagnostika, Luchevaya Terapiya = Oncology Journal: Radiation Diagnostics, Radiation Therapy. 2018;1;3:75-84 (In Russ.)]. doi:10.37174/2587-7593-2018-1-3-75-84.

3.Chao S.T., De Salles A., Hayashi M., Levivier M., Ma L., Martinez R., Paddick I., Régis J., Ryu S., Slotman B.J., Sahgal A. Stereotactic Radiosurgery in the Management of Limited (1-4) Brain Metasteses: Systematic Review and International Stereotactic Radiosurgery Society Practice Guideline. Neurosurgery. 2018;83;3:345-353. doi:10.1093/neuros/nyx522. PMID: 29126142.

4.Grishchuk D., Dimitriadis A., Sahgal A., De Salles A., Fariselli L., Kotecha R., Levivier M., Ma L., Pollock B.E., Regis J., Sheehan J., Suh J., Yomo S., Paddick I. ISRS Technical Guidelines for Stereotactic Radiosurgery: Treatment of Small Brain Metastases (≤1 cm in Diameter). Pract Radiat Oncol. 2023;13;3:183-194. doi:10.1016/j.prro.2022.10.013. PMID: 36435388.

5.Lippitz B., Lindquist C., Paddick I., Peterson D., O’Neill K., Beaney R. Stereotactic Radiosurgery in the Treatment of Brain Metastases. Cancer Treatment Reviews. 2014;40;1:48–59. doi: 10.1016/j.ctrv.2013.05.002. PMID: 23810288.

6.Soffietti R., Abacioglu U., Baumert B., Combs S.E., Kinhult S., Kros J.M., Marosi C., Metellus P., Radbruch A., Villa Freixa S.S., Brada M., Carapella C.M., Preusser M., Le Rhun E., Rudà R., Tonn J.C., Weber D.C., Weller M. Diagnosis and Treatment of Brain Metastases from Solid Tumors: Guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017;19;2:162-174. doi:10.1093/neuonc/now241. PMID: 28391295.

7.Yamamoto M., Serizawa T., Shuto T., Akabane A., Higuchi Y., Kawagishi J., Yamanaka K., Sato Y., Jokura H., Yomo S., Nagano O., Kenai H., Moriki A., Suzuki S., Kida Y., Iwai Y., Hayashi M., Onishi H., Gondo M., Sato M., Akimitsu T., Kubo K., Kikuchi Y., Shibasaki T., Goto T., Takanashi M., Mori Y., Takakura K., Saeki N., Kunieda E., Aoyama H., Momoshima S., Tsuchiya K. Stereotactic Radiosurgery for Patients with Multiple Brain Metastases (JLGK0901): a Multi-Institutional Prospective Observational Study. Lancet Oncol. 2014;15;4:387-395. doi:10.1016/S1470-2045(14)70061-0. PMID: 24621620.

8.Gutschenritter T., Venur V.A., Combs S.E., Vellayappan B., Patel A.P., Foote M., Redmond K.J., Wang T.J.C., Sahgal A., Chao S.T., Suh J.H., Chang E.L., Ellenbogen R.G., Lo S.S. The Judicious Use of Stereotactic Radiosurgery and Hypofractionated Stereotactic Radiotherapy in the Management of Large Brain Metastases. Cancers (Basel). 2020;13;1:70. doi:10.3390/cancers13010070. PMID: 33383817.

9.Kondziolka D. Current and Novel Practice of Stereotactic Radiosurgery. J Neurosurg. 2019;130;6:1789-1798. doi:10.3171/2019.2.JNS181712. PMID: 31153140.

10.Redmond K.J., De Salles A.A.F., Fariselli L., Levivier M., Ma L, Paddick I., Pollock B.E., Regis J., Sheehan J., Suh J., Yomo S., Sahgal A. Stereotactic Radiosurgery for Postoperative Metastatic Surgical Cavities: A Critical Review and International Stereotactic Radiosurgery Society (ISRS) Practice Guidelines. Int J Radiat Oncol Biol Phys. 2021;111;1:68-80. doi:10.1016/j.ijrobp.2021.04.016. PMID: 33891979.

11.Leksell Gamma Knife Society. URL: https://www.lgksociety.com/home (Accessed 19.11.2024).

12.Коваль К.В., Токарев А.С., Евдокимова О.Л., Каниболоцкий А.А., Гринь А.А. Особенности патоморфологических изменений в клетках вторичных внутримозговых новообразований после радиохирургии при их комбинированном лечении // Вестник неврологии, психиатрии и нейрохирургии. 2022. №7. С. 497-508 [Koval’ K.V., Tokarev A.S., Yevdokimova O.L., Kanibolotskiy A.A., Grin’ A.A. Features of Pathomorphological Changes in the Cells of Secondary Intracerebral Neoplasms after Radiosurgery during their Combined Treatment. Vestnik Nevrologii, Psikhiatrii i Neyrokhirurgii = Bulletin of Neurology, Psychiatry and Neurosurgery. 2022;7:497-508 (In Rus.)]. doi: 10.33920/med-01-2207-04.

13.Szeifert G.T., Atteberry D.S., Kondziolka D., Levivier M., Lunsford L.D. Cerebral Metastases Pathology after Radiosurgery: a Multicenter Study. Cancer. 2006;106;12:2672-2681. doi:10.1002/cncr.21946. PMID: 16700040.

14.Patel K.R., Burri S.H., Asher A.L., Crocker I.R., Fraser R.W., Zhang C., Chen Z., Kandula S., Zhong J., Press R.H., Olson J.J., Oyesiku N.M., Wait S.D., Curran W.J., Shu H.K., Prabhu R.S. Comparing Preoperative with Postoperative Stereotactic Radiosurgery for Resectable Brain Metastases: A Multi-institutional Analysis. Neurosurgery. 2016;79;2:279-285. doi:10.1227/NEU.0000000000001096. PMID: 26528673.

15.Hirato M., Hirato J., Zama A., Inoue H., Ohye C., Shibazaki T., Andou Y. Radiobiological Effects of Gamma Knife Radiosurgery on Brain Tumors Studied in Autopsy and Surgical Specimens. Stereotact Funct Neurosurg. 1996;66;1:4-16. doi:10.1159/000099695. PMID: 9032840.

16.Kondziolka D., Lunsford L.D., Flickinger J.C. The Radiobiology of Radiosurgery. Neurosurg Clin N Am. 1999;10;2:157-167. PMID: 10099087. 

17.Kamada K., Mastuo T., Tani M., Izumo T., Suzuki Y., Okimoto T., Hayashi N., Hyashi K., Shibata S. Effects of Stereotactic Radiosurgery on Metastatic Brain Tumors of Various Histopathologies. Neuropathology. 2001;21;4:307–314. doi:10.1046/j.1440-1789.2001.00404.x. PMID: 11837538. 

18.Jain R., Narang J., Sundgren P.M., Hearshen D., Saksena S., Rock J.P., Gutierrez J., Mikkelsen T. Treatment Induced Necrosis Versus Recurrent/Progressing Brain Tumor: Going Beyond the Boundaries of Conventional Morphologic Imaging. J Neurooncol. 2010;100;1:17-29. doi: 10.1007/s11060-010-0139-3. PMID: 20179990.

