JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 5–10

D.V. Guryev1,2, O.A. Kochetkov1, V.G. Barchukov1, A.N. Osipov1,2

Biological Effects of Organic and Inorganic Compounds of the Tritium

1 A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
2 N.N. Semenov Institute of Chemical Physics, Moscow, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

The review represents comparative data on the biological effects of inorganic (HTO) and organic (OBT) compounds of tritium at the molecular, cytogenetic and system levels. The data of the relative biological effectiveness (RBE) of OBT and HTO depending on their distribution in the cells and tissues of the body are presented. Experimental studies show that the calculation of the RBE of tritium compounds at different levels of organization leads to contradictory data. Such observation is associated with the interaction both of HTO and OBT with critical biomolecules in the cells as well as the proliferative activity of different cells and tissues. The experiments revealed that the effectiveness of OBT is much higher than the HTO which is associated with their rapid inclusion in the critical biomolecules such as proteins and DNA with the further formation of a significant biological effect. Based on the recently obtained data in different laboratories on the effect of tritium compounds at the molecular and cellular levels, it is concluded that a new approach for HTO and OBT risk assessment is necessary.

Key words: tritium, organic compounds of the tritium, tritium oxide, HTO, OBT, RBE, DNA double-strand breaks, γН2АХ, 3H-thymidine, tritiated water, risk assessment

For citation: Guryev DV, Kochetkov OA, VG Barchukov, Osipov AN. Biological Effects of Organic and Inorganic Compounds of the Tritium. Medical Radiology and Radiation Safety. 2020;65(2):5-10. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-5-10

