JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2
DOI: 10.33266/1024-6177-2023-68-2-11-15
N.Yu. Vorobyeva1,2, T.A. Astrelina1, E.I. Yashkina1,2, A.K. Chigasova3,
A.A. Osipov2, D.Yu. Usupzhanova1, I.V. Kobzeva1, Yu.B. Suchkova1,
V.A. Brunchukov1, A.A. Rastorgueva1, Yu.A. Fedotov1,2, A.S. Samoilov1,
A.N. Osipov1,2
Effect of a Humic-Fulvic Acid Preparation on the Quantitative Yield of Residual γH2AX Foci and Proliferative Activity in Irradiated Human Mesenchymal Stromal Cells
1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
2 N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia
3 Institute of Biochemical Physics, Moscow, Russia
Contact person: N.Yu. Vorobyeva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To evaluate the influence of a humic-fulvic acid substance on the quantitative yield of residual foci of the DNA double-strand break (DSB) repair protein-marker - phosphorylated histone H2AX (γH2AX) and proliferation activity in a culture of human mesenchymal stromal cells (MSCs) 24, 48, and 72 h after exposure to X-ray radiation at doses of 2, 4 and 10 Gy.
Material and methods: Through 24 hours after incubation of MSCs with a substance of humic-fulvic acids (Humic Complex, OOO Sistema-BioTechnologies, Russia) at a dilution of 1/1000. Cells were irradiated on an X-ray biological device RUB RUST-M1 at a voltage of 200 kV, beam current 2×5 mA, aluminum filter 1.5 mm, absorbed dose rate 0.85 Gy/min. Immunocytochemical staining was used to quantify the residual γH2AX foci and the percentage of proliferating cells using antibodies to γH2AX and Ki-67 (a marker protein for cell proliferation), respectively. Statistical analysis of the obtained data was carried out using the statistical software package Statistica 8.0 (StatSoft). To assess the significance of differences between samples, Student’s t-test was used.
Results and conclusion: The conducted studies showed that on the cell model used and under the above experimental conditions, the humic-fulvic acid substance does not affect the efficiency of repair of radiation-induced DNA DSBs, however, it significantly reduces the proliferation activity of both irradiated and non-irradiated MSCs. It is advisable to conduct detailed studies of the molecular and cellular mechanisms of the antiproliferative effect of humic and fulvic acids.
Keywords: mesenchymal stromal cells, X-ray radiation, γH2AX, residual foci, DNA double-strand breaks, cell proliferation, humic acids, fulvic acids
For citation: Vorobyeva NYu, Astrelina TA, Yashkina EI, Chigasova AK, Osipov AA, Usupzhanova DYu, Kobzeva IV, Suchkova YuB, Brunchukov VA, Rastorgueva AA, Fedotov YuA, Samoilov AS, Osipov AN. Effect of a Humic-Fulvic Acid Preparation on the Quantitative Yield of Residual γH2AX Foci and Proliferative Activity in Irradiated Human Mesenchymal Stromal Cells. Medical Radiology and Radiation Safety. 2023;68(2):11–15. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-11-15
References
1. Nardi S., Schiavon M., Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules. 2021;26;8. doi: 10.3390/molecules26082256.
2. Klucakova M. Size and Charge Evaluation of Standard Humic and Fulvic Acids as Crucial Factors to Determine Their Environmental Behavior and Impact. Front Chem. 2018;6:235. doi: 10.3389/fchem.2018.00235.
3. Benderskii N.S., Kudelina O.M., Gantsgorn E.V., Safronenko A.V. Fulvic Acid: an Active Food Additive or Medication? Kuban Scientific Medical Bulletin. 2020;27;3:78-91. doi: 10.25207/1608-6228-2020-27-3-78-91.
4. Buzlama A.V., Chernov Iu N. [Humic Substances: Pharmacological Properties, Mechanisms of Action, and Prospects for Use in Medicine]. Eksp Klin Farmakol. 2010;73;9:43-48.
5. van Rensburg C.E. The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytother Res. 2015;29;6:791-795. doi: 10.1002/ptr.5319.
6. Pustovalova M., Astrelina Т.A., Grekhova A., Vorobyeva N., Tsvetkova A., Blokhina T., et al. Residual γH2AX Foci Induced by Low Dose X-Ray Radiation in Bone Marrow Mesenchymal Stem Cells Do Not Cause Accelerated Senescence in the Progeny of Irradiated Cells. Aging. 2017;9;11:2397-2410. doi: 10.18632/aging.101327.
7. Tsvetkova A., Ozerov I.V., Pustovalova M., Grekhova A., Eremin P., Vorobyeva N., et al. γH2AX, 53BP1 and Rad51 Protein Foci Changes in Mesenchymal Stem Cells During Prolonged X-ray irradiation. Oncotarget. 2017;8;38:64317-64329. doi: 10.18632/oncotarget.19203.
8. Ulyanenko S., Pustovalova M., Koryakin S., Beketov E., Lychagin A., Ulyanenko L., et al. Formation of γH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. International Journal of Molecular Sciences. 2019;20;11:2645. doi: 10.3390/ijms20112645.
9. Krenning L., van den Berg J., Medema R.H. Life or Death after a Break: What Determines the Choice? Molecular cell. 2019;76;2:346-358. doi: 10.1016/j.molcel.2019.08.023.
10. Aliper A.M., Bozdaganyan M.E., Orekhov P.S., Zhavoronkov A., Osipov A.N. Replicative and Radiation-Induced Aging: a Comparison of Gene Expression Profiles. Aging. 2019;11;8:2378-2387. doi: 10.18632/aging.101921.
11. Ulyanenko S., Pustovalova M., Koryakin S., Beketov E., Lychagin A., Ulyanenko L., et al. Formation of GammaH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. International Journal of Molecular Sciences. 2019;20;11:2645. doi: 10.3390/ijms20112645.
12. Vorob’eva N.Y., Kochetkov O.A., Pustovalova M.V., Grekhova A.K., Blokhina T.M., Yashkina E.I., et al. Comparative Analysis of the Formation of gammaH2AX Foci in Human Mesenchymal Stem Cells Exposed to (3)H-Thymidine, Tritium Oxide, and X-Rays Irradiation. Bull. Exp. Biol. Med. 2018;166;1:178-181. doi: 10.1007/s10517-018-4309-1.
13. Grekhova A.K., Pustovalova M.V., Eremin P.S., Ozerov I.V., Maksimova O.A., Gordeev A.V., et al. Evaluation of the Contribution of Homologous Recombination in DNA Double-Strand Break Repair in Human Fibroblasts after Exposure to Low and Intermediate Doses of X-ray Radiation. Biology Bulletin. 2020;46;11:1496-1502. doi: 10.1134/s1062359019110037.
14. Bushmanov A., Vorobyeva N., Molodtsova D., Osipov A.N. Utilization of DNA Double-Strand Breaks for Biodosimetry of Ionizing Radiation Exposure. Environmental Advances. 2022;8. doi: 10.1016/j.envadv.2022.100207.
15. Banath J.P., Klokov D., MacPhail S.H., Banuelos C.A., Olive P.L. Residual GammaH2AX Foci as an Indication of Lethal DNA Lesions. BMC Cancer. 2010;10:4. doi: 10.1186/1471-2407-10-4.
16. Vorobyeva N.Y., Babayan N.S., Grigoryan B.A., Sargsyan A.A., Khondkaryan L.G., Apresyan L.S., et al. Increased Yield of Residual γH2AX Foci in p53-Deficient Human Lung Carcinoma Cells Exposed to Subpicosecond Beams of Accelerated Electrons. Bulletin of Experimental Biology and Medicine. 2022;172;6:756-759. doi: 10.1007/s10517-022-05472-9.
17. Babayan N.S., Guryev D.V., Vorobyeva N.Y., Grigoryan B.A., Tadevosyan G.L., Apresyan L.S., et al. Colony-Forming Ability and Residual Foci of DNA Repair Proteins in Human Lung Fibroblasts Irradiated with Subpicosecond Beams of Accelerated Electrons. Bulletin of Experimental Biology and Medicine. 2021;172;1:22-25. doi: 10.1007/s10517-021-05323-z.
18. Hseu Y.C., Lin E., Chen J.Y., Liua Y.R., Huang C.Y., Lu F.J., et al. Humic Acid Induces G1 Phase Arrest and Apoptosis in Cultured Vascular Smooth Muscle Cells. Environ Toxicol. 2009;24;3:243-258. doi: 10.1002/tox.20426.
19. Salehi M., Piri H., Farasat A., Pakbin B., Gheibi N. Activation of Apoptosis and G0/G1 Cell Cycle Arrest Along with Inhibition of Melanogenesis by Humic Acid and Fulvic Acid: BAX/BCL-2 and Tyr Genes Expression and Evaluation of Nanomechanical Properties in A375 Human Melanoma Cell Line. Iran J. Basic Med. Sci. 2022;25;4:489-496. doi: 10.22038/IJBMS.2022.60651.13444.
20. Yang H.L., Huang P.J., Chen S.C., Cho H.J., Kumar K.J., Lu F.J., et al. Induction of Macrophage Cell-Cycle Arrest and Apoptosis by Humic Acid. Environ Mol. Mutagen. 2014;55;9:741-750. doi: 10.1002/em.21897.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The analysis of residual foci was carried out with the support of the RNF (project No. 22-2400490).
