О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Выпуски журналов

Медицинская радиология и радиационная безопасность. 2024. Том 69. № 5

DOI:10.33266/1024-6177-2024-69-5-114-118

И.В. Иванов1, 2

АКАДЕМИК И.Б. УШАКОВ И ЕГО ВКЛАД В ОБЩУЮ
И КОСМИЧЕСКУЮ РАДИОБИОЛОГИЮ
(К 70-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ)

1 Государственный научно-исследовательский испытательный институт военной медицины МО РФ, Санкт-Петербург

2 Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России, Москва

Контактное лицо: Иван Васильевич Иванов, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Для цитирования: Иванов И.В. Академик И.Б. Ушаков и его вклад в общую и космическую радиобиологию (к 70-летию со дня рождения) // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 5. С. 114–118. DOI:10.33266/1024-6177-2024-69-5-114-118

 

  PDF (RUS) Полная версия статьи

 

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов. Cтатья подготовлена в одном участии.

Поступила: 20.05.2024. Принята к публикации: 25.06.2024.

Медицинская радиология и радиационная безопасность. 2024. Том 69. № 5

DOI:10.33266/1024-6177-2024-69-5-119-120

И.В. Иванов1, Т.А. Насонова2

ПАМЯТИ ПРОФЕССОРА НАТАЛЬИ ГЕОРГИЕВНЫ ДАРЕНСКОЙ
(К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ 16.12.1924–17.11.2008)

1 Государственный научно-исследовательский испытательный институт военной медицины МО РФ, Санкт-Петербург

2 Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России, Москва

 

Для цитирования: Иванов И.В., Насонова Т.А. Памяти профессора Натальи Георгиевны Даренской (к 100-летию со дня рождения 16.12.1924–17.11.2008) // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 5. С. 119–120. DOI:10.33266/1024-6177-2024-69-5-119-120

 

  PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.05.2024. Принята к публикации: 25.06.2024.

Медицинская радиология и радиационная безопасность. 2024. Том 69. № 4

DOI:10.33266/1024-6177-2024-69-4-5-12

Е.В. Плотников1, 2, 3, М.В. Белоусов1, 2, А.Г. Дрозд1, К.С. Бразовский1,
М.С. Ларькина1, 2, Е.С. Сухих1, А.А. Артамонов4, И.В. Ломов1, В.И. Чернов1, 5

ИЗУЧЕНИЕ РАДИОСЕНСИБИЛИЗИРУЮЩИХ СВОЙСТВ
АСКОРБАТА ЛИТИЯ ПРИ НЕЙТРОННОМ ОБЛУЧЕНИИ
НА МОДЕЛЯХ ОПУХОЛЕВОГО РОСТА

1 Национальный исследовательский Томский политехнический университет, Томск

2 Сибирский государственный медицинский университет, Томск

3 НИИ психического здоровья Томского национального исследовательского медицинского центра РАН, Томск

4 Институт медико-биологических проблем РАН, Москва

5 НИИ онкологии Томского национального исследовательского медицинского центра РАН, Томск

Контактное лицо: Е.В. Плотников, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

РЕФЕРАТ

Цель: Радиорезистентность опухолевых клеток представляет собой серьезную проблему в лечении онкологических заболеваний, что, наряду с повреждающим действием облучения на здоровые ткани, существенно лимитирует возможности лучевой терапии. Поэтому важной задачей современной онкофармакологии является поиск и исследование новых радиосенсибилизирующих соединений. Основная цель данного исследования состояла в изучении радиосенсибилизирующего действия аскорбата лития в условиях in vitro и in vivo при воздействии нейтронного излучения. 