References

1.  Review of risks from tritium: report of the independent Advisory Group on Ionising Radiation. Chilton: Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards; 2007.
2.  Roch-Lefevre S, Gregoire E, Martin-Bodiot C, Flegal M, Freneau A, Blimkie M, et al. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation. Oncotarget. 2018;9(44):27397-411.
3.  Bannister L, Serran M, Bertrand L, Klokov D, Wyatt H, Blimkie M, et al. Environmentally Relevant Chronic Low-Dose Tritium and Gamma Exposures do not Increase Somatic Intrachromosomal Recombination in pKZ1 Mouse Spleen. Radiat Res. 2016;186(6):539-48.
4.  Kim SB, Baglan N, Davis PA. Current understanding of organically bound tritium (OBT) in the environment. J Environ Radioact. 2013;126:83-91.
5.  Harrison JD, Khursheed A, Lambert BE. Uncertainties in dose coefficients for intakes of tritiated water and organically bound forms of tritium by members of the public. Radiat Prot Dosimetry. 2002;98(3):299-311.
6.  Chao TC, Wang CC, Li J, Li C, Tung CJ. Cellular- and micro-dosimetry of heterogeneously distributed tritium. Int J Radiat Biol. 2012;88(1-2):151-7.
7.  Gerweck LE, Kozin SV. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol. 1999;50(2):135-42.
8.  Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med. 1998;14 Suppl 1:1-19.
9.  Снигирёва ГП, Хаймович ТИ, Нагиба ВН. Оценка относительной биологической эффективности трития по частоте хромосомных аберраций в лимфоцитах крови человека. Радиационная биология. Радиоэкология. 2010;50(6):663-71. [Snigireva GP, Khaimovich TI, Nagiba VI. Assessment of relative biological effectiveness of tritium using chromosome aberration frequency in human blood lymphocytes. Radiation Biol Radioecol. 2010;50(6):663-71. (in Russ.)].
10. Brooks AL. Chromosome damage in liver cells from low dose rate alpha, beta, and gamma irradiation: derivation of RBE. Science. 1975;190(4219):1090-2.
11. Hamby DM. Uncertainty of the tritium dose conversion factor. Health Phys. 1999;77(3):291-7.
12. Peterson SR, Davis PA. Tritium doses from chronic atmospheric releases: a new approach proposed for regulatory compliance. Health Phys. 2002;82(2):213-25.
13. Lucas JN, Hill FS, Burk CE, Cox AB, Straume T. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys. Int J Radiat Biol. 1996;70(3):309-18.
14. Protection of the public in situations of prolonged radiation exposure. The application of the Commission’s system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues. Ann ICRP. 1999;29(1-2):1-109.
15. Little MP, Lambert BE. Systematic review of experimental studies on the relative biological effectiveness of tritium. Radiat Environ Biophys. 2008;47(1):71-93.
16. Gueguen Y, Priest ND, Dublineau I, Bannister L, Benderitter M, Durand C, et al. In vivo animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water. Environ Mol Mutagen. 2018;59(7):586-94.
17. Ellett WH, Braby LA. The microdosimetry of 250 kVp and 65 kVp x-rays, 60Co gamma rays, and tritium beta particles. Radiat Res. 1972;51(2):229-43.
18. Tanaka K, Sawada S, Kamada N. Relative biological effectiveness and dose rate effect of tritiated water on chromosomes in human lymphocytes and bone marrow cells. Mutat Res. 1994;323(1-2):53-61.
19. Ueno AM, Furuno-Fukushi I, Matsudaira H. Induction of cell killing, micronuclei, and mutation to 6-thioguanine resistance after exposure to low-dose-rate gamma rays and tritiated water in cultured mammalian cells (L5178Y). Radiat Res. 1982;91(3):447-56.
20. Kozlowski R, Bouffler SD, Haines JW, Harrison JD, Cox R. In utero haemopoietic sensitivity to alpha, beta or X-irradiation in CBA/H mice. Int J Radiat Biol. 2001;77(7):805-15.
21. Bocian E, Ziemb-Zak B, Rosiek O, Sablinski J. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro. Curr Top Radiat Res Q. 1978;12(1-4):168-81.
22. Kamiguchi Y, Tateno H, Mikamo K. Dose-response relationship for the induction of structural chromosome aberrations in human spermatozoa after in vitro exposure to tritium beta-rays. Mutat Res. 1990;228(2):125-31.
23. Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget. 2015;6(29):26876-85.
24. Tsvetkova A, Ozerov IV, Pustovalova M, Grekhova A, Eremin P, Vorobyeva N, et al. GammaH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget. 2017;8(38):64317-29.
25. Goodhead DT. Energy deposition stochastics and track structure: what about the target? Radiat Prot Dosimetry. 2006;122(1-4):3-15.
26. Goodhead DT. Fifth Warren K. Sinclair Keynote Address: Issues in quantifying the effects of low-level radiation. Health Phys. 2009;97(5):394-406.
27. Alloni D, Cutaia C, Mariotti L, Friedland W, Ottolenghi A. Modeling dose deposition and DNA damage due to low-energy beta(-) emitters. Radiat Res. 2014;182(3):322-30.
28. Chen J. Estimated yield of double-strand breaks from internal exposure to tritium. Radiat Environ Biophys. 2012;51(3):295-302.
29. Kotenko KV, Bushmanov AY, Ozerov IV, Guryev DV, Anchishkina NA, Smetanina NM, et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates. Int J Mol Sci. 2013;14(7):13719-26.
30. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352-5.
31. Moiseenko VV, Hamm RN, Waker AJ, Prestwich WV. Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part I: Model formulation and basic results. Radiat Environ Biophys. 2001;40(1):23-31.
32. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662-9.
33. Saintigny Y, Roche S, Meynard D, Lopez BS. Homologous recombination is involved in the repair response of mammalian cells to low doses of tritium. Radiat Res. 2008;170(2):172-83.
34. Воробьева НЮ, Уйба ВВ, Кочетков ОА и др. Влияние 3H-тимидина на индукцию двунитевых разрывов ДНК в мезенхимальных стволовых клетках человека. Медицинская радиология и радиационная безопасность. 2018;63(1):28-34 [Vorobyeva NY, Uyba V, Kochetkov OA, Astrelina TA, Pustovalova MV, Grehova AK, et al. 3H-Thymidine Influence on DNA Double Strand Breaks Induction in Cultured Human Mesenchymal Stem Cells. Medical Radiology and Radiation Safety. 2018;63(1):28-34. (in Russ.)].
35. Воробьева НЮ, Кочетков ОА, Пустовалова МВ и др. Сравнительные исследования образования фокусов γН2АХ в мезенхимных стволовых клетках человека при воздействии 3Н-тимидина, оксида трития и рентгеновского излучения. Клеточные технологии в биологии и медицине. 2018;3:205-8. [Vorobyeva NYu, Kochetkov OA, Pustovalova MV, Grehova AK, Blohina TM, Yashkina EI, et al. Comparative study of γH2AX foci formation in human mesenchymal stem cells exposed to 3H-thymidine, tritium oxide and X-rays. Cell Technologies in Biology and Medicine. 2018;3:205-8. (in Russ.)].
36. Korzeneva IB, Kostuyk SV, Ershova LS, Osipov AN, Zhuravleva VF, Pankratova GV, et al. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium beta-radiation. Mutat Res. 2015;779:1-15.
37. Снигирёва ГП, Хаймович ТИ, Богомазова АН и др. Цито­генетическое обследование профессионалов-атомщиков, подвергавшихся химическому воздействию β-излучения трития. Радиационная биология. Радиоэкология. 2009;49(1):60-6. [Snigireva GP, Khaimovich TI, Bogomazova AN, Gorbunova IN, Nagiba VI, Nikanorova EA, et al. Cytogenetic examination of nuclear specialists exposed to chronic beta-radiation of tritium. Radiation Biol Radioecol. 2009;49(1):60-6. (in Russ.)].
38. Milacic S. Changes in leukocytes caused by tritium contamination. Health Phys. 2004;86(5):457-9.
39. Flegal M, Blimkie M, Roch-Lefevre S, Gregoire E, Klokov D. The lack of cytotoxic effect and radioadaptive response in splenocytes of mice exposed to low level internal beta-particle irradiation through tritiated drinking water in vivo. Int J Mol Sci. 2013;14(12):23791-800.
40. Balakrishnan S, Rao BS. Cytogenetic Effects of Tritiated Water (HTO) in Human Peripheral Blood Lymphocytes in vitro. Int J Human Genetics. 2004;4(4):237-42.
41. Kiyono T. Molecular mechanisms of cellular senescence and immortalization of human cells. Expert Opinion on Therapeutic Targets. 2007;11(12):1623-37.
42. Valentin J. Protection of the public in situations of prolonged radiation exposures: the application of the Commission’s system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues. Oxford: Published for the International Commission on Radiological Protection by Pergamon, 1999; 2000.
43. Hill RL, Johnson JR. Metabolism and dosimetry of tritium. Health Phys. 1993;65(6):628-47.
44. Clement CH. Environmental protection: the concept and use of reference animals and plants. Oxford: Published for the International Commission on Radiological Protection by Elsevier; 2009.
45. Icrp. Annex D. Radiation Effects in Reference Animals and Plants. Ann ICRP. 2008;38(4):179-229.
46. Higley KA, Kocher DC, Real AG, Chambers DB. Relative biological effectiveness and radiation weighting factors in the context of animals and plants. Ann ICRP. 2012;41(3-4):233-45.
47. Priest ND, Blimkie MS, Wyatt H, Bugden M, Bannister LA, Gueguen Y, et al. Tritium (3H) Retention In Mice: Administered As HTO, DTO or as 3H-Labeled Amino-Acids. Health Phys. 2017;112(5):439-44.
48. Muller WU, Streffer C, Molls M, Gluck L. Radiotoxicities of [3H]thymidine and of [3H]arginine compared in mouse embryos in vitro. Radiat Res. 1987;110(2):192-8.
49. Clerici L, Carroll MJ, Merlini M, Vercellini L, Campagnari F. The toxicity of tritium: the effects of tritiated amino-acids on preimplanted mouse embryos. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;45(3):245-50.
50. Muller WU, Heckeley N, Streffer C. Effects of cell cycle specific exposure to 3H-thymidine or 3H-arginine on development and cell proliferation of mouse embryos. Radiat Environ Biophys. 1996;35(4):267-71.
51. Killen HM, Carroll J. The effects of tritium on embryo development: the embryotoxic effects of [3H]tryptophan. Int J Radiat Biol. 1989;56(2):139-49.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 26.11.2018.