19.Ветлова Е.Р., Голанов А.В., Банов С.М. Современная стратегия комбинации хирургического и лучевого лечения у пациентов с метастазами в головном мозге // Вопросы нейрохирургии имени Н.Н.Бурденко. 2017. Т.81. №6. С. 108-115 [Vetlova Ye.R., Golanov A.V., Banov S.M. Modern Strategy of Combination of Surgical and Radiation Treatment in Patients with Brain Metastases. Voprosy Neyrokhirurgii imeni N.N.Burdenko = Issues of Neurosurgery named after N.N.Burdenko. 2017;81;6:108-115 (In Russ.)]. doi:10.17116/neiro2017816108-115.

20.Brennan C., Yang T.J., Hilden P., Zhang Z., Chan K., Yamada Y., Chan T.A., Lymberis S.C., Narayana A., Tabar V., Gutin P.H., Ballangrud Å., Lis E., Beal K. A Phase 2 Trial of Stereotactic Radiosurgery Boost after Surgical Resection for Brain Metastases. Int J Radiat Oncol Biol Phys. 2014;88;1:130-136. doi:10.1016/j.ijrobp.2013.09.051. PMID: 24331659.

21.National Comprehensive Cancer Network. Central Nervous System Cancers. URL: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1425 (Accessed 19.11.2024)

22.Prabhu R.S., Patel K.R., Press R.H., Soltys S.G., Brown P.D., Mehta M.P., Asher A.L., Burri S.H. Preoperative vs Postoperative Radiosurgery for Resected Brain Metastases: a Review. Neurosurgery. 2019;84;1:19-29. doi:10.1093/neuros/nyy146. PMID: 29771381.

23.Brown P.D., Ballman K.V., Cerhan J.H., Anderson S.K., Carrero X.W., Whitton A.C., Greenspoon J., Parney I.F., Laack N.N.I., Ashman J.B., Bahary J.P., Hadjipanayis C.G., Urbanic J.J., Barker F.G. 2nd, Farace E., Khuntia D., Giannini C., Buckner J.C., Galanis E., Roberge D. Postoperative Stereotactic Radiosurgery Compared with Whole Brain Radiotherapy for Resected Metastatic Brain Disease (NCCTG N107C/CEC·3): a Multicentre, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2017;18;8:1049-1060. doi:10.1016/S1470-2045(17)30441-2. PMID: 28687377.

24.Hatiboglu M.A., Kocyigit A., Guler E.M., Nalli A., Akdur K., Sakarcan A., Ozek E., Uysal O., Mayadagli A. Gamma Knife Radiosurgery Compared to Whole Brain Radiation Therapy Enhances Immunity Via Immunoregulatory Molecules in Patients with Metastatic Brain Tumours. Br J Neurosurg. 2020;34;6:604-610. doi: 10.1080/02688697.2019.1642445. PMID: 31317782.

25.Cleary R.K., Meshman J., Dewan M., Du L., Cmelak A.J., Luo G., Morales-Paliza M., Weaver K., Thompson R., Chambless L.B., Attia A. Postoperative Fractionated Stereotactic Radiosurgery to the Tumor Bed for Surgically Resected Brain Metastases. Cureus. 2017;9;5:e1279. doi: 10.7759/cureus.1279. PMID: 28656127.

26.Patchell R.A., Tibbs P.A., Regine W.F., Dempsey R.J., Mohiuddin M., Kryscio R.J., Markesbery W.R., Foon K.A., Young B. Postoperative Radiotherapy in the Treatment of Single Metastases to the Brain: a Randomized Trial. JAMA. 1998;280;17:1485-1489. doi: 10.1001/jama.280.17.1485. PMID: 9809728.

27.Aoyama H., Tago M., Kato N., Toyoda T., Kenjyo M., Hirota S., Shioura H., Inomata T., Kunieda E., Hayakawa K., Nakagawa K., Kobashi G., Shirato H. Neurocognitive Function of Patients with Brain Metastasis who Received Either Whole Brain Radiotherapy Plus Stereotactic Radiosurgery or Radiosurgery Alone. Int J Radiat Oncol Biol Phys. 2007;68;5:1388-1395. doi: 10.1016/j.ijrobp.2007.03.048. PMID: 17674975.

28.Голанов А.В., Банов С.М., Ильялов С.Р., Ветлова Е.Р., Костюченко В.В. Современные подходы к лучевому лечению метастатического поражения головного мозга // Злокачественные опухоли. 2014. №3. С. 137-140 [Golanov A.V., Banov S.M., Il’yalov S.R., Vetlova Ye.R., Kostyuchenko V.V. Modern Approaches to Radiation Treatment of Metastatic Brain Lesions. Zlokachestvennyye Opukholi = Malignant Tumors. 2014;3:137-140 (In Russ.)]. doi: 10.18027/2224-5057-2014-3-137-140.

29.Голанов А., Банов С., Ильялов С., Трунин Ю.Ю., Маряшев С.А., Ветлова Е.Р., Осинов И.К., Костюченко В.В., Далечина А.В., Дургарян А.А. Радиохирургическое лечение метастазов в головной мозг. Факторы прогноза общей выживаемости и интракраниальных рецидивов // Вопросы нейрохирургии им. Н.Н.Бурденко. 2016. Т.80. №2. C. 35-46 [Golanov A., Banov S., Il’yalov S., Trunin Yu.Yu., Maryashev S.A., Vetlova Ye.R., Osinov I.K., Kostyuchenko V.V., Dalechina A.V., Durgaryan A.A. Radiosurgical Treatment of Brain Metastases. Prognostic Factors of Overall Survival and Intracranial Relapses. Voprosy Neyrokhirurgii im. N.N.Burdenko = Issues of Neurosurgery named after N.N.Burdenko. 2016;80;2:35-46 (In Russ.)]. doi: 10.17116/neiro201680235-46.

30.Elekta Instrument AB. The Convolution Algorithm in Leksell GammaPlan 10. Technical Report. Article No.018881.01. Stockholm, Elekta, 2010.

31.Tokarev A.S., Rak V.A., Evdokimova O.L., Stepanov V.N., Koynash G.V., Viktorova O.A., Kistenev A.V. Standardization of Nomenclature of Targets and Critical Structures in Radiosurgery: The Case of a Single Gamma Knife Center. J Radiosurg SBRT. 2020;7;1:81-84. PMID: 32802582.

32.Ветлова Е.Р., Антипина Н.А., Голанов А.В., Банов С.М. Роль лучевой терапии в лечении метастатического поражения головного мозга // Медицинская физика. 2016. №4. C. 108–118 [Vetlova Ye.R., Antipina N.A., Golanov A.V., Banov S.M. The Role of Radiation Therapy in the Treatment of Metastatic Brain Lesions. Meditsinskaya Fizika = Medical Physics. 2016;4:108–118 (In Russ.)].

33.Szeifert G.T., Salmon I., David P., Devriendt D., De Smedt F., Rorive S., Brotchi J., Levivier M. Tumor Control and Growth in a Patient with Two Cerebral Metastases Treated with the Leksell Gamma Knife. Ed. Kondziolka D. 5th International Stereotactic Radiosurgery Society Meeting, Las Vegas, Nev., June 10–13, 2001. Basel, Karger, 2002. Radiosurgery. Vol. 4. Pp.152–161.