Материал и методы: Оценка биологического действия in vitro выполнялась на клеточной культуре опухолевой линии HСT-116 (колоректальный рак человека). Для создания модели опухолевого роста in vivo в работе использовали SPF мышей нудов иммунодефицитной линии Nu/j. Ксенографты in vivo формировали путем подкожной инъекции суспензии клеток линии HСT-116 в концентрации 2 млн кл./100 мкл. Препарат животным вводили перед облучением путем в/б инъекции в физиологическом растворе из расчета 2,4 мМ/кг. Нейтронное облучение клеток проводили на циклотроне Р-7М потоком нейтронов со средней энергией 7,5 MeV в диапазоне поглощенных доз 0,5‒1,5 Гр. Локальное облучение опухолей у мышей проводили однократно в дозе 1,5 Гр на циклотроне с аналогичными параметрами потока нейтронов. Оценку жизнеспособности клеток проводили с помощью МТТ теста. Параметры опухолевого роста оценивали путем измерения геометрических размеров опухоли и расчета среднего объема, времени удвоения опухолей и продолжительности жизни животных.

Результаты: Показано усиление цитотоксического эффекта при сочетанном применении лучевого воздействия и аскорбата лития in vitro и in vivo. Установлено дозозависимое снижение жизнеспособности опухолевых клеток при использовании аскорбата лития в концентрации 0,1‒0,3 мМ в сочетании с нейтронным облучением. Показано уменьшение среднего объема опухоли более чем на 50 % в сравнении с контролем, замедление скорости роста опухолей до 72 % и увеличение медианной продолжительности жизни экспериментальных животных на 86 % при сочетанном применении аскорбата лития и нейтронного облучения. Предложены механизмы радиосенсибилизирующего воздействия путем индукции окислительного стресса. 

Заключение: Применение аскорбата лития приводит к более выраженному терапевтическому эффекту лучевого воздействия на клеточных и организменных моделях опухолевого роста.

Ключевые слова: аскорбат лития, радиосенсибилизация, модели опухолевого роста, колоректальный рак, клетки линии HCT-116, нейтроны, цитотоксичность, апоптоз

Для цитирования: Плотников Е.В., Белоусов М.В., Дрозд А.Г., Бразовский К.С., Ларькина М.С., Сухих Е.С., Артамонов А.А., Ломов И.В., Чернов В.И. Изучение радиосенсибилизирующих свойств аскорбата лития при нейтронном облучении на моделях опухолевого роста // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 4. С. 5–12. DOI:10.33266/1024-6177-2024-69-4-5-12

 

Список литературы

1. Abdel-Wahab M., Gondhowiardjo S.S., Rosa A.A., Lievens Y., El-Haj N., Polo Rubio J.A., Prajogi G.B., Helgadottir H., Zubizarreta E., Meghzifene A., Ashraf V., Hahn S., Williams T., Gospodarowicz M. Global Radiotherapy: Current Status and Future Directions-White Paper. JCO Global Oncology. 2021;7:827–842. doi: 10.1200/GO.21.00029.

2. Baskar R., Lee K.A., Yeo R. Yeoh K.W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int J Med Sci. 2012;9, No.3:193-9. doi: 10.7150/ijms.3635

3. Gong L., Zhang Y., Liu C., Zhang M. Han S., Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine, 2021;16:1083-1102. doi: 10.2147/ijn.s290438.

4. Liao J.J., Laramore G.E., Rockhill J.K. Neutron Radiotherapy. Encyclopedia of Radiation Oncology. Ed. Brady L.W., Yaeger T.E. Springer, Berlin, Heidelberg, 2013. P. 544–550. doi: 10.1007/978-3-540-85516-3_45.

5. Старцева Ж.А., Грибова О.В., Великая В.В., Сухих Е.С., Лисин В.А., Новиков В.А. Дистанционная нейтронная терапия в Томске: 40 лет на службе онкологии // Сибирский онкологический журнал. 2024. Т.23, № 1. С. 98–108. [Startseva Zh.A., Gribova O.V., Velikaya V.V., Sukhikh E.S., Lisin V.A., Novikov V.A. Remote Neutron Therapy in Tomsk: 40 Years in the Service of Oncology. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology. 2024;23;1:98–108 (In Russ.)]. doi: 10.21294/1814-4861-2024-23-1-98-108.