Accepted for publication: 12.03.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 11–16

A.V. Titov1, N.K. Shandala1, D.V. Isaev1, М.P. Semenova1, V.А.  Seregin1, Yu.S.  Belskikh1, T.V. Ostapchuk2, A.S. Chernobaev2

Assessment of the Public Radiation Protection and Economic Activity Safety in the Area of the Developed Uranium Deposit

1 A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
2 “Center for Hygiene and Epidemiology № 101” FMBA of Russia, Lermontov, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To analize radiation situation in the vicinity of mine number one of the Lermontov Production Association “Almaz” in the areas of the public residence and economic activities.

Material and methods: During the study, methods of pedestrian gamma surveys with a portable spectrometric complex MKS-01A “Multirad-M” and short-term measurements of radon equivalent equilibrium concentration with aerosol alpha radiometer RAA-20P2 “Poisk” were used.

Results: Along the main roads used by the population for walks and rest, the values of the gamma ambient dose equivalent rate vary within the range between 0.10 and 0.86 μSv/h. Local areas with excess of the remediation criterion (0.6 μSv / h), established by the Sanitary Rules for elimination, conservation and changing functions of facilities for radioactive ore mining and milling (SP LKP-91), are located on the ascent of Beshtau Mountain from the side of the Town of Pyatigorsk (near tunnels and dumps). Along other routes, the remediation criteria are met. External effective doses to the population in a single passage of the routes vary from 1.0 to 1.6 µSv. The highest contribution to the dose from manmade radiation does not exceed 30 %. The highest external doses (4.3 μSv at the contribution of manmade radiation about 70 %) can be realized when resting near the most contaminated parts of the dumps or tunnel mouths.
The equivalent equilibrium concentrations of radon progenies in air along the routes did not exceed 60 Bq/m3. The effective internal dose due to inhalation intake of radon and its progenies will not exceed 3 μSv when single passing routes.

Conclusions: In the main areas of the residence and economic activity of the population in the vicinity of mine number 1 , the radiation situation at some locations does not comply with the requirements of the SP LKP-9, however, it does not pose a threat to public health.

Key words: natural radionuclides, inhalation intake, tailing dumps, uranium mining and milling facility, effective dose

For citation: Titov AV, Shandala NK, Isaev DV, Semenova МP, Seregin VА, Belskikh YuS, Ostapchuk TV, Chernobaev AS. Assessment of the Public Radiation Protection and Economic Activity Safety in the Area of the Developed Uranium Deposit. Medical Radiology and Radiation Safety. 2020;65(2):11-6. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-11-16