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.11.2022. Accepted for publication: 25.01.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2
DOI: 10.33266/1024-6177-2023-68-2-21-28
A.V. Rodina1, O.V. Vysotskaya1, A.S. Zhirnik1, O.D. Smirnova1, A.A. Parfenova1,
A.N. Strepetov1, Yu.P. Semochkina1, M.V. Nesterenko2, E.Yu. Moskaleva1
Features of Brain Damage after Gamma-Neutron Irradiation
of the Head and Modification of the Damage by Lactoferrin
National Research Center “Kurchatov Institute”, Moscow, Russia
LLC “Laktobio” , Moscow, Russia
Contact person: E.Yu. Moskaleva, e-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To investigate the effect of γ, n-irradiation of the mice head on the brain cells damage, behavior and cognition, and to examine the possibility of using lactoferrin (LF) to alleviate radiation-induced impairments.
Material and methods: Mice heads were irradiated in a beam of neutrons and gamma rays from the IR-8 nuclear reactor. The brain cells of control and irradiated mice were isolated using Percoll. Neurons and resting and activated microglia cells were analyzed using the fluorescently labeled antibodies and flow cytometry. The level of DNA double-strand breaks in neurons was determined by γH2AX histone content. Cytokine gene expression in the hippocampus was studied by RT-PCR. Behavior and cognitive functions were studied using the open field, Morris water maze and novel object recognition tests. LF was isolated from female colostrum by preparative ion-exchange chromatography and purified by affinity chromatography on heparin-sepharose.
Results: γ, n-Irradiation of the mice head at a dose of 1.5 Gy led to an increase in the level of DNA double-strand breaks in neurons. Twenty-four hours after irradiation the total number of cells and the number of neurons in the isolated fraction of brain cells decreased, but the number of microglial cells remained unchanged. The number of resting and activated microglia did not change within 3–72 h after γ, n-irradiation. The expression level of the TNFα, IL-1β, and IL-6 genes increased 2 months after γ, n-irradiation of the mice head at a dose of 1.5 Gy, indicating the development of neuroinflammation. At this time, irradiated mice demonstrated the anxiety-like behavior and impaired spatial and recognition memory. A single i.p. administration of human LF to mice immediately after γ, n-irradiation of the head did not affect the observed radiation-induced disturbances, but decreased the gene expression levels of TNFα, IL-1β and IL-6 pro-inflammatory cytokines and increased the gene expression level of TGFβ anti-inflammatory cytokine in the hippocampus 2 months after radiation exposure. The obtained results indicate a partial decrease in the level of hippocampal neuroinflammation of irradiated animals treated with LF.
Conclusion: γ, n-Irradiation of the mice head at a dose of 1.5 Gy leads to DNA damage of neurons and the decrease in the number of neurons. Microglia cells are more resistant to such radiation exposure. Late after head-only γ, n-irradiation, mice develop neuroinflammation, which is detected by an increase in the pro-inflammatory cytokine gene expression in the hippocampus and also by anxiety-like behavior and impaired cognitive functions. A single LF administration leads to a partial decrease in the neuroinflammation level, but does not affect the other studied parameters. The optimal dosing regimen of LF remains to be determined to preserve cognitive functions after γ, n-irradiation of the brain.
Keywords: brain, neurons, microglia, activated microglia, double-strand breaks, DNA, neutrons, photons, local irradiation, mice, lactoferrin
For citation: Rodina AV, Vysotskaya OV, Zhirnik AS, Smirnova OD, Parfenova AA, Strepetov AN, Semochkina YuP, Nesterenko MV, Moskaleva EYu. Features of Brain Damage after Gamma-Neutron Irradiation of the Head and Modification of the Damage by Lactoferrin. Medical Radiology and Radiation Safety. 2023;68(2):21–28. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-21-28
References
1. Gulidov I.А., Aslanidi I.P. On the State and Prospects of Development of Remote Neutron Therapy. Voprosy Onkologii = Problems in Oncology. 2014;60;4:408–412 (In Russ.).
2. Musabayeva L.I., Lisin V.A., Startseva Zh.A., Gribova O.V., Velikaya V.V., Melnikov A.A. Neutron Therapy at the U-120 Cyclotron. On the Occasion of the 30th Anniversary of the Use of Neutron Therapy - a Review of the Results of Scientific Research. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2013;58;2:53–61 (In Russ.).
3. Velikaya V.V., Startseva Zh.A., Lisin V.A., Goldberg V.Ye., Popova N.O. Adjuvant Neutron Therapy in Combined Modality Treatment of Patients with Primary-Metastatic Breast Cancer. Medical radiology and radiation safety. 2022;67;5:64–68. DOI: 10.33266/1024-6177-2022-67-5-64-68 (In Russ.).
4. Musabayeva L.I., Choynzonov Ye.L., Gribova O.V., Startseva Zh.A., Velikaya V.V., Lisin V.A. Neutron Therapy in the Treatment of Radioresistant Malignant Tumors. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology. 2016;15(3):67–71. DOI: 10.21294/1814-4861-2016-15-3-67-71. (In Russ.).
5. Walenta S., Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol. 2016;6:30. DOI: 10.3389/fonc.2016.00030.
6. Matchuk O.N., Zamulayeva I.A., Selivanova Ye.I., Lipunov N.M., Pronyushkina K.A., Ulyanenko S.Ye., et al. Sensitivity of Melanoma B16 Side Population to Low- and High-LET Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2012;52;3:261–267 (In Russ.).
7. Shuvatova V.G., Semochkina Y.P., Strepetov A.N., Moskaleva E.Y. Sensitivity of MCF-7 Mammosphere CSCs to Neutron Radiation. Journal of Cancer Metastasis and Treatment. 2022;8;5:23. DOI: 10.20517/2394-4722.2022.29.
8. Yang L., Yang J., Li G., Li Y., Wu R., Cheng J., et al. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol. Neurobiol. 2017;54;2:1022–1032. DOI: 10.1007/s12035-015-9628-x.
9. Eyo U.B., Dailey M.E. Microglia: Key Elements in Neural Development, Plasticity, and Pathology. J. Neuroimmune Pharmacol. 2013;8;3:494–509. DOI: 10.1007/s11481-013-9434-z.
10. Thompson K.K., Tsirka S.E. The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity. Int. J. Mol. Sci. 2017;18;3:504. DOI: 10.3390/ijms18030504.
11. Kalm M., Andreasson U., Bjork-Eriksson T., Zetterberg H., Pekny M., Blennow K., et al. C3 Deficiency Ameliorates the Negative Effects of Irradiation of the Young Brain on Hippocampal Development and Learning. Oncotarget. 2016;7;15:19382–19394. DOI: 10.18632/oncotarget.8400.
12. Rodina A.V., Semochkina Y.P., Vysotskaya O.V., Romantsova A.N., Strepetov A.N., Moskaleva E.Y. Low Dose Gamma Irradiation Pretreatment Modulates the Sensitivity of CNS to Subsequent Mixed Gamma and Neutron Irradiation of the Mouse Head. Int. J. Radiat. Biol. 2021;97;7:926–942. DOI: 10.1080/09553002.2021.1928787.
13. Feng L., Li J., Qin L., Guo D., Ding H., Deng D. Radioprotective Effect of Lactoferrin in Mice Exposed to Sublethal X-Ray Irradiation. Exp. Ther. Med. 2018;16;4:3143–3148. DOI: 10.3892/etm.2018.6570.
14. Kopaeva M.Y., Alchinova I.B., Cherepov A.B., Demorzhi M.S., Nesterenko M.V., Zarayskaya I.Y., et al. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose. Antioxidants (Basel). 2022;11;9:1833. DOI: 10.3390/antiox11091833.
15. Ivanov A.A., Ulanova A.M., Deshevoy Yu.B., Maltsev V.N. Sredstvo Lecheniya Luchevoy Bolezni = Treatment for Radiation Sickness. Pat. № RU2294755C1 Russia. 2007 (In Russ.).
16. Arzumanov S.S., Safronov V.V., Strepetov A.N. Determination of a Dose Absorbed in a Biological Sample under Mixed Gamma–Neutron Irradiation. Technical Physics. 2018;63;10:1533–1536. DOI: 10.1134/S1063784218100031.
17. Zhirnik A.S., Smirnova O.D., Semochkina Yu.P., Shibayeva K.D., Rodina A.V., Ratushnyak M.G., et al. Cognitive Impairment and Induction of Neuroinflammation in the Late Period after Single Whole Brain γ-Irradiation of Mice. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2021;61;1:32–43. DOI: 10.31857/S0869803121010112 (In Russ.).
18. Zhirnik A.S., Rodina A.V., Semochkina Yu.P., Vysotskaya O.V., Smirnova O.D., Ratushnyak M.G., et al. Cognitive Disturbances and the State of Brain Glial Cells in Mice Exposed to Fractionated Whole-Brain Irradiation. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2022;67;5:10–17. DOI: 10.33266/1024-6177-2022-67-5-10-17 (In Russ.).
19. Posypanova G.A., Ratushnyak M.G., Semochkina Yu.P., Abisheva A.A., Moskaleva Ye.Yu. The Sensitivity of the Cultured Murine Neural Stem Cells to the Ionizing Radiation. Tsitologiya. 2019;61;10:806–816. DOI: 10.1134/S0041377119100067 (In Russ.).