34.Inoue H.K., Kohga H., Hirato M., Nakamura M., Ohye C. Neurobiologic Effects of Radiosurgery: Histologic, Immunohistochemical and Electron-microscopic Studies of a Rat Model. Stereotact Funct Neurosurg. 1994;63;1-4:280-285. doi:10.1159/000100324. PMID: 7624647.

35.Yamada S., Vidal S., Sano T., Horvath E., Kovacs K. Effect of Gamma Knife Radiosurgery on a Pituitary Gonadotroph Adenoma: a Histologic, Immunohistochemical and Electron Microscopic Study. Pituitary. 2003;6;1:53-8. doi: 10.1023/a:1026238028623. PMID: 14674725.

36.Kihlström L., Karlsson B. Imaging Changes after Radiosurgery for Vascular Malformations, Functional Targets and Tumors. Neurosurg Clin N Am. 1999;10;2:167–180. PMID: 10099102.

37.Wolf D., Germano I.M. Radionecrosis: Clinical and Histological Aspects. Ed. Germano I. LINAC and Gamma Knife Radiosurgery. Park Ridge, AANS, 2000. Pp.75–82. 

38.Julow J., Slowik F., Kelemen J., Gorácz I. Late Post-Irradiation Necrosis of the Brain. Acta Neurochir (Wien). 1979;46;1-2:135–150. doi: 10.1007/BF01407687. PMID: 452964.

39.Szeifert G. Radiosurgery and AVM Histopathology. J Neurosurg. 1998;88;2:356–357. doi: 10.3171/jns.1998.88.2.0356. PMID: 9452254.

40.Szeifert G., Major O., Fazekas I., Nagy Z. Effects of Radiation on Cerebral Vasculature: a Review. Neurosurgery. 2001;48;2:452–453. doi: 10.1097/00006123-200102000-00051. PMID: 11220396.

41.Major O., Szeifert G.T., Radatz M.W., Walton L., Kemeny A.A. Experimental Stereotactic Gamma Knife Radiosurgery. Vascular Contractility Studies of the Rat Middle Cerebral Artery after Chronic Survival. Neurol Res. 2002;24;2:191–198. doi: 10.1179/016164102101199602. PMID: 11877904.

42.Szeifert G.T., Kemeny A.A., Timperley W.R., Forster D.M. The Potential Role of Myofibroblasts in the Obliteration of Arteriovenous Malformations after Radiosurgery. Neurosurgery. 1997;40;1:61-65; Discussion 65-66. doi: 10.1097/00006123-199701000-00013. PMID: 8971825.

43.Schneider B.F., Eberhard D.A., Steiner L.E. Histopathology of Arteriovenous Malformations after Gamma Knife Radiosurgery. J Neurosurg. 1997;87;3:352–357. doi: 10.3171/jns.1997.87.3.0352. PMID: 9285598.

44.Yamamoto M., Hara M., Ide M., Ono Y., Jimbo M., Saito I. Radiation-Related Adverse Effects Observed on Neuro-Imaging Several Years after Radiosurgery for Cerebral Arteriovenous Malformations. Surg Neurol. 1998;49;4:385–398. doi: 10.1016/s0090-3019(97)00531-4. PMID: 9537656.

45.Major O., Kemeny A.A., Forster D.M., Jakubowski J., Morice A.H. In vitro Contractility Studies of the Rat Middle Cerebral Artery after Stereotactic Gamma Knife Radiosurgery. Stereotact Funct Neurosurg. 1996;66;1:17–28. doi: 10.1159/000099697. PMID: 9032841.

46.Szeifert G.T., Salmon I., Balèriaux D., Brotchi J., Levivier M. Immunohistochemical Analysis of a Cerebral Arteriovenous Malformation Obliterated by Radiosurgery and Presenting with re-Bleeding. Case Report. Neurol Res. 2003;25;7:718–721. doi: 10.1179/016164103101202228. PMID: 14579789.

47.Lippitz B.E., Harris R.A. A Translational Concept of Immuno-Radiobiology. Radiother Oncol. 2019;140:116-124. doi: 10.1016/j.radonc.2019.06.001. PMID: 31271996.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.02.2025. Accepted for publication: 25.03.2025.

 

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3

DOI:10.33266/1024-6177-2025-70-2-99-107

W.Yu. Ussov1, S.M. Minin1, Zh.Zh. Anashbayev1, S.I. Sazonova2,
O.I. Belichenko3, E.A. Golovina4, Yu.B. Lishmanov2, A.M. Cherniavsky1

Quantitative Brain SPECT/CT with 99mTc-Technetril
for Visualization and Assessment of the Functional State of Pituitary Adenomas

1 E.N. Meshalkin National Research Medical Center, Novosibirsk, Russia

2 Scientific Research Institute of Cardiology, Tomsk, Russia

3 Russian University of Sports GTSOLIFK, Moscow, Russia

4 National Research Tomsk Polytechnic University, Tomsk, Russia

Contact person: Ussov Wladimir Yuryevich, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Summary

Purpose: We tried to adapt the methodology for quantifying the accumulation of 99mTc-technetril (99mTc-MIBI) in pituitary adenomas, present a pharmacokinetic model for calculating blood flow in the pituitary gland based on the accumulation of 99mTc-technetril and evaluate their relationship with the level of prolactin in the blood in some pathological conditions.

Material and methods: The tumor blood flow (TBF) was calculated using the standardized radiopharmaceutical absorption value (SUV) and the minute volume of the heart (MV) as TBF = SUV99mTc-technetril × (MV / BodyWeight) × 100, where 100 is the conversion coefficient for representing the result in generally accepted units of ml/min/100 cm3 of tissue. The value of
SUV99mTc-technetril can be determined using modern digital tomographic gamma cameras automatically, using source calibration with graduated specific radioactivity, or using phantoms with known radioactivity, with the construction of a regression relationship local kBq activity/ml – scintillation count per voxel and determining the true accumulation of radiopharmacutical in the tissue tumors, in kBq/cm3 units of tissue. 

SPECT/CT of the brain with 99mTc-technetril (185–240 MBq, Gemini 700 gamma cameras and GE Discovery NM/CT 670 Pro) was performed in 8 patients without pituitary pathology (4 men and women, 34–63 years old) – control group, 9 patients with pituitary microadenomas (5 women and 4 men, 32–51 years old), and 8 patients (5 women and 3 men, 32–56 years old) with pituitary macroadenomas. All patients in groups 2 and 3 had an increase in blood prolactin levels > 35 mg/l, and all of them then received therapy with bromocriptine 2.5 mg/day or higher. 