References

  1. Шахтерская энциклопедия. Лермонтовский рудник № 1. [Miner’s Encyclopedia. The Lermontov Mine number 1. https://miningwiki.ru/wiki/Лермонтовский_рудник_№1. (in Russ.)].
  2. Проблемы ядерного наследия и пути их решения. Под ред. ЕВ Евстратова, АМ Агапова, НП Лаверова, ЛА Большова, ИИ Линге. Т. 1. – М. 2012. 356 с. [Nuclear Legacy Problems and Their Solution. Ed by EV Evstratov, AM Agapov, NP Laverov, LA Bolshov, II Linge. Vol. 1. Moscow. 2012. 356 pp. (in Russ.)].
  3. Boitsov AV, Komarov AV, Nikolsky AL. Environmental impact of uranium mining and milling in the Russian Federation 165-175. In: Developments in Uranium Resources, Production, Demand and the Environment. Proceedings of a Technical Committee Meeting Held in Vienna, 15–18 June 1999. IAEA, Vienna, 2004 IAEA-TECDOC-1425.
  4. Конкурсная документация. Открытый одноэтапный конкурс в электронной форме на право заключения договора на выполнение работ «Рекультивация рудника № 1 и хвостохранилища по теме: «Рекультивация хвостохранилища, объектов Гидрометаллургического завода и урановых рудников № 1 и № 2, включая проектно-изыскательские работы, бывшего государственного предприятия «Алмаз» (г. Лермонтов, Ставропольский край)». Официальный государственный сайт www.zakupki.gov.ru. [Competition Documentation. Open One-stage Tender in Electronic Form for the Right to Conclude a Contract for the Execution of Works “Remediation of Mine-1 and of the Dumps on: “Remediation of the Tailing Dump, Facilities of the Hydro-metallurgical Plant and Uranium Mines Number 1 and Number 2, including Design and Survey Work, of the Former State Company of “Almaz” (the Town of Lermontov, Stavropol Territory)”. Official State Website: www.zakupki.gov.ru. (in Russ.)].
  5. Проектная документация. Раздел 7 «Проект организации работ по рекультивации». Часть 1 «Рудник № 1 (г. Бештау). Рекультивация приштольневых отвалов, изоляция устьев горных выработок, вы­ходящих на земную поверхность». Рекультивация хвостохранилища ГМЗ и урановых рудников № 1 и № 2 бывшего госпредприятия «Ал­маз» (г. Лермонтов, Ставропольский край). Официальный государственный сайт www.zakupki.gov.ru. [Design documentation. Section 7 «The Project of Remediation Works». Part 1 «Mine number 1 (Mount Beshtau). Remediation of near-tunnel dumps, isolation of the estuaries of the mine working areas those emerge on the earth’s surface». Remediation of the tailing dumps of the Hydrometallurgical Plant (HMP) and uranium mines number 1 and number 2 of the former state enterprise Almaz (the Town of Lermontov, Stavropol Territory). Official State Website: www.zakupki.gov.ru. (in Russ.)].
  6. Отчет о результатах инженерно-экологических изысканий на территории рудника 1 (Г. Бештау) г. Лермонтов, Ставропольский край. Этап 1 п. 3. ОАО «ВНИПИ промтехнологии. — М. 2009. [Report on the Results of Engineering and Environmental Surveys on the Site of Mine-1 (Beshtau Mountain) the Town of Lermontov, Stavropol Krai. Stage 1 i.3. JCS “VNIPI Promtechnologii”. Moscow. 2009. (in Russ.)].
  7. СП ЛКП-91. Санитарные правила ликвидации, консервации и перепрофилирования предприятий по добыче и переработке радиоактивных руд. МЗ СССР. 1991 г. [SP LKP-91. Sanitary Rules for Elimination, Conservation, and Changing Functions of Facilities for Radioactive Ore Mining and Milling. MH USSR. 1991. (in Russ.)].
  8. Паспорт памятника природы краевого значения «Гора Бештау». Утвержден приказом министерства природных ресурсов и охраны окружающей среды Ставропольского края от 28.09.2015 № 303 [Passport of the nature monument of the regional value “Mountain Beshtau”. Approved by the Order of the Ministry of Natural Resources and Environmental Protection of the Stavropol Krai of 28.09.2015 No. 303. mpr26.ru/upload/oopt/pasport-pamyatnika-prirody-gora-beshtau.doc. (in Russ.)].
  9. Решение Экономического совета СНГ о докладе «Реаби­ли­тация территорий государств-участников Содружества Независимых Государств, подвергшихся деятельности урановых производств» (Вместе с Рабочей группой по подготовке Доклада) (Принято в г. Москве 27.12.2006). [Decision of the CIS Economic Council on the report “Remediation of the territories of the member states of the Commonwealth of Independent States affected by the activities of uranium production” (Together with the Working Group on the Report Preparing) (Approved in Moscow 27.12.2006) http://www.conventions.ru/view_base.php?id=9680. (in Russ.)].
  10. Концепция федеральной целевой программы “Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года”. Утверждена распоряжением Правительства Российской Федерации от 19.04.2007 №484-р. [Conception of the Federal Target Program “Nuclear and Radiation Safety for 2008 and for the Period till 2015”. Approved by the Directive of the Government of the Russian Federation of 19 April 2007 No. 484-р. (in Russ.)].
  11. Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2016–2020 годы и на период до 2030 года». http://фцп-ярб2030.рф. [The Federal Target Program «Nuclear and Radiation Safety for 2016 — 2020 and for the Period up to 2030». http://фцп-ярб2030.рф. (in Russ.)].
  12. ФГУП «РосРАО»: Проекты реабилитации загрязненных территорий // Атомная энергия 2.0. http://www.atomic-energy.ru/articles/2012/08/17/35351. [FSUE «RosRAO»: Projects of Remediation of Contaminated Areas. Atomic Energy 2.0. http://www.atomic-energy.ru/articles/2012/08/17/35351. (in Russ.)].
  13. Особые радиоактивные отходы. Под ред. И.И. Линге. — М.: ООО «САМполиграфист». 2015 г. 240 с. [Special Radioactive Waste. Ed. by I.I. Linge. — Moscow 2015. 240 pp. (in Russ.)].
  14. The Fifth National Report of the Russian Federation on Compliance with the Obligations of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management. Prepared for the Sixth Review Meeting in Frames of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management. Moscow 2017. 140 рp. https://www.iaea.org/sites/default/files/russian-federation-eng-jc.pdf.
  15. Доклад «О состоянии санитарно-эпидемиологического благополучия населения в городе Лермонтове Ставро­польского края в 2017 году». Анализ деятельности по разделу работы — радиационная безопасность и гигиена труда за 2017 год. http://fmbaros.ru/Public/Ru/mru101/sancondition. [Report “On the State of the Health and Epidemiological Wellbeing of the Population in the Town of Lermontov of the Stavropol Krai in 2017”. Analysis of activities in the field of radiation safety and occupational health over 2017. http:// fmbaros.ru/Public/Ru/mru101/sancondition. (in Russ.)].
  16. Микляев ПС, Петрова ТБ, Маренный АМ и др. Уровни эксхаляции радона на западном склоне горы Бештау, Кавказские минеральные воды. Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2018(5):20-30. [Miklyaev PS, Petrova TB, Marenny AM et al. Radon Exhalation Rate on the Western Slope of Beshtau Mountain, Caucasian Mineral Waters Region. Geoekologiya Inzhenernaya Geologiya. Gidrogeologiya. Geokriologiya. 2018(5):20-30. (in Russ.)].
  17. Шандала НК, Титов АВ, Исаев ДВ и др. Оценка влияния последствий ливневых дождей на радиационную обстановку в районе расположения штольни № 16 бывшего предприятия ЛПО «Алмаз». Медицина экстремальных ситуаций 2017;2(60):202-7. [Shandala NK, Titov AB, Isaev DV et al. Assessment of the Impact of the Effects of Heavy Rain on the Radiation Situation in the Vicinity of the Tunnel Number 16 of the Former «Almaz» company. Medicine of Extreme Situations. 2017;2(60):202-7. (in Russ.)].
  18. Титов АВ, Шандала НК, Маренный АМ и др. Радиационная обстановка на объекте бывшего предприятия ЛПО «Алмаз». Гигиена и санитария 2017;96(9):822-6. [Titov AB, Shandala NK, Marenny AM et al. Radiation Situation on the Site of the Former “Almaz” Company. Hygiene and Sanitary. 2017;96(9):822-6 (in Russ.)].
  19. Карпенко ЕИ, Санжарова НИ, Спиридонов СИ, Серебряков ИС. Радиоэкологическая обстановка в районе размещения бывшего уранодобывающего предприятия ЛПО «Алмаз». Радиация и риск. 2018;(4):73-81. [Karpenko EI, Sanzharova NI, Spiridonov SI, Serebryakov IS. Radioecological Situation in the Vicinity of the Former Uranium Processing Plant “Almaz”. Radiation and Risk. 2018;(4):73-81. (in Russ.)].
  20. Р 2.6.5.048-2017. Критерии реабилитации территорий и объектов предприятий по добыче и переработке урановых руд: Руководство. — М.: ФМБА, 2017. 13 с. [R 2.6.5.048-2017. Criteria for Remediation of Sites and Facilities for Uranium Ore Mining and Milling: Guidance. — M. Federal Medical Biological Agency, 2017. 13 pp. (in Russ.)].