6. Великая В.В., Старцева Ж.А., Лисин В.А., Гольдберг В.Е., Попова Н.О. Адъювантная нейтронная терапия в комплексном лечении больных первично-метастатическим раком молочной железы // Медицинская радиология и радиационная безопасность. 2022. Т. 67. № 5. С. 64-68. [Velikaya V.V., Startseva Zh.A., Lisin V.A., Goldberg V.E., Popova N.O. Adjuvant Neutron Therapy in the Complex Treatment of Patients with Primary Metastatic Breast Cancer. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2022;67;5:64-68 (In Russ.)].

7. Pfeffer C.M., Singh A.T.K. Apoptosis: A Target for Anticancer Therapy. Int J Mol Sci. 2018;19;2:448. doi: 10.3390/ijms19020448.

8. Лосенков И.С., Плотников Е.В., Епимахова Е.В. Цитотоксический и прооксидантный эффекты аскорбата лития in vitro // Сибирский вестник психиатрии и наркологии. 2018. Т. 1, № 98. C. 24–29. [Losenkov I.S., Plotnikov E.V., Epimakhova E.V. Cytotoxic and Prooxidant Effect of Lithium Ascorbate in vitro. Sibirskiy Vestnik Psihiatrii i Narkologii = Siberian Herald of Psychiatry and Addiction Psychiatry. 2018;1;98:24–29 (In Russ.)]. doi: 10.26617/1810-3111-2018-1(98)-24-29.

9. Tretyakova M.S., Drozd A.G., Belousov M., Brazovskiy K.S., Larkina M.S., Krivoshchekov S., Artamonov A.A., Miloichikova I.A., Bezmaga A., Bolshakov A.M., Sukhikh E.S., Plotnikov E. Study of the Radiosensitizing Action of Lithium Ascorbate under Neutron and Photon Irradiation of Tumor Cells. Drug Development & Registration. 2023;12;2:185–189. doi: 10.33380/2305-2066-2023-12-2-185-189.

10. Chen Q., Espey M.G., Sun A.Y., Pooput C., Kirk K.L., Krishna M.C., Levine M. Pharmacologic Doses of Ascorbate Act as a Prooxidant and Decrease Growth of Aggressive Tumor Xenografts in Mice. Proceedings of the National Academy of Sciences. 2008;105;32:11105–11109. doi:10.1073/pnas.0804226105.

11. Rajput A., Dominguez San Martin I., Rose R., et al. Characterization of HCT116 Human Colon Cancer Cells in an Orthotopic Model. J Surg Res. 2008;147;2:276-281. doi:10.1016/j.jss.2007.04.021.

12. Tretayakova M., Brazovskii K., Belousov M., Artamonov A., Stuchebrov S., Gogolev A., Larkina M., Sukhikh E., Plotnikov E. Radiosensitizing Effects of Lithium Ascorbate on Normal and Tumor Lymphoid Cells under X-ray Irradiation. Current Bioactive Compounds. 2023;19;8. doi: 10.2174/1573407219666230503094421.

13. Maekawa T., Miyake T., Tani M., Uemoto S. Diverse Antitumor Effects of Ascorbic Acid on Cancer Cells and the Tumor Microenvironment. Frontiers in Oncology. 2022;12. doi: 10.3389/fonc.2022.981547.

14. Jones B. Clinical Radiobiology of Fast Neutron Therapy: What Was Learnt? Front Oncol. 2020;10. doi: 10.3389/fonc.2020.01537.

15. Baiocco G., Barbieri S., Babini G., Morini J., Alloni D., Friedland W., Kundrát P., Schmitt E., Puchalska M., Sihver L. Ottolenghi A. The Origin of Neutron Biological Effectiveness as a Function of Energy. Scientific Reports. 2016;6;1. doi: 10.1038/srep34033.

