JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 3. P. 40–44

A.V. Guryev, A.R. Tukov, A.Yu. Bushmanov, M.Yu. Kalinina, A.V. Zubov

The Health of Workers with the Intake of Radionuclides in Case of Skin Damage

A.I. Burnasyan Medical Biophysical Center, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: Analysis of the prevalence of diseases of non-professional genesis in individuals with intake of radionuclides through damaged skin and served by health care institutions of the Federal Medical and Biological Agency of Russia.

Material and methods: The database of the “Industry register of persons with occupational diseases” includes the health indicators of individuals with intake of radionuclides through damaged skin and a population of 185 patients aged 68.9 ± 1.0 years for 2014 (166 men aged 68.3 ± 1.0 years and 19 women aged 74.0 ± 3.4 years). The coding of diseases of non-professional genesis was carried out according to the International Statistical Classification of Diseases and Problems Related to Health (ICD-10). Student’s criterion was used as a criterion of statistical validity (< 0.05). To assess the health of persons counted in the register, the prevalence rate of diseases of non-professional genesis, calculated for 1000 patients with occupational diseases, was used. An intensive indicator error was calculated (± m 95 %).

Results: The prevalence of non-occupational diseases is 1637.8 ± 94.1 (men 1614.5 ± 98.6, women 1842.1 ± 311.4; p > 0.05). Disorders of the musculoskeletal system occupy the first place – 340.5 ± 34.8; 20.8 % (men 313.3 ± 36.0; 19.4 %, women 578.9 ± 174.6; 31.4 %; > 0.05). Of these, dorsopathies accounted for 286.5 ± 33.1; 84.1 % (men 265.1 ± 34.3; 84.6 %, women 473.7 ± 114.6; 81.8 %; > 0.05). Diseases of the digestive organs are 270.3 ± 32.7; 16.5 %. The highest rates in persons with diseases of the esophagus, stomach and duodenum 205.4 ± 29.7; 76.0 % (men 210.8 ± 31.7; 76.1 %, women 157.9 ± 83.7; 75.0 %; > 0.05). The third ranking place is divided by diseases of the eye and its adnexa 200.0 ± 29.4; 12.2 % (men 192.8 ± 30.6; 11.9 %, women, 263.2 ± 101.0; 14.3 %; > 0.05) and circulatory system diseases 200.0 ± 29,4; 12.2 % (men 174.7 ± 29.5; 10.8 %, women 421.1 ± 113.3; 22.9 %; > 0.05). In the structure of diseases of non-professional genesis, the diseases of the first four ranking places, including respiratory diseases, make up 73.6 % (men 72.4 %, women 82.9 %).

Conclusion: Among the diseases in persons with the intake of radionuclides through damaged skin are the most common disorders of the musculoskeletal system, diseases of the digestive system, diseases of the eye and its appendage apparatus. In terms of frequency, they are inferior to diseases of the circulatory system and respiratory organs. As one of the solutions to the problem of registration in persons with signs of contamination of radionuclides of damaged skin in the framework of ICD-10, it is proposed to introduce code S61.2 as “Open wounds of wrist and hand with intake of radionuclides”.

Key words: skin damage, radionuclide intake, diseases of non-professional genesis

For citation: Guryev AV, Tukov AR, Bushmanov AYu, Kalinina MYu, Zubov AV. The Health of Workers with the Intake of Radionuclides in Case of Skin Damage. Medical Radiology and Radiation Safety. 2020;65(3):40-4. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-3-40-44

Список литературы / References

  1. Богданов И.М., Зайцев Е.П., Овчинников А.В. и соавт. Организация системы контроля и вопросы медико-санитарного сопровождения персонала в условиях поступления радионуклидов плутония и америция через поврежденные кожные покровы. Медицина экстремальных ситуаций. 2018;20(1):86-93. [Bogdanov IM, Zaitsev EP, Ovchinnikov AV, et al. The organization of the control system and the issues of medical and sanitary support of personnel in the conditions of plutonium and americium radionuclide intake through damaged skin integuments. Medicine of Extreme Situations. 2018; 20(1):86-93. (In Russ.)].
  2. Беляев И.К., Жорова Е.С., Калистратова B.C. и соавт. Радиоактивные вещества и колотые раны. Медицина экстремальных ситуаций. 2011;13(1):41-52. [Belyaev IK, Zhorova ES, Kalistratova BC, et al. Radioactive substances and stab wounds. Medicine of Extreme Situations. 2011;13(1):41-52. (In Russ.)].
  3. МУ 2.6.1.034-2014. Порядок взаимодействия предприятий Госкорпорации «Росатом» и органов и организаций ФМБА России при нестандартном (раневом) и аварийном ингаляционном поступлении изотопов плутония и америция-241. Методические указания. – М. 2014. 24 с. [MU 2.6.1.034-2014. “The order of interaction between the enterprises of Rosatom State Corporation and the bodies and organizations of the FMBA of Russia with non-standard (wound) and emergency inhalation intake of plutonium and americium-241 isotopes”. Methodical instructions. Moscow. 2014. 24 p. (In Russ.)].
  4. Маслюк А.И., Богданов И.М., Симоненко П.Д. Особенности формирования доз внутреннего облучения персонала плутониевого производства Сибирского химического комбината. Бюллетень Сибирской Медицины. 2005;2(4):124-7. [Maslyuk AI, Bogdanov IM, Simonenko PD. Features of the formation of internal doses of radiation personnel plutonium production of the Siberian Chemical Plant. Bulletin of Siberian Medicine. 2005;2(4):124-7. (In Russ.)].
  5. Окладникова Н.Д., Хохряков В.В., Шевкунов В.А. и др. Плутоний-239: Клинико-цитогенетическое наблюдение описания случая высокой инкорпорации радионуклида (24 года наблюдения). Радиационная биология. Радиоэкология. 2004;44(4):415-9. [Okladnikova ND, Khokhryakov VV, Shevkunov VA, et al. Plutonium-239: Clinical and cytogenetic observation of the description of a case of high incorporation of a radionuclide (24 years of observation). Radiation Biology. Radioecology. 2004;44(4):415-9. (In Russ.)].