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 21.01.2020.

Accepted for publication: 12.03.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 21–26

R.M. Takhauov1,2, D.S. Isubakova1, E.V. Bronikovskaya1, O.S. Tsymbal1, M.V.  Khalyuzova1, L.R. Takhauova2, A.B. Karpov1,2, N.V. Litviakov1,3, I.V. Milto1,2

The Bank of Biological Samples by Seversk Biophysical Research Center

1 Seversk Biophysical Research Center, Seversk, Russia
2 Siberian State Medical University, Tomsk, Russia
3 Tomsk Cancer Research Institute, Tomsk, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: Description of the collection, structure and development dynamics during the period from 2015 to 2019 of the biological material bank of the Seversk Biophysical Research Center, as well as research works carried out using biological material from its collection.

Material and methods: The collection of bank of biological material includes the following types of biological material: venous blood, genomic DNA of white blood cells, cytogenetic suspensions of blood lymphocytes, surgical, biopsy and autopsy material. Biological material was obtained from people exposed to chronic radiation exposure: employees of the nuclear industry and the population permanently residing in the territory located in the area of the nuclear industry.

Results: At present, the collection of the biological material bank contains more than 21,000 samples of biological material obtained from more than 8,000 donors. The collection of bank of biological material is represented by 4 main blocks: biological material of conditionally healthy employees of company of the nuclear industry (Siberian Chemical Combine); biological material of conditionally healthy people permanently residing in the territory located in the area of the nuclear industry enterprise (Seversk); biological material of patients (workers of the Siberian Chemical Combine and residents of Seversk) with malignant neoplasms and biological material of patients (workers of the Siberian Chemical Combine and residents of Seversk) with acute myocardial infarction. In the collection of bank of biological material, the proportion of samples of biological material of relatively healthy workers of the Siberian Chemical Combine is 33 %, residents of Seversk — 40.8 %, patients with malignant neoplasms — 22.2 %, patients with acute myocardial infarction — 4 %.

Conclusion: Biological material bank Seversk Biophysical Research Center is unique collection of biological material samples of healthy people and patients with socially significant diseases. A feature of the biological material of the biological material bank is that it is obtained from people who have been exposed to chronic low-intensity radiation exposure and can be used to evaluate its radiogenic effects.

Key words: bank of biological material, ionizing radiation, chromosomal aberration, malignant neoplasms, acute myocardial infarction

For citation: Takhauov RM, Isubakova DS, Bronikovskaya EV, Tsymbal OS, Khalyuzova MV, Takhauova LR, et al. The Bank of Biological Samples by Seversk Biophysical Research Center. Medical Radiology and Radiation Safety. 2020;65(2):21-6. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-21-26