20. Moskaleva Ye.Yu., Rodina A.V., Chukalova A.A., Posypanova G.A. Effects of γ-Radiation on Mesenchymal Stem Cells from Mouse Bone Marrow and Brain and Their Ability to Induce Tumors. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2017;57;3:245–256. DOI: 10.7868/S0869803117030018 (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. National Research Center ‟Kurchatov Institute”.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.11.2022. Accepted for publication: 25.01.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2
DOI: 10.33266/1024-6177-2023-68-2-35-52
A.V. Ivanchenko1, V.A. Basharin2, I.S. Drachev1, A.B. Seleznev1, A.Y. Bushmanov3
To the Question about Pharmacological Protection during Irradiation in Non-Infecting Doses: Maybe, Necessary?
Communication 3. Review of the Experience of Studying and Prospects for the Use of Anti-Radiation Medicines
1Scientific Research Testing Institute of Military Medicine, St. Petersburg, Russia
2 S.M. Kirov Military Medical Academy, St. Petersburg, Russia
3A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Alexander Ivanchenko, e-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Review and systematization of data on the development of studies of drugs intended for protection against radiation in medium doses, assessment of the latest proposals and directions of pharmacological influence on radiation effects, incitement to discussion on the issue under consideration.
Results: An analysis of domestic and foreign literature for the period of the 70–90s of the twentieth century and the latest period in relation to the prevention of tissue reactions and long-term effects of low-dose low-power irradiation was carried out, classes (groups) and samples of pharmaceuticals used were considered.
Conclusions: 1. Very diverse previously proposed pharmaceuticals are still suitable, acting on various mechanisms of the genesis of the consequences of exposure to medium doses. 2. In recent years, substances (drugs) with receptor action, including genetically engineered products, as well as gene therapy agents, have been of primary interest, but they have been little studied as the means of choice due to their status as demonstration samples for use at medium doses. 3. Drugs of choice, made on the basis of many considerations over 30 years ago, until a replacement not be found.
Keywords: antiradiation agents, pharmacological agents and preparations, systematics, possibilities of use in case of irradiation in medium doses, analysis of the latest proposals, debatability of application
For citation: Ivanchenko AV, Basharin VA, Drachev IS, Seleznev AB, Bushmanov AY. To the Question about Pharmacological Protection during Irradiation in Non-Infecting Doses: Maybe, Necessary? Communication 3. Review of the Experience of Studying and Prospects for the Use of Anti-Radiation Medicines. Medical Radiology and Radiation Safety. 2023;68(2):35–52. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-35-52
References
1. Ivanchenko A.V., Basharin V.A., Drachev I.S., Seleznev A.B., Bushmanov A.Yu. To the Question of Pharmacological Protection During Irradiation in Non-Damaging Doses: Perhaps it Is Necessary? Message 2. Review of Pathogenetic Directions for the Use of Anti-Radiation Agents in the Experiment. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2022;67;4:101-112 (In Russ.).
2. Goncharenko Ye.N., Kudryashov Yu.B. Gipoteza Endogennogo Fona Radiorezistentnosti = Hypothesis of the Endogenous Background of Radioresistance. Moscow Publ., 1980. 175 p. (In Russ.).
3. Kudryashov Yu.B., Goncharenko Ye.N. New Ways to Search for Chemical Protection Against Radiation Damage. T.3. I Vsesoyuznyy Radiobiologicheskiy Syezd = All-Union Radiobiological Congress. 1989. P. 730-732 (In Russ.).
4. Buck Z., Alexander P. Osnovy Radiobiologii = Fundamentals of Radiobiology. Moscow Publ., 1963. 500 p. (In Russ.).
5. Goncharenko Ye.N., Kudryashov Yu.B. Radiation Oxidative Stress and the Problem of Chemical Protection. V.2. IV Syezd Po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Abstract. Dokl. Moscow, November 20-24, 2001. Moscow Publ., 2001. P. 414 (In Russ.).
6. Legeza V.I., Vladimirov V.G. New Classification of Prophylactic Anti-Radiation Agents. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 1998;38;3:416-425 (In Russ.).
7. Grebenyuk A.N., Legeza V.I., Nazarov V.B., Timoshevskiy A.A. Meditsinskiye Sredstva Profilaktiki i Terapii Radiatsionnykh Porazheniy = Medical Means of Prevention and Therapy of Radiation Injuries. Tutorial. St. Petersburg Publ., 2011. 92 p. (In Russ.).
8. Sostoyaniye i Perspektivy Razvitiya Sredstv Profilaktiki i Lecheniya Radiatsionnykh Porazheniy = State and Prospects for the Development of Means for the Prevention and Treatment of Radiation Injuries. Ed. Gladkikh V.D. Moscow Publ., 2017. 304 p. (In Russ.).
9. Poryadok Primeneniya i Opredeleniya Potrebnosti v Lekarstvennykh Sredstvakh, Ispolzuyemykh pri Radiatsionnykh Porazheniyakh v Vooruzhennykh Silakh Rossiyskoy Federatsii = The Procedure for the Application and Determination of the Need for Drugs Used in Radiation Injuries in the Armed Forces of the Russian Federation. Methodological Instructions. Moscow Publ., 2015. 31 p. (In Russ.).
10. Ivanenko G.F., Burlakova Ye.B. Influence of Ionizing Radiation with a Low Dose Rate on the State of the Thiol Disulfide System and Lipid Antioxidants in Blood Plasma. Radiatsiya i Risk = Radiation and Risk. 2017;26;4:111-123 (In Russ.).
11. Ivanenko G.F., Burlakova E.B. The Response of the Antioxidant System in Humans to the Use of Multivitamins under the Action of Radiation in Small Doses. Aktualnyye Problemy Toksikologii i Radiobiologii = Actual Problems of Toxicology and Radiobiology. Proceedings Report Russian Scientific Conf. with International Participation, St. Petersburg, May 19-20, 2011. St. Petersburg Publ., 2011. P. 226 (In Russ.).
12. Ustinova A.A. Compensatory Induction of Components of the System of Microsomal Monooxygenases in the Early Stages of Chronic Radiation Stress. Aktualnyye Problemy Toksikologii i Radiobiologii = Actual Problems of Toxicology and Radiobiology. Proceedings Report Russian Scientific Conf. with International Participation, St. Petersburg, May 19-20, 2011. St. Petersburg Publ., 2011. P. 146-147 (In Russ.).
13. Rusanova O.V., Borisova V.V., Malakhovskiy V.N. Efficiency of Long-Term Use of Radioprotective Antioxidants under Conditions of Chronic Radiation Exposure. Vosstanovitelnyye i Kompensatornyye Protsessy pri Luchevykh Porazheniyakh = Restorative and Compensatory Processes in Radiation Injuries. Proceedings of the conference. St. Petersburg Publ., 1992. P. 167-168 (In Russ.).
14. Makar V.R., Semiletova N.V., Galibina I.V., et al. Cytotoxic Effects of Acute γ-Irradiation. V.1. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 60 (In Russ.).
15. Kalinina N.M., Solntseva O.S., Bychkova N.V., et al. Changes in the Synthesis and Production of Cytokines as a Result of Exposure to Ionizing Radiation in Small Doses. V.1. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 26 (In Russ.).
16. Oganesyan N.M., Emeri I., Pogosyan A.S., et al. The Use of Antioxidant Drugs in Radiation Damage. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 201-202 (In Russ.).
17. Oleynik S.A., Baraboy V.A., Skaletskiy Yu.N., et al. Pharmacological Protection of Personnel Involved in Activities to Eliminate the Consequences of Nuclear Accidents. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 202-203 (In Russ.).
18. Ryabchenko N.I., Ivannik B.P., Dzikovskaya L.A., et al. The Effectiveness of protection Against Radiation and Stress Increases with the Use of a Complex of Antioxidant Agents with Beta-Carotene. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 210-211 (In Russ.).
19. Chertkov K.S., Andrushchenko V.N., Vernigorova L.A., et al. Basic Ways of Medical Maintenance of Radiation Safety in Interplanetary Flights. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 216-217 (In Russ.).
20. Zhakovko Ye.B., Krasilnikov I.I. Development of Agents that Weaken the Cytogenetic Effects of Low Doses of Ionizing Radiation. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 176-177 (In Russ.).
21. Zaichkina S.I., Rozanova O.M., Klokov D.Yu., et al. Patterns of Radiation Adaptive Response Formation in Mouse Bone Marrow Cells in Vivo. V.1. IV Syezd po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. dokl. Moscow Publ., 2001. P. 291 (In Russ.).
22. Porokhnyak-Ganovskaya L.A., Rudnev M.I., Chebotarev Ye.Ye., et al. Protective Properties of Combinations of Vitamins, Microelements and Amino Acids under the Influence of External Ionizing Radiation in Small Doses. V.2. IV Syezd po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. dokl. Moscow Publ., 2001. P. 429 (In Russ.).
23. Kalistratova V.S., Belyayev I.K., Zhorova Ye.S., et al. Prevention of Long-Term Effects of External and Internal Irradiation Using Vitamin A and Its Precursor, Beta-Carotene. VII Syezd po Radiatsionnym Issledovaniyam = VII Congress on Radiation Research. Moscow, October 21-24, 2014. Proceedings Report Moscow Publ., 2014. P. 145 (In Russ.).