16. Vendrely V., Rivin Del Campo E., Modesto A., Jolnerowski M., Meillan N., Chiavassa S., Serre A.A., Gérard J.P., Créhanges G., Huguet F., et al. Rectal Cancer Radiotherapy. Cancer/Radiothérapie. 2022;26:272–278. doi: 10.1016/j.canrad.2021.11.002.

17. Patel A.K., Dhanik A., Lim W.K., Adler C., Ni M., Wei Y., Zhong M., Nguyen C., Zhong J., Lu Y.F., Thurston G., Macdonald L., Murphy A., Gurer C., Frleta D. Spontaneous Tumor Regression Mediated by Human T Cells in a Humanized Immune System Mouse Model. Communications biology. 2023;6;1:444. doi: 10.1038/s42003-023-04824-z.

18. Hong J.M., Kim J.H., Kang J.S., Lee W.J., Hwang Y.I. Vitamin C Is Taken up by Human T Cells Via Sodium-Dependent Vitamin C Transporter 2 (SVCT2) and Exerts Inhibitory Effects on the Activation of These Cells in Vitro. Anat Cell Biol. 2016;49;2:88-98. doi: 10.5115/acb.2016.49.2.88.

 

 PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование выполнено в рамках проекта Приоритет 2030.

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.03.2024. Принята к публикации: 25.04.2024.

 

 

 

СОДЕРЖАНИЕ № 5 - 2024

Смотреть журнал целиком в PDF-формате

ОБЩИЕ 
ВОПРОСЫ

5

Итоги 71-й Сессии научного комитета по действию атомной радиации (НКДАР) ООН (Вена, 20‒24 мая 2024 г.)

Аклеев А.В., Азизова Т.В., Иванов С.А., Киселев С.М.,
Мелихова Е.М., Фесенко С.В., Шинкарев С.М.

РАДИАЦИОННАЯ БИОЛОГИЯ 

15

Генотоксический эффект оксида трития и 3H-тимидина в селезенке и костном мозге крыс Wistar при длительном поступлении с питьевой водой

Роднева С.М., Сычева Л.П., Максимов А.А., Жорова Е.С., Цишнатти А.А., Тищенко Г.С., Федотов Ю.А., Трубченкова Т.М., Яшкина Е.И., Гурьев Д.В., Барчуков В.Г.

21

Оценка влияния аскорбиновой, яблочной и янтарной кислот на радиационно-индуцированный окислительный стресс в клетках линии А549

Ромодин Л.А., Московский А.А.

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ 

28

Методические подходы к установлению класса работ с открытыми источниками ионизирующего излучения

Симаков А.В., Абрамов Ю.В., Проскурякова Н.Л., Алфёрова Т.М., Майер А.К. 

34

Радиоэкологическая обстановка в поселке Нарта (Калмыкия)

Титов А.В., Бельских Ю.С., Исаев Д.В., Шандала Н.К.,
Дороньева Т.А., Кроткова Ю.В., Семенова М.П., Шитова А.А.,
Филонова А.А.

42

Использование байесовского подхода для случая острой ингаляции промышленных соединений Pu-239

Востротин В.В.

РАДИАЦИОННАЯ МЕДИЦИНА  

53

Влияние полиморфизма генов репарации на риск развития злокачественных новообразований после хронического радиационного воздействия

Блинова Е.А., Кореченкова А.В., Янишевская М.А., Аклеев А.В.

59

Количественная оценка пула регуляторных T-клеток и экспресии гена FOXP3 у хронически облученных лиц
Котикова А.И., Никифоров В.С., Блинова Е.А., Аклеев А.В.

 

66

Перспективы и методы исследования пролиферативного потенциала субпопуляций лимфоцитов периферической крови человека в радиационной медицине

Кодинцева Е.А., Аклеев А.А.