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 26.11.2019.

Accepted for publication: 24.06.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 3. P. 45–52

A.N. Menyajlo, V.V. Kashcheev, E.A. Pryakhin, S.Yu. Chekin, М.А. Maksioutov, K.A. Tumanov, V.K. Ivanov

Forecast of Radiation Risks of the Population in the Contaminated 137Cs Territories of Russia, in Accordance with Current ICRP Recommendations

A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the
Ministry of Health of the Russian Federation, Obninsk, Kaluga region, This email address is being protected from spambots. You need JavaScript enabled to view it. .

Abstract

Purpose: Calculations of radiation detriment to the population currently living (in 2020) in the territories of Russia contaminated with 137Cs after the Chernobyl accident in 1986.

Material and methods: Radiation detriment was calculated in two ways: according to the original ICRP method, and approximate calculation as the product of the nominal risk factor of RSS-99/2009 by the effective dose (nominal radiation detriment). For ICRP calculations, equivalent doses were estimated using the dose coefficients of the US Environmental Protection Agency (EPA). The number of the studied population at the beginning of 2020 was 142676 people, 65205 men and 77471 women. This is mainly the population of the Bryansk region and Tula region, 85.5 % and 10 % of the total population, respectively. The average accumulated effective dose of the population was 30.6 mSv, and the maximum individual accumulated dose was 707 mSv.

Results: In 2020, for men at the age of 44 and for women at the age of 55, the nominal radiation detriment is approximately equal to the value of radiation detriment calculated using the ICRP method. At the same time, the nominal detriment is significantly (up to 2.3 times) underestimated for younger and overestimated for older ages. In 2020, the critical population groups with the highest accumulated doses and maximum radiation detriment are men aged 34 and women aged 35. For these population groups, the average accumulated effective doses were 35.3 mSv and 39.2 mSv, and the average radiation detriment was 2.6×10–3 and 4.2×10–3, for men and women, respectively. For 11.8 % of the population (8.3 % of men and 14.8 % of women), the individual radiation detriment calculated using the ICRP method exceeds the value of 3.5×10–3, which corresponds to the maximum increase in individual risk for the population over 70 years of exposure, established by RSS-99/2009 for normal exposure conditions. The maximum radiation detriment of 3.9×10–2 was found for a woman of the Krasnogorsky district of the Bryansk region at the age of 37 years, with an accumulated effective dose of 392 mSv.

Conclusion: The results of this work can be used in preparing recommendations to health authorities on improving medical supervision of exposured citizens living in areas contaminated with radionuclides, as well as in developing regulatory documents for the provision of targeted medical care to people from high radiation risk groups using personalized medicine methods.

Key words: lifetime radiation risk, RSS-99/2009, Chernobyl accident, 137Cs, population of contaminated areas, radiation risk models, nominal risk coefficient

For citation: Menyajlo AN, Kashcheev VV, Pryakhin EA, Chekin SYu, Maksioutov МА, Tumanov KA, Ivanov VK. Forecast of Radiation Risks of the Population Living in the Contaminated 137Cs Territories of Russia, in Accordance with Current ICRP Recommendations. Medical Radiology and Radiation Safety. 2020;65(3):45-52. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-3-45-52