24. Belyayev I.K., Zhorova Ye.S., Zhuravlev V.F., et al. Radioprotective and Antitumor Effects of Domestic Beta-Carotene Substances. Khimiya, Farmakologiya i Mekhanizmy Protivoluchevykh Sredstv = Chemistry, Pharmacol. and Mechanisms of Anti-Radiation Agents. Materials of the IV Conference. Moscow Publ., 1990. P. 8-10 (In Russ.).
25. Podlutskiy F.Ya., Gaziyev A.I. The Use of Vitamins and Antioxidants to Reduce the Frequency of Mutations Induced by Gamma Radiation. Prikladnyye Aspekty Radiobiologii = Applied Aspects of Radiobiology. Materials of the Conference. Moscow Publ., 1994. P. 38 (In Russ.).
26. Kalistratova V.S., Belyayev I.K., Zhorova Ye.S., et al. Prevention of Radiation Carcinogenesis with Vitamin A and Its Precursor Beta-Carotene (Experimental and Clinical Studies). Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2015;60;3:65-78 (In Russ.).
27. Akleev A.V. Modification of Radiation Immune Responses. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2009;49;5:517-5272 (In Russ.).
28. Kudyasheva A.G., Andreyeva L.I., Volodin V.V. Biochemical Mechanisms of Cellular Adaptive Reactions During Chronic Low-Intensity Irradiation and the Action of the Phytoecdysteroid Preparation Serpisten. Aktualnyye Problemy Toksikologii i Radiobiologii = Actual Problems of Toxicology and Radiobiology. Proceedings. Report Russian Scientific Conf. with International Participation, St. Petersburg, May 19-20, 2011. St. Petersburg Publ., 2011. P. 233 (In Russ.).
29. Kunwar A., Jayakumar S., Bhilwade H.N., et al. Protective Effects of Selenocystine Against γ-Radiation-Induced Genotoxicity in Swiss Albino Mice. Radiat. Environ. Biophys. 2011;50;2:271-280.
30. Pavlovskaya T.Ye., Gessler N.N., Kharchenko L.I. On the Radioprotective Properties of Vitamin U. V.2. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings. Report. 1997. P. 204-205 (In Russ.).
31. Borovkov M.V., Shlyakova T.G., Chernov G.A., et al. Indomethophen as a New Means of Increasing the Body’s Radioresistance for a Long Time. V.2. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings. Report. 1997. P. 163-164 (In Russ.).
32. Shlyakova T.G., Mikhaylov P.P. Radioprotective Efficacy of Indomethophen During Prolonged Exposure. V.II (sections VII-XIV). VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 228 (In Russ.).
33. Belyayev I.K., Zarayskiy A.V., Vakulova L.A. Prospects for the Prevention of Radiation Damage to the Gonads by Beta-Carotene. I Vsesoyuznyy Radiobiologicheskiy Syezd = I All-Union Radiobiological Congress. 1989. V.3. P. 689-690 (In Russ.).
34. Vladimirov V.G., Krasilnikov I.I. Radioprotectors and the Theory of the Radioprotective Effect. I Vsesoyuznyy Radiobiologicheskiy Syezd = I All-Union Radiobiological Congress. 1989. V.3. P. 695-697 (In Russ.).
35. Trikulenko A.V., Datsyuk L.A., Klevets M.Yu. Influence of the Combined Effect of Long-Term X-Ray Irradiation and Vitamin E on the Intensity of Lipid Peroxidation in the Blood System. Mekhanizmy Deystviya Malykh Doz = Mechanisms of Action of Small Doses. Tez. Report III International Symposium. Moscow, December 3-6, 2002. Moscow Publ., 2002. P. 142 (In Russ.).
36. Mizina T.Yu., Sitnikova S.G. Modification with Sea Buckthorn Juice Concentrate of Long-Term Effects of Radiation Exposure. V.2. IV Syezd po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001 Abstract. Doc. Moscow Publ., M. 2001. P. 456 (In Russ.).
37. Kudyasheva A.G., Volodin V.V., Volodina S.O. The Use of Phytoecdysteroids to Correct the Effects of Chronic Low-Power Gamma Radiation. Ostryye Problemy Razrabotki Protivoluchevykh Sredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Anti-Radiation Agents: Conservatism or Modernization. Conference Materials. 2012. P.17 ((In Russ.).
38. Shevchenko O.G., Zagorskaya N.G., Kudyasheva A.G., et al. Anti-Radiation Properties of Ecdysteroid-Containing Preparations. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2007;47;4:501-508 (In Russ.).
39. Knizhnikov V.A., Shandala N.K., Komleva V.A., et al. Prevention of Long-Term Consequences of Irradiation with the Help of Food Additives. V.2. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings. Report. 1997. P. 184-185 (In Russ.).
40. Ivanov Ye.V., Ponomareva T.V., Vasilenko S.A., et al. Biologically Active Food Supplements (BAA) as an Important Link in the Prevention of Radiation Carcinogenesis. V.2. IV Syezd po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. dokl. Moscow Publ., 2001. P. 420 (In Russ.).
41. Merkushev G.N., Ivanov E.V., Vasilenko S.A., et al. Prevention of Anemia in Irradiated Animals with the Help of Food Additives. V.2. IV Syezd po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. dokl. Moscow Publ., 2001. P. 455 (In Russ.).
42. Grishchenko V.A., Khizhnyak S.V., Grubskaya L.V., et al. The Use of the FLP-MD Dietary Supplement for Protecting the Body Under Ionizing Radiation. V.II (sections VII-XIV). VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 183 (In Russ.).
43. Vartanyan L.P., Ivanov E.V., Vershinina S.F., et al. Study of the Anticarcinogenic Effect of Glutapirone in Chronic γ-Irradiation of Rats. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2004;44;2:198-201 (In Russ.).
44. Ivnitskiy Yu.Yu., Shturm R. The Severity of Some Post-Radiation Changes in the Body of Mice with Prophylactic Inclusion of Succinate in the Diet. Activation of Hematopoiesis and Radioresistance of the Body. Tez. Report All-Union Scientific Conference. Research Institute of Medical Radiology of the USSR Academy of Medical Sciences. Obninsk Publ., 1990. P. 19-20 (In Russ.).
45. Svergun V.T., Gritsuk A.I. The Effect of Oral Administration of Succinate and Glutamate on the Antioxidant Activity of the Spleen of Animals after a Single Ionizing Radiation at Doses of 0.5 and 1 Gy. Small doses. Materialy Mezhdunarodn. Nauchn. Konf., posvyashchennoy 25-Letiyu Instituta Radiobiologii = Materials International. Scientific Conf. Dedicated to the 25th Anniversary of the Institute of Radiobiology. Gomel, September 26-28, 2012. Minsk Publ., 2012. P. 115-117 (In Russ.).
46. Korytnyy V.S. Comparative Characteristics of the Effectiveness of Potential Radioprotectors with Non-Standard Forms of Irradiation. Konf. IV. Khimiya, Farmakol. i Mekhanizmy Protivoluchevykh Sredstv = Conf. IV. Chemistry, Pharmakol. and Mechanisms of Anti-Radiation Agents. Moscow Publ., 1990. P. 28-30 (In Russ.).
47. Ryabchenko N.I., Konoplyanikov A.G., Ivannik B.P., et al. The Use of Nitric Oxide Production Modifiers to Protect the Body from Radiation Damage and Stress. V.2. IV Congress on Radiation Research. Moscow, November 20-24, 2001 Abstract. dokl. Moscow Publ., 2001. P. 433 (In Russ.).
48. Vasin M.V. Radio Modulators as an Important Component of Biological Protection Against the Damaging Effects of Ionizing Radiation. VII Congress on Radiation Research. Moscow, October 21-24, 2014 Abstract. Report. Moscow Publ., 2014. P. 136 (In Russ.).
49. Zavodnik L.B. Isoflavone Genistein-8-C-Glycoside Prevents Oxidative Damage to the Structure and Function of Rat Liver Microsomal Membranes. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2003;43;4:432-438 (In Russ.).
50. Kunwar A., Bag P.P., Chattopadhyay S., et al. Anti-Apoptotic, Anti-Inflammatory, and Immunomodulatory Activities of З.З’-Diselenodipropionic Acid in Mice Exposed to Whole Body γ-Radiation. Arch. Toxicol. 2011;85;11:1395-1405.
51. Thotala D., Chetyrkin S., Hudson В., et al. Pyridoxamine Protects Intestinal Epithelium from Ionizing Radiation- Induced Apoptosis. Free Radic. Biol. Med. 2009;47;6:779-785.
52. Guidelines for the Use of Adaptogens as a Means of Maintaining the Working Capacity and Combat Capability of Military Personnel Working with Sources of Ionizing Radiation. Moscow Publ., 1996 (In Russ.).