РАДИАЦИОННАЯ ЭПИДЕМИОЛОГИЯ

75

Сравнение риска общей смертности для работников ядерной индустрии, шахтеров урановых рудников и других профессий с риском пассивного курения (мета-анализы)

Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Буланова Т.М.

 

87

Оценка радиационных рисков смертности от болезней системы кровообращения в когорте ликвидаторов последствий аварии на Чернобыльской АЭС с учетом влияния выявленных за период наблюдения других болезней

Чекин С.Ю., Карпенко С.В., Максютов М.А., Кащеева П.В.,
Корело А.М., Щукина Н.В., Кочергина Е.В., Лашкова О.Е., Зеленская Н.С.

ЛУЧЕВАЯ ДИАГНОСТИКА

95

Доклиническое исследование комплекса Mn(II) c глюкаровой кислотой как онкотропного парамагнитного контрастного препарата для МР-томографической визуализации злокачественных новообразований

Усов В.Ю., Белянин М.Л., Безлепкин А.И., Бородин О.Ю., Минин С.М., Кобелев Е., Лишманов Ю.Б., Чернявский А.М., Шимановский Н.Л.

ЛУЧЕВАЯ
ТЕРАПИЯ

104

 

Возможности современной лучевой терапии при местно-распространенном раке эндометрия

Лушникова П.А., Cутыгина Я.Н., Сухих Е.С., Старцева Ж.А., Поляков А.А.

РАДИАЦИОННАЯ ФИЗИКА, ТЕХНИКА И ДОЗИМЕТРИЯ 

109

Использование хлопчатобумажной ткани и волокна в качестве объектов для ретроспективной ЭПР-дозиметрии

Иванов Д.В., Байтимиров Д.Р., Конев С.Ф., Аладова Е.Е.

ЮБИЛЕИ

114

Академик И.Б. Ушаков и его вклад в общую и космическую радиобиологию (к 70-летию со дня рождения)

Иванов И.В.

119

Памяти профессора Натальи Георгиевны Даренской
(к 100-летию со дня рождения 16.12.1924–17.11.2008)

Иванов И.В., Насонова Т.А.

Медицинская радиология и радиационная безопасность. 2024. Том 69. № 4

DOI:10.33266/1024-6177-2024-69-4-13-19

Д.Т. Петросова1, Д.В. Ускалова1, О.В. Кузьмичева1, В.О. Сабуров3,
Е.И. Сарапульцева1,2

УСИЛЕНИЕ НАНОЧАСТИЦАМИ ЗОЛОТА ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ ОБЛУЧЕНИЯ ПРОТОНАМИ В ОПЫТАХ IN VIVO 

1 Обнинский институт атомной энергетики, Обнинск

2 Национальный исследовательский ядерный университет «МИФИ», Москва

3 Медицинский радиологический научный центр им. А.Ф. Цыба Минздрава России, Обнинск

Контактное лицо: Диана Тиграновна Петросова, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

РЕФЕРАТ

Цель: Оценить биоэффективность и биобезопасность совместного применения в биомедицине и возможного воздействия на окружающую среду облучения протонами и наночастиц золота (AuНЧ) на модели высшего беспозвоночного животного из подотряда ракообразные Daphnia magna в опытах in vivo. 

Материал и методы: Синтез AuНЧ осуществляли одностадийным методом фемтосекундной лазерной аблации. В качестве модельного тест-организма использовали лабораторную культуру Daphnia magna. Культивировали животных в оптимальных условиях климатостата (модель Р2). Биологические показатели (выживаемость, плодовитость и цитотоксичность) оценивали в двух последовательных поколениях (F0) и (F1). Острому облучению подвергали только животных родительского поколения (F0) на протонном комплексе «Прометеус» сканирующим пучком протонов (энергия 150 МэВ). Выживаемость и плодовитость D. magna оценивали в 21-суточном эксперименте на ежедневной основе. Всего было проанализировано от 10 до 60 особей в контрольных и экспериментальных группах. Цитотоксичность анализировали модифицированным для исследования эффекта на беспозвоночных животных в опытах in vivo МТТ-тестом на планшетном иммуноферментном анализаторе StatFax 2100 (США, VIS-модель). На цитотоксичность проанализировано от 11 до 97 образцов. В каждом образце было по 20 десятисуточных животных. Результаты обработаны методами математической статистики с поправкой на множественное сравнение. 