Results: Visually, SPECT/CT showed nodular inclusion in pituitary micro- and macroadenomas. SUV significantly differed between the groups and amounted to 1.23 ± 0.25 (0.85–1.39) in the control group, respectively, with microadenomas 7,20 ± 1,17 (4,5–12,9) (p < 0.02 compared with the control), and with macroadenomas 12.54 ± 3.62 (3.9–4.85) (p < 0.005). The tissue blood flow was, respectively 9,2 ± 2,0 (6,9–14,2): 36,9 ± 7,3 (26,3–72,3) (p < 0.01): and 68.3 ±14.9 (21.0–78.2)(p < 0.002. SUV99mTc-technetril > 5.8 for pituitary nodule  was found to be correlated with blood prolactin levels of over 200 mg/l (p = 0.045). A decrease in the SUV99mTc-technetril of the pituitary gland < 3.9 during therapy with bromocriptine 2.5 mg/day was combined with a decrease in blood prolactin levels below 150 mg/l (p = 0.0482).

Conclusion: SPECT/CT of the brain with 99mTc-technetril is an informative additional method of examining patients with pathology of the hypothalamic-pituitary system and allows determining the standardized amount of radiopharmaceutical absorption, as well as pituitary blood flow. It is advisable to use SPECT/CT of the brain with 99mTc-technetril for prospective monitoring of therapy of pituitary pathology, as an adjunct to MRI. A further study of the role of pituitary SPECT/CT with 99mTc-technetril in a wider population of endocrinological patients is needed for inclusion in the standard algorithm and clinical recommendations for patient examination.

Keywords: SPECT/CT, 99mTc-MIBI, pituitary adenomas, dynamic SPECT, dynamic scintigraphy, pituitary blood flow

For citation: Ussov WYu, Minin SM, Anashbayev ZhZh, Sazonova SI, Belichenko OI, Golovina EA, Lishmanov YuB, Cherniavsky AM. Quantitative Brain SPECT/CT with 99mTc-technetril for Visualization and Assessment of the Functional State of Pituitary Adenomas. Medical Radiology and Radiation Safety. 2025;70(3):99–107. (In Russian). DOI:10.33266/1024-6177-2025-70-3-99-107

 

References

1. Dedov I.I., Yudenich O.N. State and Development Paths of Domestic Endocrinology. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk = Bulletin of the Russian Academy of Medical Sciences. 2006;9;10:38-45 (In Russ.). EDN HVUTAH.

2. Yakovlev S.A., Pozdnyakov A.V., Panfilenko A.F., Karlova N.A., Tyutin L.A., Grantyn’ V.A. Dynamic Contrast MRI in Radiation Diagnostics of Space-Occupying Lesions of the Brain of Midline Localization. Sibirskiy Meditsinskiy Zhurnal = Siberian Medical Journal. 2008;23;1-2:92-96 (In Russ.). EDN KZLDQT.

3. Makeyev S.S., Semenova V.M. Possibilities of Using SPECT with Tumorotropic Radiopharmaceuticals in Differential Diagnostics of Tumors and Non-Tumor Focal Lesions of the Brain. Ukrainskiy Nevrologicheskiy Zhurnal = Ukrainian Neurological Journal. 2007;4; 5:70-74 (In Russ.). EDN RVBWNP.

4. Makeyev S.S., Koval’ S.S., Guk N.A. Use of Radiopharmaceuticals for Single-Photon Emission Computed Tomography of Pituitary Adenomas. Ukrainskiy Neyrokhirurgicheskiy Zhurnal = Ukrainian Neurosurgical Journal. 2014;5;2:20-24 (In Russ.). EDN SEJOJZ.

5. Iglesias P., Cardona J., Díez J.J. The Pituitary in Nuclear Medicine Imaging. Eur J Intern Med. 2019;68;1:6-12. doi: 10.1016/j.ejim.2019.08.008. 

6. Watanabe Y., Mawatari A., Aita K., Sato Y., Wada Y., Nakaoka T., Onoe K., Yamano E., Akamatsu G., Ohnishi A., Shimizu K., Sasaki M., Doi H., Senda M. PET Imaging of 11C-Labeled Thiamine tetrahydrofurfuryl Disulfide, Vitamin B1 Derivative: First-in-Human Study. Biochem Biophys Res Commun. 2021;555;1:7-12. doi: 10.1016/j.bbrc.2021.03.119. 

7. Naganawa M., Nabulsi N.B., Matuskey D., Henry S., Ropchan J., Lin S.F., Gao H., Pracitto R., Labaree D., Zhang M.R., Suhara T., Nishino I., Sabia H., Ozaki S., Huang Y., Carson R.E. Imaging Pituitary Vasopressin 1B Receptor in Humans with the PET Radiotracer 11C-TASP699. J Nucl Med. 2022;63;4:609-614. doi: 10.2967/jnumed.121.262430. 

8. Slashchuk K.Yu., Rumyantsev P.O., Degtyarev M.V., Serzhenko S.S., Baranova O.D., Trukhin A.A., Sirota Ya.I. Molecular Visualization of Neuroendocrine Tumors with Somatostatin Receptor Scintigraphy (SPECT/CT) with 99mTc-Tectrotide. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2020;65;2:44-49 (In Russ.). doi: 10.12737/1024-6177-2020-65-2-44-49. EDN FKEVLR.

9. Lybik N., Wale D.J., Wong K.K., Liao E., Viglianti B.L. 68Ga-DOTATATE PET/CT Imaging of Refractory Pituitary Macroadenoma Invading the Orbit. Clin Nucl Med. 2021;46;6:505-506. doi: 10.1097/RLU.0000000000003589.

10. Balcerzyk M., Fernandez-Maza L., Mínguez J.J., De-Miguel M. Preclinical [18F]-Tetrafluoroborate-PET/CT Imaging of Pituitary Gland Hyperplasia. Jpn J Clin Oncol. 2018;48;2:200-201. doi: 10.1093/jjco/hyx189.

11. Vukomanovic V.R., Matovic M., Doknic M., Ignjatovic V., Simic Vukomanovic I,. Djukic S., Peulic M., Djukic A. Clinical Usefulness of 99mTc-HYNIC-TOC, 99mTc(V)-DMSA, and 99mTc-MIBI SPECT in the Evaluation of Pituitary Adenomas. Nucl Med Commun. 2019;40;1:41-51. doi: 10.1097/MNM.0000000000000931.

12. Kodina G.Ye., Malysheva A.O. Quality Control of Radiopharmaceuticals in Medical Organizations.  Razrabotka i Registratsiya Lekarstvennykh Sredstv = Development and Registration of Drugs. 2017;18;1:88-92 (In Russ.). EDN YKPHDZ.

13. Usov V.Yu., Sukhov V.Yu., Babikov V.Yu., Borodin O.Yu., Vorozhtsova I.N., Lishmanov Yu.B., Udut V.V., Krivonogov N.G.  Quantitative Determination of Myocardial Tissue Blood Flow by Single-Photon Emission Computed Tomography Based on Absolute Assessment of 99mTc-Technetril Radiopharmaceutical Accumulation. Translyatsionnaya Meditsina = Translational Medicine. 2022;9;1:29-38 (In Russ.). doi: 10.18705/2311-4495-2022-9-1-29-38. 

14. Krivonogov N.G., Minin S.M., Krylov A.L., Lishmanov Yu.B. Scintigraphic Determination of Myocardial Blood Flow. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2013;12;3:111-116 (In Russ.).