53. Grebenyuk A.N., Legeza V.I., Gladkikh V.D., et al. Prakticheskoye Rukovodstvo po Ispolzovaniyu Meditsinskikh Sredstv Protivoradiatsionnoy Zashchity pri Chrezvychaynykh Situatsiyakh i Obespecheniyu Imi Avariynykh Mediko-Sanitarnykh Formirovaniy i Regionalnykh Avariynykh Tsentrov = Practical Guidance on the Use of Medical Means of Radiation Protection in Emergency Situations and Their Provision of Emergency Medical Units and Regional Emergency Centers. Moscow Publ., 2015. 304 p. (In Russ.).
54. Zhilyayev Ye.G., Legeza V.I., Abdul Yu.A. The Effectiveness of the Means of Pharmacological Protection of the Body from the Effects of Low Doses of Radiation. Voyenno-Meditsinskiy Zhurnal = Russian Military Medical Journal. 1993;11:15 (In Russ.).
55. Rozhdestvenskiy L.M. Means of Radiation Protection and Therapy: Current State, Problems and Prospects. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2012;57;5:72-82 (In Russ.).
56. Shafirkin A.V., Grigoryev Yu.G. Mezhplanetnyye i Orbitalnyye Kosmicheskiye Polety. Radiatsionnyy Risk dlya Kosmonavtov. Radiobiologicheskoye Obosnovaniye = Interplanetary and Orbital Space Flights. Radiation Risk for Astronauts. Radiobiological Substantiation. Moscow Publ., 2009. 639 p. (In Russ.).
57. Baraboy V.A. Ionizing Radiation, Peroxidation and Stress. Voprosy Teoreticheskoy i Prikladnoy Radiobiologii = Issues of Theoretical and Applied Radiobiology. Moscow, Nauka Publ., 1990. P. 60–72. (In Russ.).
58. Burlakova Ye. B., Khrapova N.G. Membrane Lipid Peroxidation and Natural Antioxidants. Uspekhi Khimii = Russian Chemical Reviews 1985;54:1540-1558 (In Russ.).
59. Ivanov A.A., Ulanova A.M., Stavrakova N.M., et al. Radiation Efficiency of Lactoferrin. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2009;49;4:456-461 (In Russ.).
60. Asadullina N.R., Gudkov S.V., Bruskov V.I. Antioxidant Properties of Xanthosine under the Influence of X-Ray Radiation. Fundamentalnyye Issledovaniya. 2011;10:22-25 (In Russ.).
61. Asadullina N.R. Radiozashchitnyye Svoystva Ryada Purinovykh Soyedineniy = Radioprotective Properties of a Number of Purine Compounds. Extended Abstract of Candidate’s Thesis in Biol. Sciences. Moscow Publ., 2012. 26 p. (In Russ.).
62. Vereshchako G.G., Khodosovskaya A.M. Anti-Radiation Properties of Selenomethionine with Methionine. Aktualnyye Problemy Toksikologii i Radiobiologii = Actual Problems of Toxicology and Radiobiology. Proceedings. Report Ross. Scientific Conf. with International Participation. St. Petersburg, Foliant Publ., 2011. P. 219 (In Russ.).
63. Mil Ye.M., Albantova A.A., Burlakova Ye.B. Influence of the Antioxidant Fenosan and Low-Dose Irradiation on the Content of p53 and bcl-2 Proteins in Mice of Different Strains. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2010;50;1:58-64 (In Russ.).
64. Tarumov R.A., Basharin V.A., Grebenyuk A.N. Antiradiation Properties of Modern Antioxidants. Medline.ru. Rossiyskiy Biomeditsinskiy Zhurnal. 2012;13:682-700 (In Russ.).
65. Weiss J.F. Landauer M.R. Radioprotection by Antioxidants. Ann. N.Y. Acad. Sci. 2000;899:44-60.
66. Rekers P.E., Field J.B. Control of Hemorrhagic Syndrome and Reduction in X-Irradiation Mortality with Flavanone. Science. 1948;107:16-17.
67. Fild I.В., Rekers P.E. Studies of Effects of Flavonoids on Roentgen Irradiation Deases. J. Clin. Invest. 1949;28:746-751.
68. Landauer M.R., Srinivasan S.V., Shapiro A., et al. Protection Against Lethal Irradiation by Genistein. Int. J. Toxicol. 2000;19:37-43.
69. Rozhdestvenskiy L.M. Classification of Anti-Radiation Agents in Terms of their Pharmacological Signal and Conjugation with the Stage of Development of Radiation Injury. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2017;57;2:117-135 (In Russ.).
70. Mosse I.B., Plotnikova S.I., Kostrova L.N., et al. Comparison of the Antimutagenic Efficacy of Tocopherol and Melatonin Under Single and Long-Term Irradiation. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 198-199 (In Russ.).
71. Gorovoy L.F., Senyuk O.F. Protecting a Person from the Consequences of Chronic Exposure to Low Doses of Penetrating Radiation. VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 181 (In Russ.).
72. Pikalova L.V., Legeza V.I., Gorbunov V.A. Experimental Study of Gene Protective Properties of Endogenous Melatonin Under Irradiation. Ostryye Problemy Razrabotki Protivoluchevykh Sredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Anti-Radiation Agents: Conservatism or Modernization. Conference Materials. 2012. P. 18 (In Russ.).
73. Legeza V.I., Ivanov M.B., Pikalova L.V. Experimental Study of the Gene-Protective Effects of Melatonin Under Radiation Exposure. VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 63 (In Russ.).
74. Pikalova L.V., Legeza V.I., Gorbunov V.A. Experimental Evaluation of the Effect of Exogenous Melatonin on Radiation-Induced Genetic Damage. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2013;53;5:500-505 (In Russ.).
75. Pikalova L.V. Genoprotective effects of melatonin under chemical and radiation exposure. Extended Abstract of Candidate’s Thesis in Medicine. St. Petersburg Publ., 2012. 23 p. (In Russ.).
76. Morozik P.M., Mosse I.B., Melnov S.B., et al. Study of the Nature of «Bystander» Factors in Vitro and in Vivo. V.II (Sections VII-XIV). VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P.69 (In Russ.).
77. Golichenkov V.A. Bespyatykh A.Yu., Burlakova O.V. Melatonin as an Antioxidant: Main Functions and Properties. Uspekhi Sovremennoy Biologii = Biology Bulletin Reviews. 2010;5:487-496 (In Russ.).
78. Kondakova N.V., Zichkina S.I., Rozanova O.M., et al. Study of the Protective Effect of Dihydroquercetin Against Cytogenetic Damage in Mice at Low Doses of γ-Irradiation. V.2. IV Congress on Radiation Research. Moscow, November 20-24, 2001 Abstract. dokl., Moscow Publ., 2001. P. 422 (In Russ.).
79. Karp O.E., Shelkovskaya O.V., Gudkov S.V., et al. Dihydroquercetin is an Antioxidant that Can Protect DNA from Oxidative Damage Caused by Reactive Oxygen Species and Exhibit Radioprotective Properties. VII Congress on Radiation Research. Moscow, October 21-24, 2014 Abstract. Report. Moscow Publ., 2014. P. 146 (In Russ.).
80. Vartanyan L.P., Ivanov Ye.V., Vershinina S.F., et al. Study of the Anticarcinogenic Effect of Glutapirone in Chronic γ-Irradiation of Rats. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2004;44;2:198-201 (In Russ.).
81. Fatkulina L.D., Goloshchapov A.N., Burlakova Ye.B. Radioprotective Effect of 2,5-Diphenyloxazole Derivatives on the Structural State of Membranes. V.II (sections VII-XIV). VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 223 (In Russ.).
82. Arora R., Gupta D., Chawla R., et. al. Radioprotection by Plant Products: Present Status and Future Prospects. Phytotherapy Res. 2005;19;1:1–22.
83. Hosseinimehr S. J. Foundation Review: Trends in the Development of Radioprotective Agents. Drug Discovery Today. 2007;12;18–20:794–805.
84. Cai L., Satoh M., Tohyama C., Charain M.G. Metallothionein in Radiation Exposure: Its Induction and Protection Role. Toxicol. 1999;132;2–3:85–98.
85. Kozhokaru A.F., Alekseyeva L.V., Zaslavskiy Yu.A., et al. On the Modification of Radiation Injuries by Orotic Acid. Radiobiologiya. 1981;21;5:784-787 (In Russ.).
86. Zhemkova L.N., Novoselova G.S., Remizova I.V., et al. Features of the Action of Potassium Orotate During Prophylactic and Therapeutic Administration to Irradiated Rats. Radiobiologiya. 1985;25;2:208-211 (In Russ.).
87. Vartaryan L.P. Radioprotective Effect of Riboxin (Inosine). Radiobiologiya. 1989;29;5:707-709 (In Russ.).
88. Sokolov M.K., Kaplan Ye.Ya., Ayrapetyan G.M., et al. Adaptogenic Effect of Riboxin. Khimiko-Farmatsevticheskiy Zhurnal = Pharmaceutical Chemistry Journal. 1980;14;1:40-45 (In Russ.).
89. Chertkov K.S., Petrov V.M. Pharmaco-Chemical Protection and Substitution Treatment as Components of the System of Radiation Safety of Cosmonauts During an Expedition to Mars. Aviakosmicheskaya i Ekologicheskaya Meditsina = Aerospace and Environmental Medicine. 1993;27;5-6:27-32 (In Russ.).
90. Legeza V.I., Abdul Yu.A., Antushevich A.Ye. Clinical and Experimental Study of the Radioprotective Efficacy of Riboxin in Low-Dose Fractionated Irradiation. Radiobiologiya.1993;33;6:800-807 (In Russ.).