Список литературы / References

  1. Публикация 103 Международной комиссии по радиационной защите (МКРЗ). Пер. с англ. Под ред. М.Ф. Киселёва и Н.К. Шандалы. М.: 2009. 312 с. URL: http://www.icrp.org/docs/P103_Russian.pdf (дата обращения 13.04.2020 г.). [ICRP Publication 103. Ed by Kiselev MF, Shandala NK, Moscow. 2009. 312 p. Available from: http://www.icrp.org/docs/P103_Russian.pdf (cited 13.04.2020). (In Russ.)].
  2. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, et al. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137 (Suppl.):68–97.
  3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation. UNSCEAR 2006 Report Vol. I, Annex A: Epidemiological studies of radiation and cancer. New York: 2008.
  4. Меняйло А.Н., Чекин С.Ю., Кащеев В.В., Максютов М.А., Корело А.М., Туманов К.А. и др. Пожизненный радиационный риск в результате внешнего и внутреннего облучения: метод оценки. Радиация и риск. 2018;27(1):5-21. [Menyajlo AN, Chekin SYu, Kashcheev VV, Maksioutov МА, Korelo AM, Tumanov KA, et al. Lifetime attributable risks from external and internal exposure to radiation: method for estimating. Radiation and Risk. 2018;27(1):5-21. (In Russ.)].
  5. ICRP Database of Dose Coefficients: Workers and Members of the Public; Ver. 3.0, official website. URL: http://www.icrp.org/page.asp?id=402 (дата обращения 19.05.2020).
  6. DCAL Software and Resources. URL: https://www.epa.gov/radiation/dcal-software-and-resources (дата обращения 19.05.2020).
  7. Медицинские радиологические последствия Чернобыля: прогноз и фактические данные спустя 30 лет. Под ред. В.К. Иванова, А.Д. Каприна. М.: ГЕОС, 2015. 450 с. [Health effects of Chernobyl: Prediction And Actual Data 39 Years after the Accident. Ed. by Ivanov VK, Kaprin AD. Moscow. 2015. 450 p. (In Russ.)].
  8. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2018. [Malignant neoplasms in Russia in 2017 (morbidity and mortality). Ed by Kaprin AD, Starinskiy VV, Petrova GV. Moscow. 2018. (In Russ.)].
  9. Нормы радиационной безопасности (НРБ-99/2009). Санитарные правила и нормативы. СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с. [Radiation safety standards (RSS-99/2009). Sanitary-epidemiological rules and standards. SP2.6.1.252309. Moscow. 2009. 100 p. (In Russ.)].
  10. Health risk assessment from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami based on a preliminary dose estimation. World Health Organization, 2013.
  11. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64.
  12. Иванов В.К., Карпенко С.В., Кащеев В.В., Чекин С.Ю., Максютов М.А., Туманов К.А., и др. Радиационные риски российских участников ликвидации последствий аварии на Чернобыльской АЭС за период 1992–2017 гг. Часть I: заболеваемость солидными раками. Радиация и риск. 2019;28(4):16-30. [Ivanov VK, Karpenko SV, Kashcheev VV, Chekin SYu, Maksioutov MA, Tumanov KA, et al. Radiation risks of Russian liquidators of the Chernobyl accident for the period 1992–2017. Part I: Solid cancer incidence. Radiation and Risk. 2019;28(4):16-30. (In Russ.)].
  13. Иванов В.К., Карпенко С.В., Кащеев В.В., Чекин С.Ю., Максютов М.А., Туманов К.А., и др. Радиационные риски российских участников ликвидации последствий аварии на Чернобыльской АЭС за период 1992–2017 гг. Часть II: смертность от солидных раков. Радиация и риск. 2020;29(1):18-31. [Ivanov VK, Karpenko SV, Kashcheev VV, Chekin SYu, Maksioutov MA, Tumanov KA, et al. Radiation risks of Russian liquidators of the Chernobyl accident for the period 1992–2017. Part II: Solid cancer mortality. Radiation and Risk. 2020;29(1):18-31. (In Russ.)].
  14. Радиационная защита и безопасность источников излучения. Международные основные нормы безопасности. Общие требования безопасности. Серия норм безопасности МАГАТЭ, GSR Part 3. Вена: МАГАТЭ, 2015. 311 с. [Radiation Protection and Safety of Radiation Sources. International Basic Safety Standards, GSR Part 3 (Interim), General Safety Requirements. Vienna: IAEA; 2015. 311 p. (In Russ.)].

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 22.06.2020.

Accepted for publication: 24.06.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 3. P. 59–65

A.G. Tsovyanov1, A.E. Karev1, S.M. Shinkarev1, I.P. Korenkov1, A.S. Samoylov1, V.A. Stebelkov2, A.V. Zhukov2, K.M. Izmestyev3, S.G. Terentiev3

Size Distribution, Morphology and Elemental Composition of Aerosol Particles on the Fabrication of Mixed Nitride Uranium-Plutonium Fuel

1 A.I. Burnasyan Medical Biophysical Center, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
2 Laboratory for Microparticle Analysis, Moscow, Russia
3 Joint Stock Company “Siberian Chemical Combine”, Tomsk, Russia

Abstract

Purpose: Study of physical and chemical properties of radioactive aerosols formed on the fabrication of mixed nitride uranium-plutonium (MNUP) fuel.

Material and methods: The following impactors were utilized for activity particle-size distribution analysis: AIP-2, PHRT, IRAM-2-4I (SRC FMBC), Andersen cascade impactor (Copley Scientific, UK), SKC Sioutas (SKC inc., USA). Scanning electron microscope (SEM) Tescan LYRA-3 equipped the X-ray microanalyzer X-max 80 (Oxford Instruments) was used for study of morphological characteristics of aerosol particles. Secondary ion-mass spectrometer Cameca IMS-1280 and track analysis were used for search of particles containing the uranium and plutonium radionuclides.

Results: Values of AMAD (Σa) vary from 12 µm till 30 µm, for 239Pu – from 14 till 27 µm. Lowest AMAD values (0.4–2.5 µm for 239Pu) were found in the repair area near the glove box of synthesis and sintering. The samples contain a much larger number of uranium-containing particles, which is likely due to a larger mass fraction of uranium oxide compared with plutonium dioxide in the initial mixture of reagents. Elemental composition of aerosol particles includes U (63–86 %), Pu (5–10 %) and О (9–47 %), Fe – in some samples till 32 %. Other elements like Nа, S, N, Р are contained in rather lowest amounts not exceeding 1–8 %. Only one nitrogen-containing particle was found (3 % of N).