15. Kostenikov N.A., Pozdnyakov A.V., Dubrovskaya V.F., Mirolyubova O.Yu., Ilyushchenko Yu.R., Stanzhevskiy A.A. Modern Methods of Radiation Diagnostics of Gliomas. Luchevaya Diagnostika i Terapiya = Radiation Diagnostics and Therapy. 2019;10;2:15-23 (In Russ.).

16. Choudhary V., Bano S. Imaging of the Pituitary: Recent Advances. Indian J. Endocrinol Metab. 2011;3;2:216-223. 

17. Choudhury P.S., Savio E., Solanki K.K., Alonso O., Gupta A., Gambini J.P., Doval D., Sharma P., Dondi M. 99mTc Glucarate as a Potential Radiopharmaceutical Agent for Assessment of Tumor Viability: from Bench to the Bed Side. World J Nucl Med. 2012;11;2:47-56. 

18. Morozova T.A., Zborovskaya I.A. Pituitary Adenomas: Classification, Clinical Manifestations, Approaches to Treatment and Tactics of Patient Management. Lekarstvennyy Vestnik = Medicinal Bulletin. 2006;3;7:18-21 (In Russ.). EDN YSPYQD. 

19. Shcherban’ A.Ye., Cherebillo V.Yu., Smirnova A.V. Preoperative Planning of Patients with Pituitary Tumors (Adenomas) Based on Neuroimaging Data. Vestnik Nevrologii, Psikhiatrii i Neyrokhirurgii = Bulletin of Neurology, Psychiatry and Neurosurgery. 2023;53;2:145-160 (In Russ.). doi: 10.33920/med-01-2302-08. EDN YOUZXK.

20. Khoroshavina A.A., Orlova G.A., Ryzhkova D.V. Radioisotope Diagnostics of Endogenous ACTH-Dependent Hypercorticism. Luchevaya Diagnostika i Terapiya = Radiation Diagnostics and Therapy. 2023;4;14:19-27 (In Russ.). doi: 10.22328/2079-5343-2023-14-4-19-27. EDN ABPTOA.

21. Timofeyeva L.A., Aleshina T.N. Radiation Diagnostics of Non-Palpable Thyroid Nodules. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiation Diagnostics. 2014;4;S2:27-28 (In Russ.). EDN MHCWNA.

22. Nikolayeva Ye.A., Tarachkova Ye.V., Sheykh Zh.V., Tyurin I.Ye. The Role of PET/CT in Oncogynecology.  Meditsinskaya Vizualizatsiya = Medical Visualization. 2023;27;1:145–157 (In Russ.). doi:10.24835/1607-0763-1198

23. Mine A., Derya C., Bekir U., Alper D., Erman Ç. Clinical Significance of Incidental Pituitary Tc-99m MIBI Uptake on Parathyroid SPECT and Factors Affecting Uptake Intensity. Cancer Biother Radiopharm. 2018;33;7:295-299. doi: 10.24835/1607-0763-1198. Epub 2018 Jun 20.

24. Usov V.Yu., Yaroshevskiy S.P., Garganeyeva A.A., Lishchmanov Yu.B., Teplyakov A.T., Belichenko O.I. Possibilities of Dynamic SPECT with 99mTc-Technetrile in Quantitative Assessment of Pharmacological Correction of Myocardial Blood Flow in Patients with Coronary Heart Disease. Terapevt = Terapevt. 2018;14;7:4-15 (In Russ.).

25. Zolotnitskaya V.P., Amosov V.I., Bedrov A.YA., Moiseyev A.A., Litvinov A.P., Perlov R.B. Evaluation of Arterial Blood Flow in the Microcirculatory Bed of the Lower Extremities in Patients with Chronic Ischemia Using SPECT. Regionarnoye Krovoobrashcheniye i Mikrotsirkulyatsiya = Regional Circulation and Microcirculation. 2024;23;1:37–43 (In Russ.). doi: 10.24884/1682-6655-2024-23-1-37-43. 

26. Usov V.Yu., Babikov V.Yu., Minin S.M., Sukhov V.Yu., Kostenikov N.A., Luchich M.A., Samoylova Ye.A., Zheravin A.A., Chernyavskiy A.M. Quantitative SPECT of the Brain with 99mTc-Technetrile in Diagnostics, Evaluation of the Effectiveness of Complex Therapy of Low-Differentiated Gliomas and Prognosis of Patients’ Life. Rossiyskiy Neyrokhirurgicheskiy Zhurnal Imeni Professora A.L.Polenova = Russian Neurosurgical Journal Named after Professor A.L.Polenov. 2023;15;S1:26-27 (In Russ.). EDN QGPXKZ.

27. Belyanin M.L., Pod’yablonskiy A.S., Borodin O.Yu., Belousov M.V., Karpov Ye.N., Filimonov V.D., Shimanovskiy N.L., Usov V.Yu. Synthesis and Preclinical Evaluation of the Imaging Capabilities of 99mTc-DTPA-GDOF as a new Domestic Hepatotropic Drug for Scintigraphic and SPECT Studies. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2022;67;6:44–50 (In Russ.). doi: 10.33266/1024-6177-2022-67-6-44-50. EDN BQPVQN. 

28. Narkevich B.Ya. Theoretical Bases of Circulation Modelling in Radionuclide Studies of Hemodinamics. Medical Radiology. 1994; 39(5):58-64 (In Russ.).

29. Sapin M.R., Nikityuk D.B. Dmitry Arkadyevich Zhdanov (on the 100th Anniversary of his Birth). Morfologiya = Morphology. 2008;133;4:47–49 (In Russ.).

30. Minin S.M., Nikitin N.A., Shabanov V.V., Losik D.V., Mikheyenko I.L., Pokushalov Ye.A., Romanov A.B. Radionuclide Assessment of Changes in Myocardial Sympathetic Activity in Patients with Atrial Fibrillation and Healthy Volunteers Using a Gamma Camera on CZT Detectors. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiation Diagnostics. 2018;8;2:30-39. doi: 10.21569/2222-7415-2018-8-2-30-39 (In Russ.).

31. Znamenskiy I.A., Dolgushin M.B., Yurchenko A.A., Rostovtseva T.M., Karalkina M.A. Diagnosis of Epilepsy: from Origins to Hybrid PET/MRI Method. Klinicheskaya Praktika = Clinical Practice. 2023;14;3:80-94 (In Russ.). doi: 10.17816/clinpract400254. EDN SXMSKF. 

32. Masuda A., Yoshinaga K., Naya M., Manabe O., Yamada S., Iwano H., Okada T., Katoh C., Takeishi Y., Tsutsui H., Tamaki N. Accelerated (99m) Tc-sestamibi Clearance Associated with Mitochondrial Dysfunction and Regional Left Ventricular Dysfunction in Reperfused Myocardium in Patients with Acute Coronary Syndrome. EJNMMI Res. 2016;6;1:41-44. doi: 10.1186/s13550-016-0196-5.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.02.2025. Accepted for publication: 25.03.2025.