91. Vernigorova L.A., Chertkov K.S., Krylov K.P. Radioprotective Action of Riboxin Under Various Regimes of Radiation Exposure. Khimiya, Farmakologiya i Mekhanizmy Deystviya Protivoluchevykh Sredstv = Chemistry, Pharmacology and Mechanisms of Action of Anti-Radiation Agents. Moscow Publ., 1990. P. 16-17 (In Russ.).
92. Legeza V.M., Abdul Yu.A., Petkevich N.V. Influence of Purine Nucleoside on the Radiosensitivity of Rapidly Proliferating Tissues in Mice. Activation of Hematopoiesis and Radioresistance of the Organism. Tez. report All-Union Scientific Conference. Research Institute of Medical Radiology of the USSR Academy of Medical Sciences. Obninsk Publ., 1990. P. 31-32 (In Russ.).
93. Gudkov S.V., Gudkova O.Yu., Shtarkman I.N. Guanosine and Inosine as Natural Gene Protectors for Mouse Blood Cells Exposed to X-Rays. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2006;46;6:713-718 (In Russ.).
94. Instructions for the Use of a Complex of Radioprotective Preparations During the Elimination of the Consequences of Radiation Accidents (for Personnel of Emergency Teams). Moscow Publ., 2004 (In Russ.).
95. Taran Yu.P., Shishkina L.N. Investigation of the Antiradiation Action of 6-Methyluracil. Radiobiologiya. 1993;33;2:285-290 (In Russ.).
96. Ivnitskiy Yu.Yu. Intensivnost Kletochnogo Dykhaniya i Radiorezistentnost Organizma = Intensity of Cellular Respiration and Radioresistance of the Body. Extended abstract of Doctor’s thesis in Medicine. St. Petersburg Publ., 1994. 44 p. (In Russ.).
97. Sofronov G.A., Ivnitsky Yu.Yu. Substrates of Cellular Respiration as Promising Prophylactic Agents for the Population of Ecologically Disadvantaged Regions. Ekologicheskaya Bezopasnost Gorodov = Ecological Safety of Cities. St. Petersburg Publ., 1993. P. 22-23 (In Russ.).
98. Sturm R., Ivnitsky Yu. Yu. Radioresistance of Mice when Succinic Acid and Its Salts Are Included in the Diet. Radiobiologiya. 1992;32;1:117-120 (In Russ.).
99. Belyayev I.K., Zhuravlev V.F., Stepanov S.V., Zarayskiy A.V., et al. Radioprotective Efficiency of Carotene in External and Internal Acute Irradiation. Radiobiologiya. 1992;32;1:121-125 (In Russ.).
100. Zalashko M.V., Koroleva I.F., Salolina G.A., et al. Radiation Protection Properties of Lipocarotenoid Extract from the Yeast Rhodotorula Glutinis. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 1997;37;1:41-45 (In Russ.).
101. Zabbarova I., Kanai A. Targeted Delivere of Radioprotective Agents to Mitochondria. Mol. Interv. 2008;8;226-230.
102. Vasin M.V., Semenova L.A., Chernov Yu.N. Changes in the Radioresistance of Animals Under Conditions of Fractionated γ-Irradiation and the Use of Radioprotectors and Immunomodulators. V.3. I All-Union Radiobiological Congress. 1989. P. 693-694 (In Russ.).
103. Ivanchenko A.V., Basharin V.A., Drachev I.S., Seleznev A.B., Bushmanov A.Yu. To the Question of Pharmacological Protection During Irradiation in Non-Damaging Doses: Perhaps it Is Necessary? Message 1. General Review of Medico-Tactical and Phenomenological Aspects. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2021;66;4:89–100 (In Russ.).
104. Astrov V.V. Obosnovaniye Tselesoobraznosti Ispolzovaniya Novykh Adaptogenov pri Professionalnom Obluchenii v Malykh Dozakh = Substantiation of the Expediency of Using New Adaptogens in Occupational Irradiation in Small Doses. Extended abstract of Candidate’s thesis in Medicine. St. Petersburg Publ., 1996 (In Russ.).
105. Antushevich A.Ye., Astrov V.V. Eleutherococcus as a Means of Combating Psycho-Emotional Stress During Planned Work with Radioactive Substances. Aktoprotektory i Antioksidanty = Actoprotectors and Antioxidants. Materials Scientific and practical. Conf. St. Petersburg Publ., 1994. P. 167. (In Russ.).
106. Astrov V.V. Study of the Effect of the Amino Acid-Vitamin Complex on the Performance of Personnel Servicing Sources of Ionizing Radiation. Aktualnyye Problemy i Perspektivy Razvitiya Voyenno-Morskoy Gigiyeny, Radiologii i Toksikologii = Actual Problems and Prospects for the Development of Naval Hygiene, Radiology and Toxicology. Materials Scientific and Practical. Conf. Obninsk Publ., 1994. P. 15 (In Russ.).
107. Antushevich A.Ye., Astrov V.V. Adaptogens of Plant Origin - a Possible Way to Combat Psycho-Emotional Stress when Working with Radioactive Substances. Prikladnyye Aspekty Radiobiologii = Applied Aspects of Radiobiology. Tez. Report Vseross. Conf. Moscow Publ., 1994. P. 26 (In Russ.).
108. Zhilyayev Ye.G., Legeza V.I., Astrov V.V. Some Indicators of the Functional State of Persons Serving Sources of Ionizing Radiation. Voyenno-Meditsinskiy Zhurnal = Russian Military Medical Journal. 1995;6:52-55 (In Russ.).
109. Astrov V.V., Legeza V.I. Influence of Ammivit on Some Indicators of Nonspecific Resistance of the Body During Occupational Exposure. V.2. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 159-160 (In Russ.).
110. Guidelines for the Use of Medical Anti-Radiation Means for the Protection of Personnel Involved in the Elimination of the Consequences of Radiation Accidents. Moscow Publ., 1996 (In Russ.).
112. Moroz B.B., Deshevoy Yu.B., Voronina T.A., et al. Influence of Mexidol on the Blood System Under Conditions of Emotional Stress after Exposure to Ionizing Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2007;47;2:163-170 (In Russ.).
113. Deshevoy Yu.B., Moroz B.B., Lyrshchikova A.V. Bone Marrow Hematopoiesis in Emotional Stress Reactions of Varying Intensity Against the Background of Low-Dose Ionizing Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2004;44;1:56-61 (In Russ.).
114. Deshevoy Yu.B., Moroz B.B., Lebedev V.G. Emotional Stress and Radiation Pathology. V.2. IV Syezd Po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Abstract. Dokl. Moscow, November 20-24, 2001. Moscow Publ., 2001. P. 362 (In Russ.).
115. Moroz B.B., Deshevoy Yu.B. Modifying Effect of Low-Dose γ-Irradiation on the Reactions of the Hematopoietic System During Emotional Stress. V.1. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 159-160 (In Russ.).
116. Rozhdestvenskiy L.M. Means of Radiation Protection and Therapy: Current State, Problems and Prospects. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2012;57;5:72-82 (In Russ.).
117. Lukashin B.P. Geparin i Radiorezistentnost = Heparin and Radioresistance. Ed. Grebenyuk A.N. St. Petersburg Publ., 2007. 128 p. (In Russ.).
118. Udintsev A.V., Ikhalaynen A.A., Maksimov V.A. Comparative Experimental Evaluation of the Parameters of Toxicity and Pharmacokinetics of Medicinal Substances Based on the Phytosteroid Ecdysterone. Medline.ru. Rossiyskiy Biomeditsinskiy Zhurnal. 2014;15: 250-262 (In Russ.).
119. Foucault A.S., Mathe V., Lafont R., Even P., Dioh W., Veillet S., Tome D., Huneau J.F., Hermier D., Quignard-Boulange А. Quinoa Extract Enriched in 20-Hydroxyecdysone Protects Mice from Diet-Induced Obesity and Modulates Adipokines Expression. Obesity (Silver Spring). 2012;20;2:270-277.
120. Hu J., Zhao T.Z., Chu W.H., Luo C.X., Tang W.H., Yi L., Feng H. Protective Effects of 20-Hydroxyecdysone on CoCl2-Induced Cell Injury in PC12 Cells. J.Cell. Biochem. 2010;111;6:1512-1521.
121. King B.R., Nicholson R.C. Advances in Understanding Corticotrophin-Releasing Hormone Gene Expression. Front. Biosci. 2007;12:581-590.
122. Gadzhieva R.M., Portugalov S.N., Panyushkin V.V., Kondratieva I.I. Comparative Study of the Anabolic Action of Ekdisten, Leveton and Prime-plus, Herbal Preparations. Eksperimentalnaya i Klinicheskaya Farmakologiya = Experimental and Clinical Pharmacology. 1995;58;5:46-48 (In Russ.).
123. Chermnykh N., Shimanovsky N.L., Shutko G.V., Syrov V.N. The Effect of Methandrostenolone and Ecdysterone on the Physical Performance of Animals and Protein Metabolism in Skeletal Muscles. Farmakologiya i Toksikologiya. 1988;51;57-60 (In Russ.).