Conclusion: Coarse fraction of radioactive aerosols makes a major contribution in activity concentration in air of the operator zone which is driven by such operations as pressing and crushing. Aerosol particles are presented as individual particles or dense aggregates by size of 0,2–2 µm and also as conglomerates by size 0,5–4 µm consisting of oxides (or carbides) of silicon, iron, calcium, etc. containing inclusions (200–400 nm) or individual particles (20–200 nm) of mixed U-Pu oxide or uranium oxide on the surface of conglomerate as well aslocated in the near-surface layers inside.

Key words: plutonium, radioactive aerosol, AMAD, impactor, mixed nitride uranium-plutonium fuel, scanning electron microscope

For citation: Tsovyanov AG, Karev AE, Shinkarev SM, Korenkov IP, Samoylov AS, Stebelkov VA, Zhukov AV, Izmestyev KM, Terentiev SG. Size Distribution, Morphology and Elemental Composition of Aerosol Particles on the Fabrication of Mixed Nitride Uranium-Plutonium Fuel. Medical Radiology and Radiation Safety. 2020;65(3):59-65. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-3-59-65

Список литературы / References

1. Карев А.Е., Цовьянов А.Г., Кухта Б.А., Шинкарев С.М., Припачкин Д.А. Метод оценки осаждения частиц радиоактивных аэрозолей в дыхательном тракте человека. Проблемы безопасности и чрезвычайных ситуаций. 2016;5:23-31. [Karev AE, Tsovyanov AG, Kukhta BA, Shinkarev SM, Pripachkin DA. Method to estimate a radioactive aerosol particle deposition in the human respiratory tract. Safety and Emergency Issues 2016;5:23-31. (In Russ.)].
2. Огородников Б.И., Сухоручкин А.К., Будыка А.К. и др. Радиоактивные аэрозоли объекта «Укрытие» (обзор). Часть 3. Дисперсность радиоактивных аэрозолей – Чернобыль, 2004. Препр. НАН Украины. Институт проблем безопасности АЭС; 04-4). 60 с. [Ogorodnikov BI, Suhoruchkin АK, Budyka АK, et al. Radioactive aerosols of object “Shelter” (review). Part 3. Particle-size distribution of radioactive aerosols. Chernobyl (In Russ.)].
3. Происхождение субмикронной фракции в результатах измерений дисперсного состава аэрозолей объекта «Укрытие»: Отчет ГСП ЧАЭС, инв. ТО ОУ № 364 от 20.12.2002 г. Исп. А.К. Сухоручкин. Славутич, 2002. 22 с. [The origin of the submicron fraction in the results of measurements of the dispersed composition of aerosols of the object “Shelter”: Report GSPChernobyl NPS, inv. TO ОY № 364 of 20.12.2002. A.K. Suhoruchkin. Slavutich, 2002. 22 p. (In Russ.)].
4. МУ 2.6.1.065-2014. Дозиметрический контроль профессионального внутреннего облучения. Общие требования. [Guidelines 2.6.1.065-2014. Dosimetric control of occupational internal exposure. General requirements (In Russ.)].
5. Патент RU 2239815 «Каскадный импактор» от 10.11.2004. Авторы: Цовьянов А.Г., Бадьин В.И., Молоканов А.А., Припачкин Д.А., Ризин А.И., Фертман Д.Е. [Patent RU 2239815 «Cascadeimpactor» from 10.11.2004. Authors: Tsovyanov АG, Badin VI, Molokanov AA, Pripachkin DA, Rizin AI, Fertman DE. (In Russ.)].
6. Патент RU 2509375 «Импактор-фантом респираторного тракта человека» от 10.03.2014. Авторы: Цовьянов А.Г., Кухта Б.А., Карев А.Е. [Patent RU 2509375 «Impactor-phantom of the human respiratory tract» of 10.03.2014. Authors: Tsovyanov АG, Kukhta BA, Karev AE. (In Russ.)].
7. Цовьянов А.Г., Крамер-Агеев Е.А., Фертман Д.Е. и др. Моделирование и разработка импактора-фантома респираторного тракта человека. АНРИ. 2013(74)52-60. [Tsovyanov AG, Kramer-Ageev EA, Fertman DE, et al. Impactor-Phantom of Human Respiratory Tract: Numerical Simulation and Design. ANRI 2013(74)52-60. (In Russ.)].
8. Карев А.Е., Шинкарев С.М., Цовьянов А.Г. Применение соглашения о вдыхаемой, торакальной и респирабельной фракциях (ГОСТ Р ИСО 7708-2006) для стационарного и индивидуального контроля объемной активности радиоактивных аэрозолей на предприятиях атомной отрасли. АНРИ. 2015 (83):43-50. [Karev AE, Shinkarev SM, Tsovyanov AG. Application of Sampling Conventions for Inhalable, Thoracic and Respirable Fractions (GOST R ISO 7708-2006) for Stationary and Individual Control of Volumetric activity of Radioactive Aerosols at the Enterprises of Atomic Industry. ANRI. (In Russ.)].