References

  1. Корниенко ИВ, Фалеева ТГ, Ракуц ВС и др. Необходимость создания национального ДНК-хранилища биологических образцов в Российской Федерации. Теория и практика судебной экспертизы. 2018;13(4):60-7. [Kornienko IV, Faleeva TG, Rakuts VS, Ivanov IN, Sidorenko YuS. The case for creating a national DNA repository of biological samples in the Russian Federation. Theory and Practice of Forensic Science. 2018;13(4):60-7. (in Russ.)]. DOI: 10.30764/1819-2785-2018-13-4-60-67.
  2. Баланковская ЕВ, Жабагин МК, Агджоян АТ и др. Популяционные биобанки: принципы организации и перспективы применения в геногеографии и персонализированной медицине. Генетика 2016;52(12):1371-87. [Balanovska EV, Zhabagin MK, Agdzhoyan AT, et al. Population biobanks: principles of organization and prospects of application in genogeography and personalized medicine. Genetics. 2016;52(12):1371-87. (in Russ.)]. DOI: 10.7868/S001667581612002X.
  3. Kodama Y, Mashima J, Kaminuma E, Gojobori T, Ogasawara O, Takagi T, et al. The DNA Data Bank of Japan Launches a New Resource, the DDBJ Omics Archive of Functional Genomics Experiments. Nucleic Acids Res. 2012;(40):38-42. DOI: 10.1093/nar/gkr994.
  4. Takhauov RM, Karpov AB, Albach EN, Khalyuzova MV, Freidin MB, Litviakov NV, et al. The bank of biological samples representing individuals exposed to long-term ionizing radiation at various doses. Biopreservation and Biobanking. 2015;13(2):72-8. DOI: 10.1089/bio.2014.0035.
  5. Межерицкий СА, Тахауов РМ, Карпов АБ и др. Банк биологического материала здоровых работников Сибирского химического комбината. Медицина экстремальных ситуаций. 2013;1(43):30-9. [Mezheritsky SA, Takhauov RM, Karpov AB, Litviakov NV, Vasilieva EO, Goncharik OO, et al. Healthy employees’ biological material bank at the Siberian group of chemical enterprises. Medicine of Extreme Situations. 2013;1(43):30-9. (in Russ.)].
  6. Литвяков НВ, Фрейдин МБ, Халюзова МВ и др. Частота и спектр цитогенетических нарушений у работников Сибирского химического комбината. Радиац. биология. Радиоэкология. 2014;54(3):283-96. [Litviakov NV, Freidin MB, Khalyuzova MV, Sazonov AS, Vasilyeva EO, Albach EN, et al. The frequency and spectrum of cytogenetic anomalies in employees of Siberian group of chemical enterprises. Radiation Biology. Radioecology. 2014;54(3):283-96. (in Russ.)]. DOI: 10.7868/S0869803114030084.
  7. Литвяков НВ, Халюзова МВ, Тахауов РМ и др. Аберрации числа копий ДНК в лимфоцитах крови лиц, подвергавшихся профессиональному облучению, как потенциальный маркер их высокой радиочувствительности. Вестник Томского государственного университета. Биология. 2015;2(30):113-33. [Litviakov NV, Khalyuzova MV, Takhauov RM, Sazonov AS, Isubakova DS, Bronikovskaya EV, et al. DNA copy number variations of blood lymphocytes in people exposed to occupational irradiation as a possible marker of high radiosensitivity. Tomsk state University Journal of Biology. 2015;2(30):113-33. (in Russ.)]. DOI: 10.17223/19988591/30/8.
  8. Халюзова МВ, Литвяков НВ, Тахауов РМ и др. Изменение с течением времени частоты нестабильных хромосомных аберраций и CNA-генетического ландшафта лейкоцитов крови лиц, подвергавшихся хроническому радиационному воздействию. Радиац. биология. Радиоэкология. 2018;6:565-73. [Khalyuzova MV, Litviakov NV, Takhauov RM, Isubakova DS, Usova TV, Bronikovskaya EV, et al. Delayed changes in the frequency of unstable chromosomal aberrations and the CNA-genetic landscape of blood leukocytes in people exposed to long-term occupational irradiation. Radiation Biology. Radioecology. 2018;6:565-73. (in Russ.)]. DOI: 10.1134/S0869803118050090.
  9. Литвяков НВ, Гончарик ОО, Фрейдин МБ и др. Оценка связи полиморфизмов генов с частотой и спектром цитогенетических аномалий у здоровых работников Сибирского химического комбината, подвергавшихся радиационному воздействию (microarray исследования). Радиац. биология. Радиоэкология. 2013;53(2):137-50. [Litviakov NV, Goncharik OO, Freidin MB, Sazonov AE, Vasilyeva EO, Mezheritsky SA, et al. The estimate of association between gene polymorphisms and the frequency and spectrum of cytogenetic abnormalities in the cohort of Siberian group of chemical enterprises employees exposed to professional irradiation (microarray studies). Radiation Biology. Radioecology. 2013;53(2):137-50. (in Russ.)]. DOI: 10.7868/S0869803113020069.
  10. Халюзова МВ, Литвяков НВ, Исубакова ДС и др. Валидация связи генного полиморфизма с повышенной частотой хромосомных аберраций у работников радиационного производства. Радиац. биология. Радиоэкология. 2017;57(4):365-83. [Khalyuzova MV, Litviakov NV, Isubakova DS, Bronikovskaya EV, Usova TV, Albach EN, et al. Validation of the association between gene polymorphism and frequency of cytogenetic abnormalities in the cohort of employees of radiation facilities. Radiation Biology. Radioecology. 2017;57(4):365-83. (in Russ.)]. DOI: 10.7868/S0869803117040038.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 31.10.2019.

Accepted for publication: 12.03.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 17–20

V.F. Demin1, A.P. Biryukov2, M.K. Sedankin2, V.Yu. Soloviev2

Specific Risk of Radiogenic Cancer for Professionals

1 National Research Center “Kurchatov institute”, Moscow, Russia
2 A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: Analysis of the dependence of the probability of death due to radiogenic cancer on the dose level, on the nature of exposure to ionizing radiation (IR), on age when exposed to IR and on the age of its effect, etc., to support decisions on medical and social measures to protect workers in hazardous industries.

Material and methods: Calculation formulas for risk assessment are given using the multiplicative and additive risk models for one-time and extended exposure to IR. Medical and demographic data for the urban population of the Chelyabinsk region for 1989 were taken as necessary baseline data for risk assessment. The risk was calculated using the combined BEIR VII and EPA models.

Results: The risk is calculated in terms of annual or lifetime risk of death from spontaneous and radiogenic solid cancer for two scenarios of occupational exposure to IR (single and extended), for a set dose of 0.5; 1; 2 Sv and different ages of survival of a person who started work in production at the age of 20.

Conclusions: 1. For small and moderate doses (D ≤ 1 Sv), prolonged exposure in the age range of 20–30 years leads to less risk than with short-term exposure at the age of 20 years with the same dose. This effect is absent for irradiation after 30 years. 2. The risk of death from spontaneous solid cancer is somewhat less for exposed people than for non-exposed people. Reason: radiogenic cancer begins to compete with spontaneous one. 3. With relatively small integral doses (< 1 Sv), the radiogenic risk linearly depends on the dose. At moderate and high doses (≥ 1 Sv), for continuous extended exposure the dose dependence becomes nonlinear. 4. The probability of causation of death from radiogenic solid cancer for older people and for doses of D ≥ 1 Sv becomes significant, especially for women (30 % and more in relation to spontaneous solid cancer). 5. The lifetime risk of radiogenic cancer from the dose received at working age decreases significantly with age when it reaches 60 years of age.