124. Azizov A.P., Seyfulla R.D., Ankudinova I.A., Kondratyeva I.I., Borisova I.G. The Effect of Antioxidants Elton and Leveton on the Physical Performance of Athletes. Eksperimentalnaya i Klinicheskaya Farmakologiya = Experimental and Clinical Pharmacology. 1998;61;1:60-62 (In Russ.).
125. Azizov A.P., Seyfulla R.D. The Effect of Elton, Leveton, Fitoton and Adapton on the Physical Performance of Experimental Animals. Eksperimentalnaya i Klinicheskaya Farmakologiya = Experimental and Clinical Pharmacology. 1998;61;3:61-63 (In Russ.).
126. Kuzmitskiy B.B., Golubeva M.B., Konoplya N.A., Kovganko T.V., Akhrem A.A. New Opportunities for the Search for Immunomodulators Among Compounds of the Steroid Structure. Farmakologiya i Toksikologiya. 1990;53;3:20-22 (In Russ.).
127. Azizov A.P., Seyfulla R.D., Chubarov A.V. Influence of Tincture of Leuzea and Leveton on the Humoral Immunity of Athletes. Eksperimentalnaya i Klinicheskaya Farmakologiya = Experimental and Clinical Pharmacology. 1997;60;6:47-48 (In Russ.).
128. Kapur P., Wuttke W., Jarry H., Seidlova-Wuttke D. Beneficial Effects of β-Ecdysone on the Joint, Epiphyseal Cartilage Tissue and Trabecular Bone in Ovariectomized Rats. Phytomedicine. 2010;17;5:350-355.
129. Luo C., Yi B., Fan W., Chen K., Gui L., Chen Z., Li L., Feng H., Chi L. Enhanced Angiogenesis and Astrocyte Activation by Ecdysterone Treatment in a Focal Cerebral Ischemia Rat Model. Acta. Neurochir. Suppl. 2011;110;1:151-156.
130. Wu C.H., Wu X., Fu X.B., Zhao Y.F., Zhang Y.Z., Zhang Z.L. Effect of Ecdysterone o132. n the Proliferation of Human Mesenchymal Stem Cells in Vitro. Nan. Fang. Yi. Ke. Da. Xue. Xue. Bao. 2010;30;5:1180-1182.
131. Cahlikova L., Macakova K., Chlebek J., Host’alkova A., Kulhankova A., Opletal L. Ecdysterone and Its Activity on Some Degenerative Diseases. Natl. Prod. Commun. 2011;6;5:707-718.
132. Hu J., Zhao T.Z., Chu W.H., Luo C.X., Tang W.H., Yi L., Feng H. Protective Effects of 20-Hydroxyecdysone on CoCl2-Induced Cell Injury in PC12 Cells. J.Cell. Biochem. 2010;111;6:1512-1521.
133. Nsimba R.Y., Kikuzaki H., Konishi Y. Ecdysteroids Act as Inhibitors of Calf Skin Collagenase and Oxidative Stress. J. Biochem. Mol. Toxicol. 2008;22;4:240-250.
134. Oradovskaya I.V., Manko V.M., Oprishchenko M.A., et al. Correction of Dysfunction of the Immune System in Personnel of a Radiation-Hazardous Enterprise with the Preparation «SPLAT». Acute Problems in the Development of Anti-Radiation Agents: Conservatism or Modernization. Conference Materials. 2012. P. 25 (In Russ.).
135. Rasina L.N., Chupakhin O.N., Charushin V.N., et al. Methods of Detection and Means of Correction of Long-Term Low-Intensity Radiation Exposure. Acute Problems in the Development of Anti-Radiation Agents: Conservatism or Modernization. Conference Materials. 2012. P. 19 (In Russ.).
136. Zhakovko E.B., Krasilnikov I.I., Deyev S.P. Cytogenetic Study of the Radioprotective Action of Compounds of Various Chemical Classes. Applied Aspects of Radiobiology. Conference Materials. Moscow Publ., 1994. P. 32 (In Russ.).
137. Proceedings of the ICRP, Publication 118. Early and Late Effects of Irradiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in the Context of Radiation Protection. Ed. Clement K.Kh. Chelyabinsk: Kniga Publ., 2012. 384 p. (In Russ.).
138. Legeza V.I., Grebenyuk A.N., Drachev I.S. Radiomitigators: Classification, Pharmacological Properties, Application Prospects. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2019;59;2:161-170 (In Russ.).
139. Rozhdestvenskiy L.M. The Past and Future of Radiobiology of Anti-Radiation Agents at the Institute of Biophysics of the Ministry of Health of the USSR A.I. Burnazyan FMBA of Russia. Sat. Articles Dedicated to the 70th Anniversary of the Federal State Budgetary Institution «State Scientific Center of the Russian Federation - Federal Medical Biophysical Center Named After. A.I. Burnazyan» (1946-2016) Ed. Ilin L.A., Uyba V.V., Samoylov A.S. Moscow Publ., 2016. P. 80-89 (In Russ.).
140. ICRP, Publication 59. The Biological Basis for Dose Limitation in the Skin. Ann. ICRP. 1991;22;2:1-104.
141. Glushkov V.A., Chertkov K.S. Riboxin is a Protector for Use in Areas with a High Level of Ionizing Radiation. V.1. Khronicheskoye Radiatsionnoye Vozdeystviye: Risk Otdalennykh Effektov = Chronic Radiation Exposure: Risk of Long-Term Effects. Moscow Publ., 1996. P. 28-37 (In Russ.).
142. Gladkikh V.D. Promising Directions of Pharmacological Prevention and Early Therapy of Radiation Injuries (Review of Foreign Literature). Medline.ru. Rossiyskiy Biomeditsinskiy Zhurnal. 2020;21: 246-270 (In Russ.).
143. Tarumov R.A. Eksperimentalnaya Otsenka Radiozashchitnoy Effektivnosti Genisteina pri Ostrom Obluchenii = Experimental Evaluation of the Radioprotective Efficacy of Genistein in Acute Irradiation. Diss. Candidate’s thesis in Medicine. St. Petersburg Publ., 2014. С. 174. (In Russ.).
144. Tarumov R.A., Grebenyuk A.N., Basharin V.A., et al. Biological Properties of the Phytoestrogen Genistein (Literature Review). Meditsina Ekstremalnykh Situatsiy = Extreme Medicine. 2014;2;48:55-68 (In Russ.).
145. Singh V.K., Newman V.L., Romaine P.L. Radiation Countermeasure Agents: an Update (2011–2014). Expert. Opin. Ther. Pat. 2014;24;11:1229–1255.
146. Singh V.K., Romaine P.L., Seed T.M. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health. Phys. 2015;108;6:607–630.
147. Traganos F., Ardelt В., Halko N., et al. Effects of Genistein on the Growth and Cell Cycle Progression of Normal Human Lymphocytes and Human Leukemic MOLT-4 and HL-60 Cells. Cancer Res. 1992;52;22:6200-6208.
148. Verdrengh M., Jonsson I.M., Holmdahl R., et al. Genistein as an Anti-Inflammatory Agent. Inflam. Res. 2003;52;8:341-346.
149. Kruk I., Aboul-Enein H.Y., Michalska T., et al. Scavenging of Reactive Oxygen Species by the Plant Phenols Genistein and Oleuropein. Luminescence. 2005;20;2:81-89.
150. Mortensen A., Kulling S.E., Schwartz H., et al. Analytical and Compositional Aspects of Isoflavones in Food and Their Biological Effects. Mol. Nutr. & Food Res. 2009;53;Is. S2:S266-S309.
151. Akiyaina Т., Ishida J., Nakagawa S., et al. Genistein, a Specific Inhibitor of Tyrosine-Spеcific Proteinkinases. Journal of Biological Chemistry. 1987;202;12:5502—5515.
152. Rozhdestvenskiy L.M. Lecture 5. Modification of Radiation Injuries: Protection and Treatment. FMBC them. A.I. Burnazyan. URL: https://ozlib.com/857156/tehnika/osnovy_biologicheskogo_deystviya_ioniziruyuschego_izlucheniya_dualnyy_harakter_deystviya_radiatsii_bioobekt#293 (In Russ.).
153. Simbirtsev A.S. Interleykin-1. Fiziologiya. Patologiya. Klinika = Interleukin-1. Physiology. Pathology. Clinic. St. Petersburg Publ., 2011. 480 p. (In Russ.).
154. Davydova S.A., Trushina M.N., Vodyakova L.M., et al. Results of Commission Trials of the RS-10 Drug as a Means of Early Treatment of Acute Radiation Sickness. T.I. Byulleten Radiatsionnoy Meditsiny = Selected Materials of the Bulletin of Radiation Medicine. Ed. Ilin L.A., Samoylov A.S. Moscow, A.I. Burnasyan FMBC Publ., 2016. P. 571-582 (In Russ.).
155. Rozhdestvenskiy L.M. Theoretical and Practical Aspects of the Classification of Anti-Radiation Drugs. VII Congress on Radiation Research. Moscow, October 21-24, 2014 Abstract. Report. Moscow Publ., 2014. P. 168 (In Russ.).