9. МУК 2.6.1.08–2004. Определение характеристик распределения радиоактивного аэрозоля по размерам. [Guidelines on control methods 2.6.1.08–2004. Determination of the size distribution characteristics of a radioactive aerosol. (In Russ.)].
10. Определение характеристик распределения радиоактивного аэрозоля по размерам с помощью импактора-фантома респираторного тракта человека. Свидетельство об аттестации № 7-4/25.01.00087-2015 от 07.10.2015. ФР.1.31.2016.23130. [Determination of the size distribution characteristics of a radioactive aerosol using the impactor-phantom of a human respiratory tract (certification certificate № 7-4/25.01.00087-2015 of 07.10.2015. FR.1.31.2016.23130) (In Russ.)].
11. Методика выполнения измерений активности гамма-излучающих радионуклидов в счетных образцах с применением системы гамма-спектрометрической LabSOCS. Свидетельство об аттестации №770/07 от 25.06.2007 г. [Method for measuring the activity of gamma-emitting radionuclides in counting samples using the gamma-spectrometry system LabSOCS. Certificate of Attestation №770/07 of 25.06.2007 (In Russ.)].
12. ФР.1.40.2013.15390. Методика измерений удельной активности изотопов урана (238U, 234U, 235U) в пробах почв, грунтов, донных отложений, горных пород и строительных материалов на их основе альфа-спектрометрическим методом с радиохимической подготовкой. Москва. ФГУП «ВИМС». 2013. [FR.1.40.2013.15390. Method of measuring the specific activity of uranium isotopes (238U, 234U, 235U) in samples of soil, bottom sediments, rocks and building materials based on the alpha-spectrometric method with radiochemical preparation. Moscow. 2013 (In Russ.)].
13. ФР.1.40.2013.15395. Методика измерений удельной активности изотопов плутония (238Pu, 239+240Pu) в пробах почв, грунтов, донных отложений и горных пород альфа-спектрометрическим методом с радиохимической подготовкой. Москва. ФГУП «ВИМС». 2013. [FR.1.40.2013.15395. Method for measuring the specific activity of plutonium isotopes (238Pu, 239+240Pu) in samples of soil, bottom sediments, rocks and building materials based on the alpha-spectrometric method with radiochemical preparation, Moscow. 2013 (In Russ.)].
14. ФР.1.40.2013.15396. Методика измерений удельной активности америция-241 (241Am) в пробах почв, грунтов, донных отложений и горных пород альфа-спектрометрическим методом с радиохимической подготовкой. Москва. ФГУП «ВИМС». 2013. [FR.1.40.2013.15396 Method for measuring the specific activity of americium-241 (241Am) in samples of soil, bottom sediments, rocks and building materials based on the alpha-spectrometric method with radiochemical preparation. Moscow. 2013 (In Russ.)].
15. ICRP Database of Dose Coefficients: Worker and Members of the Public. Elsevier. 2001.
16. ГОСТ Р 54597-2011. Воздух рабочей зоны. Ультрадисперсные аэрозоли, аэрозоли наночастиц и наноструктурированных частиц. Определение характеристик и оценка воздействия при вдыхании. [GOST R 54597-2011. Air working area. Ultrafine aerosols, aerosols of nanoparticles and nanostructured particles. Characterization and evaluation of exposure by inhalation (In Russ.)].
17. https://www.skcinc.com/catalog/pdf/instructions/1690.pdf
18. Отчет о выполнении работ по комплексному обследованию радиоактивных аэрозолей производств ХМЗ «СХК». Договор № 27/02-0399 от 28.03.2014. [Report on the accomplishment of work a «Сomprehensive survey of radioactive aerosols of CMP production «SCC» Contact № 27/02-0399 of 28.03.2014. (In Russ.)].
19. ICRP Publication 66. Human Respiratory Tract Model for Radiological Protection. Ann. ICRP. 1994;24(1-3).