Результаты: Облучение в дозах 10 и 30 Гр вызывало снижение выживаемости животных, которое усиливалось AuНЧ в 1,35 раза. Нарушение репродуктивной функции обнаружено как в облученном, так и в первом поколении животных. Применение НЧ не вызывало оксидативный стресс у D. magna, однако усиливало цитотоксическое действие облучения протонами. Вклад в цитотоксический эффект вносили AuНЧ. 

Выводы: Поскольку полученные результаты согласуются с данными, опубликованными в цитируемых работах на позвоночных животных, можно предположить универсальный механизм цитотоксического действия облучения протонами в сочетании с AuНЧ как на беспозвоночных, так и позвоночных животных, включая человека и возможность применения AuНЧ в качестве радиосенсибилизаторов для усиления эффекта облучения в бинарных технологиях протонной терапии.

Ключевые слова: Daphnia magna, протоны, наночастицы золота, жизнеспособность, плодовитость, цитотоксический эффект, трансгенерационный эффект

Для цитирования: Петросова Д.Т., Ускалова Д.В., Кузьмичева О.В., Сабуров В.О., Сарапульцева Е.И. Усиление наночастицами золота цитотоксического действия облучения протонами в опытах in vivo // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 4. С. 13–19. DOI:10.33266/1024-6177-2024-69-4-13-19

 

Список литературы

1. Бушманов А.Ю., Шейно И.Н., Липенгольц А.А., Соловьев А.Н., Корякин С.Н. Перспективы применения комбинированных технологий в протонной терапии злокачественных новообразований // Медицинская радиология и радиационная безопасность. 2019. Т. 64, № 3. С. 11–18 [Bushmanov АYu, Sheino IN, Lipengolts АА, Soloviev AN, Koryakin SN. Prospects of Proton Therapy Combined Technologies in the Treatment of Cancer. Medical Radiology and Radiation Safety. 2019;64(3):11–18 (In Russ.)]. DOI: 10.12737/article_5cf237bf846b67.57514871

2. Peukert D, Kempson I, Douglass M, Bezak E. Gold Nanoparticle Enhanced Proton Therapy: a Monte Carlo Simulation of the Effects of Proton Energy, Nanoparticle Size, Coating Material, and Coating Thickness on Dose and Radiolysis Yield. Med Phys. 2020; 47(2):651-661. DOI: 10.1002/mp.13923. PMID: 31725910

3. Benn TM, Westerhoff P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ Sci Technol. 2008;42(11):4133-9. Erratum in: Environ Sci Technol. 2008; 42(18):7025-6. DOI: 10.1021/es7032718. PMID: 18589977

4. Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ Jr. Influence of Polyethyleneimine Graftings of Multi-Walled Carbon Nanotubes on their Accumulation and Elimination by and Toxicity to Daphnia Magna. Environ Sci Technol. 2011;45(3):1133-8. DOI: 10.1021/es1030239. PMID: 21182278.

5. Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: a Brief Review and Recommendations for Future Toxicity Testing. Ecotoxicology. 2008;17(5):387-95. DOI: 10.1007/s10646-008-0208-y. PMID: 18425578

6. Fuller N., Lerebours A., Smith J.T., Ford A.T. The Biological Effects of Ionising Radiation on Crustaceans: a Review. Aquat. Toxicol. 2015;167:55–67. http://dx.doi. org/10.1016/j.aquatox.2015.07.013

7. Feswick A, Griffitt RJ, Siebein K, Barber DS. Uptake, Retention and Internalization of Quantum Dots in Daphnia is Influenced by Particle Surface Functionalization. Aquat Toxicol. 2013;130-131:210-8. DOI: 10.1016/j.aquatox.2013.01.002. PMID: 23419536.