Key words: dose, occupational exposure, risk assessment, radiogenic risk, mortality, solid cancer, dose–response relationship

For citation: Demin VF, Biryukov AP, Sedankin MK, Soloviev VYu. Specific Risk of Radiogenic Cancer for Professionals. Medical Radiology and Radiation Safety. 2020;65(2):17-20. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-17-20

References

  1. Соловьёв ВЮ, Дёмин ВФ, Краснюк ВИ. Алгоритм принятия решений по социальной и медицинской защите в чрезвычайной ситуации. Гигиена и санитария. 2019;98(1):33-5. [Soloviev VYu, Demin VF, Krasnyuk VI. Algorithm of decision making on social and medical protection in an emergency. Gygiena and Sanitaria. 2019;98(1):33-5. (in Russ.)].
  2. Демин ВФ, Бирюков АП, Забелин МВ, Соловьев ВЮ. Проблемы установления зависимости доза — эффект для радиационного канцерогенеза. Медицинская радиология и радиационная безопасность. 2018;63(3):25-33. [Demin VF, Biryukov AP, Zabelin MV, Soloviev VYu. Problems of identifying dose — effect dependence for ionizing radiation. Medical Radiology and Radiation Safety. 2018;63(3):25-33. (in Russ.)].
  3. Рахманин ЮА, Демин ВФ, Иванов СИ. Общий подход к оценке, сравнению и нормированию риска здоровью человека от разных источников вреда. Вестник РАМН, 2006;4:5-8. [Rakhmanin YuA, Demin VF, Ivanov SI. General approach to the assessment, comparison and normalization of the risk to human health from various sources of harm. Bulletin of the Russian Academy of Medical Sciences. 2006;4:5-8. (in Russ.)].
  4. Демин ВФ, Захарченко ИЕ. Риск воздействия ионизирующего излучения и других вредных факторов на здоровье человека: методы оценки и практическое применение. Радиационная биология. Радиоэкология. 2012;52(1):77-89. [Demin VF, Zakharchenko IE. The risk of exposure to ionizing radiation and other harmful factors on human health: assessment methods and practical application. Radiation Biology. Radioecology. 2012;52(1):77-89. (in Russ.)].
  5. Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007;37(2-4).
  6. United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of Ionizing Radiation, UNSCEAR 2006 Report, Volume I, Annex A, NY: United Nations, 2008.
  7. Health Risks from Exposure to Low Levels of Ionizing Radiation (BEIRVII). National Academy Press. Washing­ton DC. 2005. 710 p.
  8. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population. April 2011, U.S. EPA, Washington DC. 2011. 164 p.
  9. Ильин ЛА, Киселев МВ, Панфилов АП. Медико-дозиметрический регистр работников атомной промышленности России. Состояние и перспективы. Бюллетень сибирской медицины. 2005;4(2):6-13. [Il’in LA, Kiselev MV, Panfilov AP. Medical and dosimetric register of nuclear industry workers in Russia. State and prospects. Bulletin of Siberian medicine. 2005;4 (2):6-13. (in Russ.)].

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The work was carried out with the support of National Research Center "Kurchatov Institute" (order №1363 25.06.2019)

Contribution. Article was prepared with equal participation of the authors.

Article received: 05.08.2019.

Accepted for publication: 12.03.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 27–33

V.A. Rozhko1, I.V. Veyalkin2, T.M. Sharshakova1

Primary Incidence of Autoimmune Tyroiditis in the Republic of Belarus and Radiation Factor

1 Gomel State Medical University, Gomel, Belarus
2 Republican Scientific and Practical Center of Radiation Medicine and Human Ecology, Gomel, Belarus
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Actuality: In the Belarus, the primary incidence of thyroid pathology is in the 2d rank among endocrine diseases after diabetes. Studying the trends in the primary incidence of autoimmune thyroiditis (AIT) in the Belarus is important for improving organizational decisions and further improving the quality of medical care for the population.

Purpose: Is to conduct a comparative analysis of the incidence of AIT in the population and in the affected population based on an epidemiological study in the Belarus, taking into account the radiation and organizational components in the formation of pathology.

Material and methods: The data of the republican statistical reports and the data of the Chernobyl Register from 1997 to 2017 were analyzed. Standard methods of descriptive epidemiology were used in the work.

Results: According to Chernobyl Registry, during the observation period (1997–2017), the primary incidence of AIT decreased by 1.4 times (1997 – 135.1 ± 15.77 0/0000; 2017 – 98.4 ± 7.55 0/0000). The incidence was statistically significantly higher in women than men (ratios ranged from 2.39:1 in 2004 to 4.0:1 in 2000). Moreover, the incidence according to Chernobyl Registry was higher than in the adult population, but in children where was no difference with population data. This indicates a high-quality clinical examination of the children’s population. Two organizational and medical approaches have been formed in the republic. The first approach (Grodno, Brest, Minsk regions and Minsk) is characterized by periods of moderate growth, decline, and growth again. In the second approach (Vitebsk, Mogilev and Gomel regions), there are two periods when the increase in incidence sharply changes to decrease before the end of the study period. An analysis of the odds ratio allowed us to conclude that insignificant effect of radioactive iodine on the incidence of AIT in children at the time of the accident and its absence in the adult population.

Conclusion: The study confirms the importance of the organizational component in the early diagnosis of AIT.