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 24.11.2019.

Accepted for publication: 24.06.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 3. P. 53–58

M.S. Petrosyan, L.S. Nersesova, E.M. Karalova, A.S. Avetisyan, L.O. Abroyan, L.A. Akopian, M.G. Gazaryants, J.I. Akopian

Postradiation Effects of Low Intensity Electromagnetic Radiation
with a Frequency of 900 MHz in Rat Liver

Institute of Molecular Biology of NAS of Republic Armenia, Erevan, Armenia, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To study the changes in the activity of the liver and blood serum creatine kinase (KK) and the nucleus-nucleolus apparatus of hepatocytes of rats, subjected to the low-intensity electromagnetic radiation of 900 MHz and 25 µW/cm2 energy flux density, typical for a range of mobile phones.

Material and methods: The experiments were carried out on white outbred male rats of 6 months of age, weighing 180–200 g. The generator Panoramic X1-42 was used as a source of radiation having a frequency of 900 MHz. The activity of CK in the blood serum and liver extracts respectively was determined spectrophotometrically, based on the accumulation of free creatine. Using the extent of the DNA content in rat hepatocytes relative to the accepted standard, the distribution of hepatocytes in ploidy (measured in percentage poins) was detected; so was determined the ratio of eu- and aneuploid cells.

Results: It appears that the two-hour single total exposure of rats causes more substantial changes in the activity levels of rats both liver and serum creatine kinase than the total time-wise comparable fractional exposure; while the enzyme exhibits signs of significant adaptation. A decrease in the average DNA content of the nucleus and nucleolus, as well as the average number of nucleolus per nucleus, along with an increase in the number of nucleolus-free nuclei after a single radiofrequency irradiation act indicates certain inhibition of the transcriptional activity of hepatocytes. At the same time, a post-radiation increase of hypodiploid cells, half of which are nucleolus-free hepatocytes, as well as an increase in the number of triploid cells, accompanied by a decrease in the number of tetraploid hepatocytes and the disappearance of hypertetraploid hepatocytes, indicate the incidence of death of a significant number of hepatocytes.

Conclusion: The rat liver CK is sensitive to the action of both single low-intensity electromagnetic radiation with a frequency of 900 MHz and that dispersed through fractional exposure: the biological effect of a single exposure is more pronounced. The dynamics of the post-radiation changes occurring in the hepatocyte population upon their single radiofrequency irradiation indicates certain inhibition of the transcriptional activity of the hepatocytes, as well as the incidence of death of a significant number of hepatocytes.

Key words: electromagnetic radiation, low intensity, frequency 900 MHz, single and fractional irradiation, creatine kinase, nucleus-nucleolar apparatus, liver, blood serum, rats

For citation: Petrosyan MS, Nersesova LS, Karalova EM, Avetisyan AS, Abroyan LO, Akopian LA, Gazaryants MG, Akopian JI. Postradiation Effects of Low Intensity Electromagnetic Radiation with a Frequency of 900 MHz in Rat Liver. Medical Radiology and Radiation Safety. 2020;65(3):53-8. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-3-53-58

Список литературы / References

  1. Григорьев Ю.Г., Григорьев О.А. Сотовая связь и здоровье. М. Энергиздат, 2013. 567 с. [Grigoriev YuG, Grigoriev ОА. Mobile communication and health. Moscow. 2013. 567 p. (In Russ.)].
  2. Григорьев Ю.Г. От электромагнитного смога до электромагнитного хаоса. К оценке опасности мобильной связи для здоровья человека. Медицинская радиология и радиационная безопасность. 2018;63(3):28-33 [Grigoriev YuG. From Electromagnetic Smog to Electromagnetic Chaos. To Evaluating the Hazards of Mobile Communication for Health of the Population. Medical Radiology and Radiation Safety 2018;63(3):28-33 (In Russ.)].
  3. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Int Agency Res Cancer. 2011;(208):4-6.
  4. Warille AA, Altun G, Elamin AA, et al. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. 2010. DOI: 10.1016/j.jmau.2017.09.002
  5. Nersesova LS. Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies. Journal Evol Biochem Fiziol. 2011;47(2):120-7.
  6. Malone J, Ullrich R. Novel radiation response genes identified in gene trapped MCF10A mammary epithelial cells. Radiat Res. 2007;167(2):176-84.
  7. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem. 2000;74(6):2520-7.
  8. Мозжухина Т.Г., Азарскова М.В., Литошенко А.Я. Цито­флюориметрический анализ ядер регенерирующей печени крыс в отдаленные сроки после рентгеновского облучения. Цитология и генетика. 1998;32(2):49-56. [Mozzhukhina TG, Azarksova MV, Litoshenko AYa. Cytofluorimetric analysis of the nuclei of the regenerating rat liver in the long term after x-ray irradiation. Cytology and Genetics. 1998;32(2):49-56. (In Russ.)].
  9. Штейн Г.И., Кудрявцева М.В., Кудрявцев Б.Н. Изменение морфо­метрических параметров окрашенных серебром ядрышек гепатоцитов крыс при циррозе печени и в процессе их реабилитации. Цитология. 1999;43(41):574-80. [Shtein GI, Kudryavceva MV, Kudryavcev BN. Changes in the morphometric parameters of the silver-stained nucleoli of rat hepatocytes during liver cirrhosis and in the process of their rehabilitation. Cytology. 1999;43(41):574-80. (In Russ.)].
  10. Нерсесова Л.C., Газарянц М.Г., Мкртчян З.C. и др. Влияние ионизирующей радиации на ферментные активности и состояние ядерноядрышкового аппарата гепатоцитов крыс. Радиац. биология. Радиоэкология. 2013;53(1):55-62 [Nersesova LS, Gazaryants MG, Mkrtchyan ZS, Meliksetyan GO, Poghosyan LH, Poghosyan SA, et al. Influence of Ionizing Radiation on Enzymatic Activity and State of Nucleus Nucleolar Apparatus in Rat Hepatocytes. Radiation Biology Radioecology. 2013;53(1):55-62. (In Russ.)].
  11. Петрова Т.А., Лызлова С.Н. Оптимизация условий определения активности креатинкиназы колориметрическим методом. Вестн. ЛГУ. 1985;(24):88-90. [Petrova TA, Lislova SN. Optimization of Conditions for Determining Creatine kinase Activity by the Colorimetric Method. LSU Bulletin. 1985;(24):88-90. (In Russ.)].
  12. Магакян Ю.А., Каралова Е.М. Цитофотометрия ДНК. Ереван. 1989. 204 c. [Maghakyan YuA, Karalova EM. Cyto­morphometry of DNA. Yerevan. 1989. (In Russ.)].
  13. Romeis B. Mikroskopische Technik. München, Leibniz Verlag. 1948.
  14. Miller K, Halow J, Koretsky AP. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am J Physiol. 1993;265(6Pt1):1544-51. DOI: 10.1152/ajpcell.1993.265.6.C1544.
  15. Satoh S, Tanaka A, Hatano E, Inomoto T, Iwata S, Kitai T, et al. Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy. Gastroenterology. 1996;110(4):1166-74. PubMed PMID: 8613006.
  16. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8): 2013-26. PubMed PMID: 8156506.
  17. Capri M, Scarcella E, Bianchi E, Fumelli C, Mesirca P, Agostini C, et al. 1800 MHz radiofrequency (mobile phones, different Global System for Mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors. Int J Radiat Biol. 2004;80(6):389-97. DOI: 10.1080/09553000410001702346
  18. Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat Environ Biophys. 2006;45(1):55-62. DOI: 10.1007/s00411-006-0038-3.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 18.03.2019.