8. Liu A, Ye B. Application of Gold Nanoparticles in Biomedical Researches and Diagnosis. Clin Lab. 2013;59(1-2):23-36. PMID: 23505903.

9. Финогенова Ю.А., Липенгольц А.А., Скрибицкий В.А., Шпакова К.Е., Смирнова А.В., Скрибицкая А.В., Сычева Н.Н., Григорьева Е.Ю. Металлсодержащие наноразмерные радиосенсибилизаторы для лучевой терапии злокачественных новообразований // Медицинская физика, 2023.
№ 3. С 70-86 [Finogenova YA, Lipengolts AA, Skribitskiy VA, Shpakova KE, Smirnova AV, Skribitskaya AV, Sycheva NN, Grigorieva EY. Metal Nanoparticles as Radiosensitizers for Cancer Radiotherapy in Vivo. Meditsinskaya Fizika = Medical Physics, 2023;3:70-86 (In Russ.)]. DOI: 10.52775/1810-200x-2023-99-3-70-86

10. Скрибицкий В.А., Позднякова Н.В., Липенгольц А.А., Попов А.А., Тихоновский Г.В., Финогенова Ю.А., Смирнова А.В., Григорьева Е.Ю. Спектрофотометрический метод оценки размера и концентрации лазерно-аблированных золотых наночастиц // Биофизика. 2022. Т. 67, № 1. С. 30–36 [Skribitskiy VA, Pozdnyakova NV, Lipengolts AA, Popov AA, Tikhonovskiy GV, Finogenova YuA, Smirnova AV, Grigorieva EYu. A Spectrophotometric Method for Evaluation of Size and Concentration of Laser Ablated Gold Nanoparticles. Biofizika = Biophisics. 67(1):30–36 (In Russ.)]. DOI: 10.31857/S0006302922010045.

11. Test Guideline. Daphnia Magna Reproduction Test. OECD Guideline for the Testing of Chemicals. Paris, OECD Publ., 2012. No. 211. P. 26. http://dx.doi.org/10.1787/20745761.

12. Cancer Cell Culture. Methods and Protocols / Ed. I.A.Cree. New York, Dordrecht, Heidelberg, London, Springer, Human Press, 2011. P. 237-244.

13. Gorfine M, Schlesinger M, Hsu L. K-Sample Omnibus Non-Proportional Hazards Tests Based on Right-Censored Data. Stat Methods Med Res. 2020;29(10):2830-2850. doi: 10.1177/0962280220907355

14. Li S, Penninckx S, Karmani L, Heuskin AC, Watillon K, Marega R, Zola J, Corvaglia V, Genard G, Gallez B, Feron O, Martinive P, Bonifazi D, Michiels C, Lucas S. LET-Dependent Radiosensitization Effects of Gold Nanoparticles for Proton Irradiation. Nanotechnology. 2016;27(45):455101. Epub 2016 Oct 3. DOI: 10.1088/0957-4484/27/45/455101. PMID: 27694702

15. Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, et al. Enhanced Proton Treatment in Mouse Tumors Through Proton Irradiated Nanoradiator Effects on Metallic Nanoparticles. Phys Med Biol. 2012;57(24):8309-23. DOI: 10.1088/0031-9155/57/24/8309

16. Cunningham C, de Kock M, Engelbrecht M, Miles X, Slabbert J, Vandevoorde C. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Front Public Health. 2021;9:699822. DOI: 10.3389/fpubh.2021.699822. PMID: 34395371; PMCID: PMC8358148

17. Sarapultseva EI, Dubrova YE. The Long-Term Effects of Acute Exposure to Ionising Radiation on Survival and Fertility in Daphnia Magna. Environ Res. 2016;150:138-143. doi: 10.1016/j.envres.2016.05.046. PMID: 27288911.