Key words: autoimmune thyroiditis, primary incidence, organizational medical approach, radiation factor, Belarus

For citation: Rozhko VA, Veyalkin IV, Sharshakova TM. Primary Incidence of Autoimmune Tyroiditis in the Republic of Belarus and Radiation Factor. Medical Radiology and Radiation Safety. 2020;65(2):27-33. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-27-33

References

1. Biondi B. The Normal TSH Reference Range: What Has Changed in the Last Decade? J Clin Endocrinol Metab. 2013;98(9):3584-7.
2. Nexo MA, Watt T, Pedersen J, Bonnema SJ, Hegedüs L, Rasmussen AK, et al. Increased Risk of Long-Term Sickness Absence, Lower Rate of Return to Work, and Higher Risk of Unemployment and Disability Pensioning for Thyroid Patients: A Danish Register-Based Cohort Study. J Clin Endocrinol Metab. 2014;99:3184-92.
3. Noureldine S. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr Opin Oncol. 2015;27(1):21-5.
4. Pedersen CB. The Danish Civil Registration System. Scand J Public Health. 2011;39(7):22-5.
5. Pedersen J, Bjorner JB, Burr H, Christensen KB. Transitions between sickness absence, work, unemployment, and disability in Denmark 2004-2008. Scand J Work Environ Health. 2012;38(6):516-26.
6. Torimoto K, Okada Y, Nakayamada S, Kubo S, Tanaka Y. Anti-PD-1 antibody therapy induces Hashimoto’s disease with an increase in peripheral blood follicular helper T cells. Thyroid. 2017;27:1335-6.
7. Бронников ВИ, Голырева ТП, Терещенко ИВ. Влияние антропогенных загрязнений на структуру щитовидной железы у жителей Перми. Арх. патологии. 2005(6):18-21. [Bronnikov VI, Golyreva TP, Tereshchenko IV. The influence of anthropogenic pollution on the structure of the thyroid gland in Perm residents. Arch Pathology. 2005(6):18-21. (in Russ.)].
8. Карлович НВ, Мохорт ТВ, Воронцова ТВ. Распространенность и характер аутоиммунной патологии щитовидной железы у лиц молодого возраста с сахарным диабетом типа 1. Пробл. эндокринологии. 2005(1):19-24. [Karlovich NV, Mohort TV, Vorontsova TV. The prevalence and nature of autoimmune thyroid pathology in young people with type 1 diabetes mellitus. Probl Endocrinol. (in Russ.)].
9. Ткач НВ, Парамонова НС, Карева ЕГ. Динамика заболеваемости аутоиммунным тиреоидитом у детей и подростков Гродненской области. Журнал ГГМУ. 2005(3):110-2. [Tkach NV, Paramonova NS, Kareva EG. The dynamics of the incidence of autoimmune thyroiditis in children and adolescents of the Grodno region. Journal of State Medical University. (in Russ.)].
10. Данилова ЛИ. Болезни щитовидной железы и ассоциированные заболевания. Минск-Нагасаки. 2005. 470 с. [Danilova LI. Thyroid Diseases and Associated Diseases. Minsk-Nagasaki. 2005. 470 p. (in Russ.)].
11. Hu S, Rayman MP. Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid. 2017;27(5):597-610.
12. Rugger RM, Trimarchi F, Guiffrida G, et al. Autoimmune comorbidities in Hashimoto’s thyroiditis: different patterns of association in adulthood and childhood/adolescence. Eur J Endocrinology. 2017;176(2):133-41.
13. Кенигсберг ЯЭ, Крюк ЮЕ. Облучение щитовидной железы жителей Беларуси вследствие Чернобыльской аварии: дозы и эффекты. Гомель: РНИУП «Институт радиологии», 2004. 121 с. [Koenigsberg JE, Hook YuE. Irradiation of the thyroid gland of residents of Belarus due to the Chernobyl accident: doses and effects. Gomel: RNIUP Institute of Radiology, 2004. 121 p. (in Russ.)].
14. О порядке организации диспансерного обследования граждан, пострадавших от катастрофы на Чернобыльской АЭС, других радиационных аварий и признании утратившими силу некоторых постановлений Министерства здравоохранения Республики Беларусь и структурного элемента нормативного правового акта: постановление Министерства здравоохранения Республики Беларусь, 16.03.2010 г, № 28. URL: http://pravo.levonevsky.org/bazaby11/republic07/text084.htm (дата обращения 21.02.2020). [On the procedure for organizing a dispensary examination of citizens affected by the Chernobyl disaster, other radiation accidents and invalidating certain decisions of the Ministry of Health of the Republic of Belarus and a structural element of a regulatory legal act: resolution of the Ministry of Health of the Republic of Belarus, March 16, 2010, No. 28 [cited 2020 Feb 21]. Available from: http://pravo.levonevsky.org/bazaby11/republic07/text084.htm (in Russ.)].
15. Об утверждении инструкции о порядке проведения диспансеризации: постановление Министерства здравоохранения Республики Беларусь, 12.08.2016 г. № 96. URL: http://minzdrav.gov.by/upload/dispanserizatsiya/instruktsiya/000127_245033_postan96.pdf (дата обращения 21.02.2020). [On approval of the instructions on the procedure for the medical examination: Decree of the Ministry of Health of the Republic of Belarus, 08.08.2016, No. 96. [cited 2020 Feb 21]. Available from: http://minzdrav.gov.by/upload/dispanserizatsiya/instruktsiya/000127_245033_postan96.pdf (in Russ.)].
16. Моисеев ПИ, Веялкин ИВ, Демидчик ЮЕ. Эпидемиология злокачественных новообразований: принципы и методы. Руководство по онкологии. Учебник. Под ред. О.Г. Суконко. Минск, 2015:51-82. [Moiseev PI, Veyalkin IV, Demidchik YuE. Epidemiology of malignant neoplasms: principles and methods. Guide to oncology: a textbook. Ed OG Sukonko. Minsk, 2015:51-82. (in Russ.)].
17. Breslow NE, Day NE. Statistical methods in cancer research. The design and analysis of cohort studies. Lyon: IARC, 1987;2. 404 p.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 26.02.2020.

Accepted for publication: 12.03.2020.

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2769992
Today
Yesterday
This week
Last week
This month
Last month
For all time
2938
2948
25438
25438
77735
75709
2769992

Forecast today
2712


Your IP:216.73.216.225