Accepted for publication: 24.06.2020.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 3. P. 66–72

E.G. Metlyaev, L.S. Bogdanova, M.I. Grachev, Yu.A. Salenko, G.P. Frolov, A.M. Lyaginskaya

International and National Approaches to the Conducting of Iodine Thyroid Blocking in the Accident of a Nuclear Reactor

A.I. Burnasyan Medical Biophysical Center, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: Carry out a comparative analysis of the criteria and practices of conduct Iodine thyroid blocking (ITB) in various countries from the standpoint of WHO publication (2017) “Iodine thyroid blocking. Guidelines for use in planning for and responding to radiological and nuclear emergencies” (WHO Guidelines) and national Rules and requirements 2.6.1.2523-09 (NRB-99/2009) and other documents, including facility and territorial Emergency plans and instructions contained therein.

Results: The WHO Guidelines, prepared using the GRADE method, determine the conditional recommendation in favor of conduct ITB in the event of a release of radioactive iodine: “During a radiation or nuclear emergency, the provision of ITB for people who are at risk of exposure to radioactive iodine should be implemented as urgent protective action as part of a justified and optimized protection strategy”. In the WHO Guidelines, such a recommendation is recognized as qualitatively low, and the strength of this recommendation is conditional, due to insufficient data on the use of stable iodine drugs. However, after studying the implementation of this protective measure, it was determined that the benefits of the intervention outweigh the disadvantages and associated costs. The article contains a selective discussion and opinion of the authors on a number of key issues of organization and conduct ITB.

Conclusion: A comparative analysis revealed the similarities and differences between foreign and national practices of conduct ITB. The convergence of positions is necessary and aimed at harmonizing national and international criteria and practices. To date, there is no federal level document in the Russian regulatory framework that regulates the planning, organization and conduct of ITB in relation to people who are not associated with work at radiation hazardous facilities and do not live on territories served by the FMBA of Russia. Based on this, a range of priority important issues that need to be addressed has been identified.

Key words: radiation safety, emergency preparedness, emergency medical response, iodine thyroid blocking, radiation accident, dose criteria

For citation: Metlyaev EG, Bogdanova LS, Grachev MI, Salenko YuA, Frolov GP, Lyaginskaya AM. International and National Approaches to the Conducting of Iodine Thyroid Blocking in the Accident of a Nuclear Reactor. Medical Radiology and Radiation Safety. 2020;65(3):66-72. (In Russ.).