18. Nakamori T, Yoshida S, Kubota Y, Ban-nai T, Kaneko N, Hasegawa M, Itoh R. Effects of Acute Gamma Irradiation on Folsomia Candida (Collembola) in a Standard Test. Ecotoxicol Environ Saf. 2008;71(2):590-6. DOI: 10.1016/j.ecoenv.2007.10.029. PMID: 18155145

19. Won EJ, Lee JS. Gamma Radiation Induces Growth Retardation, Impaired Egg Production, and Oxidative Stress in the Marine Copepod Paracyclopina Nana. Aquat Toxicol. 2014;150:17-26. DOI: 10.1016/j.aquatox.2014.02.010. PMID: 24632311

20. Jönsson K.I. Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine. Cancers 2019;11(9):1333; https://doi.org/10.3390/cancers11091333.

21. Dubrova YE, Sarapultseva EI. Radiation-Induced Transgenerational Effects in Animals. Int J Radiat Biol. 2022;98(6):1047-1053. DOI: 10.1080/09553002.2020.1793027. PMID: 32658553. 

22. Min H, Sung M, Son M, Kawasaki I, Shim YH. Transgenerational Effects of Proton Beam Irradiation on Caenorhabditis Elegans Germline Apoptosis. Biochem Biophys Res Commun. 2017;490(3):608-615. DOI: 10.1016/j.bbrc.2017.06.085. PMID: 28630005.

23. Hoppe BS, Harris S, Rhoton-Vlasak A, Bryant C, Morris CG, Dagan R, Nichols RC, Mendenhall WM, Henderson RH, Li Z, Mendenhall NP. Sperm Preservation and Neutron Contamination Following Proton Therapy for Prostate Cancer Study. Acta Oncol. 2017;56(1):17-20. DOI: 10.1080/0284186X.2016.1205219. PMID: 27420031

24. Wo JY, Viswanathan AN. The Impact of Radiotherapy on Fertility, Pregnancy, and Neonatal Outcomes in Female Cancer Patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–1312. doi: 10.1016/j.ijrobp.2008.12.016.

25. Streffer C, Shore R, Konermann G, Meadows A, Uma Devi P, Preston Withers J, Holm LE, Stather J, Mabuchi K, H R. Biological Effects after Prenatal Irradiation (Embryo and Fetus). A Report of the International Commission on Radiological Protection. Ann ICRP. 2003;33(1-2):5-206. PMID: 12963090.

26. Falk M. Nanodiamonds and Nanoparticles as Tumor Cell Radiosensitizers-Promising Results but an Obscure Mechanism of Action. Ann Transl Med. 2017;5(1):18. DOI: 10.21037/atm.2016.12.62. PMID: 28164103; PMCID: PMC5253274

27. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold Nanoparticles Enhance the Radiation Therapy of a Murine Squamous Cell Carcinoma. Phys Med Biol. 2010;55(11):3045-59. DOI: 10.1088/0031-9155/55/11/004. PMID: 20463371

28. Ates M, Danabas D, Ertit Tastan B, Unal I, Cicek Cimen IC, Aksu O, Kutlu B, Arslan Z. Assessment of Oxidative Stress on Artemia salina and Daphnia magna After Exposure to Zn and ZnO Nanoparticles. Bull Environ Contam Toxicol. 2020; 104(2):206-214. doi: 10.1007/s00128-019-02751-6. PMID: 31748865.

 

 PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Работа выполнена при финансовой поддержке РНФ в рамках научного проекта № 23-24-10041. Облучение осуществлено на оборудовании ЦКП «Радиологические и клеточные технологии» ФГБУ «НМИЦ радиология» Минздрава России.

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.03.2024. Принята к публикации: 25.04.2024.

 

 

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2928266
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
893
2390
5504
33458
26562
113593
2928266

Прогноз на сегодня
3480


Ваш IP:216.73.216.82