 

 

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3

DOI:10.33266/1024-6177-2025-70-3-117-120

A.G. Bezverkhov1, E.N. Alekhin2, Yu.S. Pyshkina2, 3,
А.А. Stanjevsky4, А.V. Logvinenko2

On the Legal Regulation of the Specialties Radiology
and Radiotherapy in the Russian Federation

1 S.P. Korolev Samara National Research University, Samara, Russia

2 Tyumen State Medical University, Tyumen, Russia

3 Samara State Medical University, Samara, Russia

4 A.M. Granov Russian Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia

Contact person: Yu.S. Pyshkina, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: To study the specifics of legal and regulatory framework governing the specialties of Radiology (nuclear medicine) and Radiotherapy in the Russian Federation with regard to defining their nomenclature and further regulation.

Material and methods: Radiology, commonly referred to as nuclear medicine, originated in the late 19th century after the discovery of radioactivity. It is now extensively utilized in both diagnostic procedures and therapeutic treatments. However, there is significant confusion surrounding the definition of fundamental terms and concepts related to this branch of medicine, necessitating additional clarifications. The authors analyzed literary sources and legislative bases dedicated to issues of terminological and normative uncertainty in the field of nuclear medicine (radiology) in Russia. Discussed are differences in definitions of key terms such as “nuclear medicine,” “radiopharmaceutical preparation,” “radionuclide therapy,” and “radionuclide diagnostics.” Additionally, the problem of a lack of clear standards and rules in the field of nuclear medicine is raised, leading to difficulties in regulating and financing medical services.

Results: Proposed measures for improving the situation include developing unified terminology and standards, introducing the position of chief external radiotherapist, creating professional standards for radiologists and radiotherapists, and involving professional communities in addressing this issue.

Conclusion: The conducted research underscores the importance of resolving existing problems in legal and regulatory frameworks and terminological discrepancies in the fields of radiology and nuclear medicine in Russia. Emphasis is placed on the necessity of unifying terminology and definitions, establishing clear professional standards for specialists, and developing guidelines for conducting radionuclide studies. These measures should contribute to enhancing the quality of medical care, increasing the efficiency of professionals’ work, and ensuring proper funding of medical services through the compulsory health insurance system. The article proposes solving the identified problem by developing and approving terminology in the specialties of Radiology and Radiotherapy and making amendments to regulatory documentation.

Keywords: radiology, nuclear medicine, radiotherapy, radiation therapy, terminology, instrument of legal regulation

For citation: Bezverkhov AG, Alekhin EN, Pyshkina YuS, Stanjevsky АА, Logvinenko АV. On the Legal Regulation of the Specialties Radiology and Radiotherapy in the Russian Federation. Medical Radiology and Radiation Safety. 2025;70(3):117–120. (In Russian). DOI:10.33266/1024-6177-2025-70-3-117-120

 

References

1. Najam H., Dearborn M.C., Tafti D. Nuclear Medicine Instrumentation. Treasure Island (FL), StatPearls, 2023.

2. Romanovskiy G.B. Legal Regulation of Nuclear Medicine. Elektronnyy Nauchnyy Zhurnal. Nauka. Obshchestvo. Gosudarstvo. = Electronic Scientific Journal. Science. Society. State. 2017;5:1. URL: http://esj.pnzgu.ru. (In Russ.).

3. International Atomic Energy Agency. Sektsiya Yadernoy Meditsiny i Diagnosticheskoy Vizualizatsii = Nuclear Medicine and Diagnostic Imaging Section. URL: https://www.iaea.org/ru/o-nas/sekciya-yadernoy-mediciny-i-diagnosticheskoy-vizualizacii. (In Russ.).

4. Narkevich B.Ya., Ratner T.G., Ryzhov S.A., Moiseyev A.N. Glossariy Terminov, Abbreviatur i Ponyatiy po Meditsinskoy Radiologii i Radiatsionnoy Bezopasnosti = Glossary of Terms, Abbreviations and Concepts in Medical Radiology and Radiation Safety. Moscow, AMFR Publ., 2022. 204 p. (In Russ.).

5. Society of Nuclear Medicine Employees. Radionuklidnaya Diagnostika dlya Prakticheskikh Vrachey = Radionuclide Diagnostics for Practitioners. Manual. Ed. Yu.B.Lishmanov, V.I.Chernov. Tomsk, STT Publ., 2004. 387 p. (In Russ.).

6. Neyroradiokhirurgiya na Gamma-Nozhe. Ed. A.V.Golanov, V.V.Kostyuchenko. Moscow, IP T.A.Alekseyeva Publ., 2018. 960 p. (In Russ.).

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.02.2025. Accepted for publication: 25.03.2025.

 

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3

DOI:10.33266/1024-6177-2025-70-3-108-116

D.V. Arefyeva, V.B. Firsanov, S.V. Yarmiychuk, A.V. Petushok

Application of the Monte-Carlo Method
for Calibration of a Gamma-ray Scintillation Spectrometer

Scientific Research Institute of Industrial and Marine Medicine, St. Petersburg, Russia

Contact person: D.V. Arefyeva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: To develop a method for calibration of a gamma-ray scintillation spectrometer using the Monte Carlo method.

Material and methods: The subject of the study was a gamma-ray spectrometer designed to measure the energy distribution (spectrum) and determine the activity of gamma-emitting radionuclides. Experimental studies were carried out with a set of exemplary measures of special-purpose activity with radionuclides 241Am, 152Eu, 60Co and 137Cs uniformly deposited on an ion exchange resin. Calibration of the spectrometer was carried out using the MCC 3D program (Monte Carlo Calculations 3D), modeling of the hardware spectrum was performed using the MCA program (MultiChannel Analyzer).

Results: The comparison of experimental and simulated spectra was carried out in the following energy intervals: the interval corresponding to the total peak of total absorption (PTA) for gamma energy lines 1173.2 keV and 1332.5 keV for 60Co and PTA for gamma energy line 661.7 keV for 137Cs; intervals corresponding to Compton scattering in the angle range (30–60)°, (60–90)° and (90–180)° (for the 60Co, the average gamma radiation energy of 1252.9 keV was considered); the interval corresponding to multiple scattering with an energy above 100 keV. It was found that the largest deviation of the simulated spectrum from the experimental one is 12 % for the interval corresponding to multiple scattering, which indicates the possibility of spectrum identity. This assumption was verified for each energy interval using the Pearson consensus criterion. A maximum value of χ2 equal to 6.6 was obtained for the energy interval corresponding to Compton scattering in the angle range (60–90)°, which indicates the acceptability of the hypothesis of the identity of the experimental and simulated spectra. Validation of the proposed method showed that the discrepancy between the calculated and passport activity of the sample was no more than 13 %, which indicates the possibility of using the method for calibration of the gamma spectrometer. The dependences of the efficiency of registration in the PTA on the density of the counting sample are calculated using simulated hardware spectra of single activity.

Conclusion: The proposed method makes it possible to calibrate the spectrometer to calculate the specific activity in samples at various densities and energies using spectrometric equipment equipped with inorganic scintillation crystals.

Keywords: gamma-ray spectrometer, Monte Carlo method, calibration, radiation safety 

For citation: Arefyeva DV, Firsanov VB, Yarmiychuk SV, Petushok AV. Application of the Monte-Carlo Method  for Calibration of a Gamma-ray Scintillation Spectrometer. Medical Radiology and Radiation Safety. 2025;70(3):108–116. (In Russian). DOI:10.33266/1024-6177-2025-70-3-108-116

 

References

1. Monte Carlo N-Particle Transport Code. URL: https://ru.wikipedia.org/wiki/MCNP.

2. Fluka Particle Transport Code. URL: https://ru.wikipedia.org/wiki/FLUKA.

3. Penelope. A Code System for Monte Carlo Simulation of Electron and Photon Transport URL: http://www.mcnpvised.com/visedtraining/penelope/penelope0.pdf.