DOI: https://naukaru.ru/en/nauka/article/38947/view

Список литературы / References

1.   World Health Organization. Iodine thyroid blocking. Guidelines for use in planning for and responding to radiological and nuclear emergencies. Geneva: WHO. 2017. 46 p.
2.   Алексахин Р.М., Булдаков Л.А., Губанов В.А. и соавт. Крупные радиационные аварии: последствия и защитные меры. Под общей ред. Л.А. Ильина, В.А. Губанова. – М.: ИздАТ. 2001. 752 с. [Aleksakhin RM, Buldakov LA, Gubanov VA, et al. Major Radiation Accidents: Consequences and Protective Measures. Ilyin LA, Gubanov VA, eds. Moscow: IzdAT. 2001. 752 p. (In Russ.)].
3.   Савицкий В.Л., Печиборщ В.П., Иванько О.М. и др. Проблемы организации йодной профилактики в Украине при чрезвычайных ситуациях. Экстренная медицина. 2014;(3):21-7. [Savitsky VL, Pechiborshch VP, Ivanko ОМ, at al. Problems of organizing iodine prophylaxis in Ukraine in emergency situations. Emergency Medicine. 2014;(3):21-7. (In Russ.)].
4.   United Nations Scientific Committee on the Effects of Atomic Radiation. Health effects due to radiation from the Chernobyl accident. Scientific application D to the UNSCEAR 2008 Report to the General Assembly. New York: UN.2012. 173 p.
5.   Герасимов Г.А., Фигге Д. Чернобыль: двадцать лет спустя. Клиническая и экспериментальная тиреоидология. 2006;2(2):5-14 [Gerasimov GА, Figge D. Chernobyl: twenty years later. Clinical and Experimental Thyroidology. 2006;2(2):5-14. (In Russ.)].
6.   Hirose K. The Accident at TEPCO’s Fukushima Nuclear Power Stations (Nuclear Emergency Response Headquarters, Government of Japan). Vienna: IAEA. 2011.
7.   Нормы радиационной безопасности (НРБ–99/2009). Санитарные правила и нормативы. СанПиН 2.6.1.2523–09. М. 2009. 100 с. [Radiation Safety Standards (RSS-99/2009). Sanitary rules and regulations SanPiN 2.6.1.2523-09. Moscow. 2009. 100 p. (In Russ.)].
8.   Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03). Санитарные правила и нормативы. СанПиН 2.6.1.24-03.  М. 2004. 66 с. [Sanitary rules for the design and operation of nuclear power plants. Sanitary rules and regulations SanPiN 2.6.1.24-03. Moscow. 2004. 66 p. (In Russ.)].
9.   Применение, хранение и обновление комплекта индивидуального медицинского гражданской защиты «Аптечка АП» для профилактики радиационных поражений работников (персонала) организаций и личного состава формирований сил гражданской обороны. Рекомендации ФМБА России 17.39-17–2017.  М. 2017. [Application, storage and updating of the kit of individual medical civil protection «First Aid Kit» for the prevention of radiation injuries of workers (personnel) of organizations and personnel of civil defense forces. Recommendations of FMBA of Russia 17.39-17-2017. Moscow. 2017. (In Russ.)].
10. Об утверждении требований к комплектации лекарственными препаратами и медицинскими изделиями комплекта индивидуального медицинского гражданской защиты для оказания первичной медико-санитарной помощи и первой помощи: приказ Минздрава России от 15.02.2013 г. №70н [Электронный ресурс]. Режим доступа: https://www.rosminzdrav.ru/documents/5457-prikaz-minzdrava-rossii-ot-15-fevralya-2013-g-n-70n (Дата обращения 29.01.2020). [On approval of the requirements for completing with medicines and medical products a set of individual medical civil protection for primary health care and first aid: Ministry of Health of Russia Order at 02.15.2013 №70n. Available at: https://www.rosminzdrav.ru/documents/5457-prikaz-minzdrava-rossii-ot-15-fevralya-2013-g-n-70n (In Russ.)].
11.  Руководство по йодной профилактике в случае возникновения радиационной аварии. Методические рекомендации. М: ФМБА России. 2010. 44 с. [Guidelines for stable iodine prophylaxis in the event of a radiation accident. Guidelines. Group Requirements for life support systems in extreme situations and special systems. M. 2010. 44 p. (In Russ.)].
12.  Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements No. GSR Part 7. Vienna: IAEA. 2015. 102 pp.
13.  Criteria for Use in Preparedness and Response for Nuclear or Radiological Emergency. IAEA Safety Standards Series No. GSG-2. Vienna: IAEA. 2011.
14.  Рабочая группа по оценке, развитию и определению качества (GRADE) [Электронный ресурс]. Режим доступа: http://www.gradeworkinggroup.org (Дата обращения 29.01.2020). [The Grading of Recommendations Assessment, Development and Evaluation (short GRADE). Available at: http://www.gradeworkinggroup.org (Accessed 29.01.2020). (In Russ.)].
15.  Санитарные нормы и правила «Требования к радиационной безопасности» и Гигиенический норматив «Критерии оценки радиационного воздействия». Утверждены постановлением Министерства здравоохранения Республики Беларусь от 28.12.2012 г. № 213. [Sanitary norms and rules “Requirements for radiation safety” and the Hygienic standard “Criteria for assessing radiation exposure”. Approved by resolution of the Ministry of Health of the Republic of Belarus 28.12.2012. No. 213. (In Russ.)].
16.  Medical effectiveness of iodine prophylaxis in a nuclear reactor emergency situation and overview of European practices. Final Report of Contract TREN/08/NUCL/SI2.520028. European Commission Radiation Protection #165. 2010.
17.  Guidelines for iodine prophylaxis as a protective measure: information for physicians. Japan Med Association J. 2014;57(3):113-23. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356652/ (Accessed 02.02.2020).
18.  U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies. 2001.
19.  National Radiological Protection Board (NRPB). Stable Iodine Prophylaxis. Recommendations of the 2nd UK Working Group on Stable Iodine Prophylaxis. Vol.12. № 3. 2001.
20.  Галушкин Б.А., Богданова Л.С. Принятие решений по защитным мерам для населения в случае радиационной аварии. Технологии гражданской безопасности. 2019;60(2):80-8. [Galushkin BA, Bogdanova LC. Decision Making on Measures to Protect Population in Case of Radiological Accident. Civil Security Technology. 2019;60(2):80-8. (In Russ.)].
21.             Аветисов Г.М., Гончаров С.Ф. Проблемы обеспечения готовности к проведению йодной профилактики населению в случае крупномасштабной радиационной аварии. Медицина катастроф. 2014;86(2)8-6. [Avetisov GM, Goncharov SF. Problems of Assured Preparedness for Iodine Prophylaxis of Population in case of Large-Scale Nuclear Accident. Disaster Medicine 2014;86(2)8-6. (In Russ.)].

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 08.08.2019.

Accepted for publication: 24.06.2020.

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2947988
Today
Yesterday
This week
Last week
This month
Last month
For all time
1869
2962
4831
20395
46284
113593
2947988

Forecast today
2904


Your IP:216.73.216.100