4. Lessons and Training Examples on Geant4. URL: https://dev.asifmoda.com/geant4. 

5. Cinelli G., Tositti L., Mostacci D., Bare J. Calibration with MCNP of NaI Detector for the Determination of Natural Radioactivity Levels in the Field. Journal of Environmental Radioactivity. 2019;155;156:31-37.

6. Mouhti I., Elanique A., Messous M.Y. Monte Carlo Modelling of a NaI(Tl) Scintillator Detectors Using MCNP Simulation Code. J. Mater. Environ. Sci. 2017;8;12:4560-4565.

7. Bagayev K.A., Kozlovskiy S.S., Novikov I.E. Program for 3D Simulation Modeling of Detection and Registration Systems of Ionizing Radiation Based on a Developed Graphical Interface. ANRI. 2007;4:35-40 (In Russ.).

8. Spectrometers-Radiometers of Gamma, Beta and Alpha Radiation MKGB-01 “RADEK”: Operation Manual. St. Petersburg, Nauchno Tekhnicheskiy Tsentr Radek Publ., 2012. 60 p. (In Russ.).

9. Scintillation Detectors of Ionizing Radiation Based on Sodium Iodide Crystals Activated by Thallium. TU 2651-001-26083472-2015. Usolye-Sibirskoye, Kristall, 2015. 10 p. (In Russ.).

10. Kapitonov M.I. Yadernaya Rezonansnaya Fluorestsentsiya = Nuclear Resonance Fluorescence.Textbook. Moscow, MGU im. M.V.Lomonosova Publ., 2018. 128 p. (In Russ.).

11. Aref’yeva D.V., Firsanov V.B., Kuruch D.D., et al. Calibration of a Gamma-Ray Scintillation Spectrometer Using the Mathematical Modeling Method. Radiatsionnaya Gigiyena = Radiation Hygiene. 2020;13;4:93-100 (In Russ.). doi: 10.21514/1998-426X-2020-13-4-93-100. EDN ZAAYGU..

12. Silant’yev A.N. Spektrometricheskiy Analiz Radioaktivnykh Prob Vneshney Sredy = Spectrometric Analysis of Radioactive Samples of the External Environment. Leningrad, Gidrometeorologicheskoye Izdatel’stvo Publ., 1969. 185 p. (In Russ.).

13. Malysheva T.A. Chislennyye Metody i Komp’yuternoye Modelirovaniye. Laboratornyy Praktikum po Approksimatsii Funktsiy. Tutorial. St. Petersburg, ITMO Publ., 2016. 33 p. (In Russ.).

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.02.2025. Accepted for publication: 25.03.2025. 

 

 

Medical Radiology and Radiation Safety. 2025. Vol. 70. № 2

DOI:10.33266/1024-6177-2025-70-2-5-8

S.A. Abdullaev1, 2, N.F. Raeva1, D.V. Fomina1, T.P. Kalinin3,
T.N. Maksimova4, G.D. Zasukhina1, 5

Thymoquinone (a Component of Nigella Sativa) Reduces Toxic Effects of Radiotherapy and Has Anti-Cancer Potential

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 Institute of Theoretical and Experimental Biophysics, Pushchino, Russia

3 N.I. Pirogov Russian National Research Medical University, Moscow, Russia

4 I.M. Sechenov First Moscow State Medical University, Moscow, Russia

5 N.I. Vavilov Institute of General Genetics, Moscow, Russia

Contact person: S.A. Abdullaev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

The review analyzes literature data on the biological properties of thymoquinone (TQ), a component of black cumin (Nigella sativa), which is widely used (mainly in the East) for the prevention and treatment of a number of pathologies, including oncology. Numerous data are provided on the radioprotective properties of TQ on experimental animals associated with the effect on oxidative stress induced by radiation, as well as stimulation of the protective systems of the cell and the body. The effect of TQ in combination with radiation in tumor formation is shown. Given the safety of TQ compared to synthetic protectors, the authors recommend TQ for further research for prevention and treatment of radiation exposure.

Keywords: thymoquinone, radioprotector, antioxidant, radiotherapy

For citation: Abdullaev SA, Raeva NF, Fomina DV, Kalinin TP, Maksimova TN, Zasukhina GD. Thymoquinone (a Component of Nigella Sativa) Reduces Toxic Effects of Radiotherapy and Has Anti-Cancer Potential. Medical Radiology and Radiation Safety. 2025;70(2):5–8. (In Russian). DOI:10.33266/1024-6177-2025-70-2-5-8

 


References

1. Stasiłowicz-Krzemień A., Gościniak A., Formanowicz D., Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci. 2024;25:6937. doi.org/10.3390/ijms25136937

2. Dogru S., Taysi S., Yugel A. Effects of Thymoquinone in the Lungs of Rats Against Radiation-Induced Oxidative Stress. Eur Rev Med Pharmacol Sci. 2024;28;1:191-198. doi: 10.26355/eurrev_202401_ 34904.

3. Guangmei D., Weishan H., Wenya L., Fasheng W., Jibing Ch. Evolution of Radiation-Induced Dermatitis Treatmеnt. Clin Transl Oncol. 2024;26;9:2142-2155. doi: 10.1007/s12094-024-03460-1. 

4. Borah P., Baral A., Paul A.K., Ray U., Bharalee R., Upadhyaya H, et al. Traditional Wisdom in Modern Medicine: Unveiling the Anticancer Efficacy of Northeastern Indian spices. Journal of Herbal Medicine. 2024;100896. doi: 10.1016/j.hermed.2024.100896.

5. Shaban A.R. Molecular Modulation of Chemotherapeutic Agents – Choices for Thymoquinone Nano-Structured Lipid Carrier (Tq-Nls) on Human Liver Cancer Cells. World Journal Internal Medicine and Surgery. 2024;1:24-44.

6. Taysi S., Algburi F.Sh., Mohammed Z.R., Ali O.A., Taysi M.E. Thymoquinone: a Review on its Pharmacological Importance, and its Association with Oxidative Stress, Covid-19, and Radiotherapy. Mini Rev Med Chem. 2022;22;14:1847-1875. doi: 10.2174/1389557522666220104151225.

7. Aslani M., Saadat S., Boskabady M. Comprehensive and Updated Review on Anti-Oxidant Effects of Nigella Sativa and its Constituent, Thymoquinone, in Various Disorders. Iran J Basic Med Sci. 2024;27;8:923-951. doi: 10.22038/IJBMS.2024.75985.16453.

8. Sirinyildiz F., Unay S. N-Methyl-d-Aspartate Receptors and Thymoquinone Induce Apoptosis and Alteration in Mitochondria in Colorectal Cancer Cells. Med Oncol. 2024;41;5:123. doi: 10.1007/s12032-024-02348-y.

9. Pandey R., Natarajan P., Reddy U.K., Du W., Sirbu C., Sissoko M., Hankins G.R. Deciphering the Dose-Dependent Effects of Thymoquinone on Transcriptomic Changes and Cellular Proliferation in Glioblastoma. Preprints. 2024. 2024011894. doi: 10.20944/preprints202401.1894.v1.

10. Isaev N., Genrics E., Stelmashook E. Antioxidant Thymoquinone and its Potential in the Treatment of Neurological Diseases. Antioxidants (Basel). 2023;12;2:433. doi: 10.3390/antiox12020433.

11. Засухина Г.Д., Максимова Т.Н. Перспективы применения тимохинона (компонента Nigella sativa) в профилактике и лечении нейропатологии // Успехи современной биологии. 2024. Т.144. №2. С.165-170. [Zasukhina G.D., Maksimova T.N. Prospects for the Use of Thymoquinone (a Component of Nigella Sativa) in the Prevention and Treatment of Neuropathology. Uspekhi Sovremennoy Biologii = Advances in Modern Biology. 2024;144;2:165-170 (In Russ.)].

12. Ferizi R., Ramadan M., Maxhuni Q. Black Seeds (Nigella Sativa) Medical Application and Pharmaceutical Perspectives. J Pharm Bioallied Sci. 2023;15;2:63-67. doi: 10.4103/jpbs.jpbs_364_22.

13. Салеева Д.В., Раева Н.Ф., Абдуллаев С.А., Максимова Т.Н., Засухина Г.Д.  Профилактический и терапевтический потенциал тимохинона при ряде патологий человека на основе определения активации клеточных компонентов, осуществляющих защитные функции по активности генов и некодирующих РНК // Госпитальная медицина: наука и практика. 2023. Т.6. №2. С.27-36. [Saleyeva D.V., Rayeva N.F., Abdullayev S.A., Maksimova T.N., Zasukhina G.D. Preventive and Therapeutic Potential of Thymoquinone in a Number of Human Pathologies Based on the Determination of the Activation of Cellular Components that Perform Protective Functions According to the Activity of Genes and Non-Coding RNA. Gospital’naya Meditsina: Nauka i Praktika = Hospital Medicine: Science and Practice. 2023;6;2:27-36 (In Russ.)]. https://doi.org/10.34852/GM3CVKG.2023.75.38.015.

14. Isaev N.K., Chetverikov N.S., Stelmashook E.V., Genrikhs E.E., Khaspekov L.G., Illarioshkin S.N. Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. Biochemistry (Mosc). 2020;85;2:167-176. doi: 10.1134/S0006297920020042.

15. Silachev D.N., Plotnikov E.Y., Zorova L.D., Pevzner I.B., Sumbatyan N.V., Korshunova G.A., Gulyaev M.V., Pirogov Y.A., Skulachev V.P., Zorov D.B. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules. 2015;20;8:14487-503. doi: 10.3390/molecules200814487.

16. Zhang D., Zhang Y., Wang Z., Lei L. Thymoquinone Attenuates Hepatic Lipid Accumulation by Inducing Autophagy Via AMPK/mTOR/ULK1-Dependent Pathway in Nonalcoholic Fatty Liver Disease. Phytother Res. 2023;37;3:781-797. doi: 10.1002/ptr.7662.

17. Abdullaev S., Minkabirova G., Karmanova E., Bruskov V., Gaziev A. Metformin Prolongs Survival Rate in Mice and Causes Increased Excretion of Cell-Free DNA in the Urine of X-Irradiated Rats. Mutat Res Genet Toxicol Environ Mutagen. 2018;831:13-18. doi: 10.1016/j.mrgentox.2018.05.006.

18. Gaziev A., Abdullaev S., Minkabirova G., Kamenskikh K. X-Rays and Metformin Cause Increased Urinary Excretion of Cell-Free Nuclear and Mitochondrial DNA in Aged Rats. J Circ Biomark. 2016;25;5:1849454416670782. doi: 10.1177/1849454416670782.

19. Abdullaev S.A., Glukhov S.I., Gaziev A.I. Radioprotective and Radiomitigative Effects of Melatonin in Tissues with Different Proliferative Activity. Antioxidants (Basel). 2021;10;12:1885. doi: 10.3390/antiox10121885.

20. Abbas Idris Nour M, Abd-AL-Hassan ZI, Ibrahim Hassan DH. Application of Radiosensitizers in Cancer Radiotherapy, Nanomaterials of Heavy Metals, Drugs and Chemicals with Nanostructure. Current Clinical and Medical Education. 2024;2;5:258-266. https://www.visionpublisher.info/index.php/ ccme/article/view/95.

21. Михайлов В.Ф., Засухина Г.Д. Новый подход к стимуляции защитных систем организма малыми дозами радиации // Успехи современной биологии. 2020. Т.140. №3. С. 244-252. [Mikhaylov V.F., Zasukhina G.D. A New Approach to Stimulating the Body’s Defense Systems with Low Doses of Radiation. Uspekhi Sovremennoy Biologii = Advances in Modern Biology. 2020;140;3:244-252 (In Russ.)]. doi: 10.31857/S0042132420030060.

22. Салеева Д.В., Рождественский Л.М., Раева Н.Ф., Воробьева Е.С., Засухина Г.Д.  Механизмы противоопухолевого действия малых доз радиации, связанные с активацией защитных систем клетки // Медицинская радиология и радиационная безопасность. 2023. Т. 68. №1. С. 15-18. [Saleyeva D.V., Rozhdestvenskiy L.M., Rayeva N.F., Vorob’yeva Ye.S., Zasukhina G.D. Mechanisms of Antitumor Action of Low Doses of Radiation Associated with Activation of Cellular Defense Systems. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2023;68;1:15-18 (In Russ.)]. doi:10.33266/1024-6177-2023-68-1-15-18. 

23. Herrera F.G., Romero P., Coukos G. Lighting up the Tumor Fire with Low-Dose Irradiation. Trends in Immunology. 2022;43;3:173-179. doi 10.1016/j.it.2022.01.006.

24. Михайлов В.Ф., Салеева Д.В., Шуленина Л.В., Раева Н.Ф., Рождественский Л.М., Засухина Г.Д. Связь между динамикой роста перевивной карциномы Льюиса у мышей и изменением активности генов и некодирующих РНК после рентгеновского облучения в малых дозах // Радиационная биология. Радиоэкология. 2022. Т.62. №1. С. 28-41 [Mikhaylov V.F., Saleyeva D.V., Shulenina L.V., Rayeva N.F., Rozhdestvenskiy L.M., Zasukhina G.D. Relationship Between the Growth Dynamics of Transplantable Lewis Carcinoma in Mice and Changes in the Activity of Genes and Non-Coding RNAs After Low-Dose X-Ray Irradiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2022; 62;1:28-41 (In Russ.)]. doi:10.31857/S0869803122010088. 

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The work was carried out on the topic of the Technology-3 Federal State Budgetary Educational Institution of Science and Technology named after A.I. Burnazyan (state assignment No. 123011300105-3).

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.12.2024. Accepted for publication: 25.01.2025.

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2926695
Today
Yesterday
This week
Last week
This month
Last month
For all time
1712
2221
3933
33458
24991
113593
2926695

Forecast today
2136


Your IP:216.73.216.82