156. VIII Congress on Radiation Research. Moscow, October 12-15, 2021. Abstract. Report. Dubna Publ., 2021. 444 p.
157. Sapozhnikov R.Yu., Khalimov Yu.Sh., Legeza V.I., Vlasenko A.N., Drachev I.S., Suprunova E.B., Grebenyuk A.N., Simbirtsev A.S. Preventive and Therapeutic Efficacy of Recombinant Flagellin in Acute Radiation Injury. Vestnik Rossiyskoy Voyenno-Meditsinskoy Akademii = Bulletin of the Russian Military Medical Academy. 2019;3:141-144 (In Russ.).
158. Al-Shehadat R.I. Obtaining and Studying the Properties of Recombinant Bacterial Flagellin. Khimicheskaya i Biologicheskaya Bezopasnost. 2012;Spec. issue:109-116. (In Russ.).
159. Grebenyuk A.N. Obtaining Various Variants of Recombinant Flagellin and Assessing Their Radioprotective Effectiveness. Vestnik Rossiyskoy Voyenno-Meditsinskoy Akademii = Bulletin of the Russian Military Medical Academy. 2013;3:75-80 (In Russ.).
160. Sofronov, G.A., et al. Perspective Directions for the Use of Drugs Based on Recombinant Flagellin Meditsinskiy Akademicheskiy Zhurnal = Medical Academic Journal. 2017;17;2:7-20 (In Russ.).
161. Timoshevskiy A.A. Kliniko-Eksperimentalnoye Obosnovaniye Primeneniya Interleykina-1β dlya Profilaktiki i Terapii Porazheniy pri Radiatsionnykh Avariyakh = Clinical and Experimental Substantiation of the Use of Interleukin-1β for the Prevention and Treatment of Injuries in Radiation Accidents. Extended Abstract of Doctor’s thesis in medicine. St. Petersburg Publ., 2009. (In Russ.).
162. Grebenyuk A.N., Legeza V.I. Protivoluchevyye Svoystva Interleykina -1 = Antiradiation Properties of Interleukin -1. St. Petersburg, Foliant Publ., 2012. 216 p. (In Russ.).
163. Gromykhina N.Yu., Orlovskaya I.A., Dubinina L.V., et al. Involvement of Hematopoietic Stem Cells in the Mechanisms of the Immunostimulating Effect of Interleukin-1 in Mice. Immunologiya.1995;2:29-33 (In Russ.).
164. Simbirtsev A.S. Interleukin-1 and Other Cytokines in the Treatment and Prevention of Radiation Injuries. Meditsinskiye Aspekty Radiatsionnoy i Khimicheskoy Bezopasnosti = Medical Aspects of Radiation and Chemical Safety. Materials Ross. Scientific Conf. St. Petersburg Publ., 2001. P. 436-440 (In Russ.).
165. Ketlinskiy S.A., Simbirtsev A.S., Vorobyev A.A. Endogennyye Immunomodulyatory = Endogenous Immunomodulators. St. Petersburg Publ., 1992. 256 p. (In Russ.).
166. Grebenyuk A.N., Legeza V.I., Aksenova N.V., et al. Results and Prospects for the Creation and Testing of Anti-Radiation Agents Based on Interleukin-1. Ostryye Problemy Razrabotki Protivoluchevykhsredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Anti-Radiation Means: Conservatism or Modernization. Conference Materials. 2012. P. 4 (In Russ.).
167. Simbirtsev A.S., Ketlinskiy S.A. Prospects for the Development of New Radioprotective Agents Based on Recombinant Interleukin-1. Ostryye Problemy Razrabotki Protivoluchevykhsredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Anti-Radiation Means: Conservatism or Modernization. Conference Materials. 2012. P. 9 (In Russ.).
168. Rozhdestvenskiy L.M., Mikhaylov V.F., Shlyakova T.G., et al. Search for Anti-Radiation Drugs in a Model of Prolonged Irradiation of Mice with a Low Dose Rate and Evaluation of Their Effect on the Expression of Heat Shock Protein Genes. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2015;55;4:420-430 (In Russ.).
169. Zinchenko V.P., Dolgacheva L.P. Vnutrikletochnaya Signalizatsiya = Intracellular Signaling. Pushchino Publ., 2003. 84 p. (In Russ.).
170. Bogdanova I.A., Ovchinnikov K.G., Torbenko V.P., Gerasimov A.M. The State of Enzymes of Antioxidant Protection of Bone Marrow Cells in Rats During Irradiation, Bone Fracture and Combined Radiation Injury. Byulleten Eksperimentalnoy Biologii i Meditsiny = Bulletin of Experimental Biology and Medicine. 1987;103;6:659-662 (In Russ.).
171. Stickle R.L., Epperly M.W., Klein E., et al. Prevention of Irradiation–Induced Esophagitis by Plasmid/Liposome Delivery of the Human Manganese Superoxide Dismutase Transgene. Radiat. Oncol. Invest. 1999;7:204–217.
172. Grdina D. J., Murley J. S., Kataoka Y., et al. Radioprotectors: Current Status and New Directions. Radiat. Res. 2005;163;6:704–705.
173. Jones J.A., Epperly M., Law J., et al. Space Radiation Hazards and Strategies for Astronaut / Cosmonaut Protection. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2013;58;3:5–23 (In Russ.).
174. Koterov A.N. Problems of the Search for Means of Radiation Protection for a Person in the Light of Achievements in the Genetics of Aging. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2013;53;5:487-494.
175. Kalinina N.M., Solntseva O.S., Bychkova N.V. Changes in the Synthesis and Production of Cytokines as a Result of Exposure to Ionizing Radiation in Small Doses. V.1. Radiobiol., Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Moscow, October 14-17, 1997. Proceedings Report. Moscow Publ., 1997. P. 26 (In Russ.).
176. Koterov A.N. Problems of the Search for Means of Radiation Protection for a Person in the Light of Achievements in the Genetics of Aging. Ostryye Problemy Razrabotki Protivoluchevykhsredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Anti-Radiation Means: Conservatism or Modernization. Conference Materials. 2012. P. 5 (In Russ.).
177. Mikhaylov V.F. Shulenina L.V. Regulation of Gene Activity - One of the Mechanisms of Changes in Radiosensitivity. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2021;61;4:367-379 (In Russ.).
178. Shagirova Zh.M., Shulenina L.V., Ushenkova L.N., et al. Modulation of Gene Expression by Natural and Synthetic Antimutagens as an Approach to Increasing the Resistance of Human Cells to Genotoxic Effects. V.1. IV Syezd Po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Abstract. Dokl. Moscow, November 20-24, 2001. Moscow Publ., 2001. P. 62 (In Russ.).
179. Prokopenko N.V., Gerasimovich N.V. Modification of the Structural State of the Plasma Membranes of Thymocytes of Irradiated Rats with Synthetic Dipeptides α-L-GLU-L-TRP and γ-D-GLU-L-TRP. V.1. IV Syezd Po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. Dokl. Moscow Publ., 2001. P. 56 (In Russ.).
180. Nechitaylo I.I. Effect of Nootropic Amino Acids on Lpo Processes in Blood and Tissues in Rats Exposed to Low Doses of Ionizing Radiation. V.2. IV Syezd Po Radiatsionnym Issledovaniyam = IV Congress on Radiation Research. Moscow, November 20-24, 2001. Abstract. Dokl. Moscow Publ., 2001. P. 398 (In Russ.).
181. Shulenina L.V., Mikhaylov V.F., Kalistratova V.S., et al. Slowdown of the Radiation-Induced Development of Mammary Tumors in Rats by the Vaccine «Grippol»: the Role of miRNAs. Meditsina Ekstremalnykh Situatsiy = Extreme Medicine. 2015;3:38-48 (In Russ.).
182. Mikhaylov V.F., Shulenina L.V. Regulation of Gene Activity is One of the Mechanisms of Changes in Radiosensitivity. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2021;61;4:367-379 (In Russ.).
183. Vlasova O.A., Kravtsov I.S., Nikiforov A.S. Current State and Prospects for the Development of Gene Therapy for Radiation Injuries. Medline.ru. Rossiyskiy Biomeditsinskiy Zhurnal. 2021;22 (In Russ.).
184. Cataldi S., Borrelli A., Ceccarini M.R., Nakashidze I., Codini M., Belov O., Ivanov A., Krasavin E., Ferri I., Conte C., Patria F.F., Traina G., Beccari T., Mancini A., Curcio F., Ambesi-Impiombato F.S., Albi E. Neutral Sphingomyelinase Modulation in the Protective/Preventive Role of rMnSOD from Radiation-Induced Damage in the Brain. Int. J. Mol. Sci. 2019;20;21:E5431.
185. Greenberger J.S., Epperly M.W., Gretton J., Jefferson M., Nie S., Bernarding M., Kagan V., Guo H.L. Radioprotective Gene Therapy. Curr. Gene.Ther. 2003;3;3:183–195.
186. Miao W., Xufeng R., Park M.R., Gu H., Hu L., Kang J.W., Ma S., Liang P.H., Li Y., Cheng H., Yu H., Epperly M., Greenberger J., Cheng T. Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-Detoxifying Enzymes in Transplant Mice. Mol. Ther. 2015;21;2:423–432.
187. Inoue A., Seidel M.G., Wu W., Kamizono S., Ferrando A.A., Bronson R.T., Iwasaki H., Akashi K., Morimoto A., Hitzler J.K., Pestina T.I., Jackson C.W., Tanaka R., Chong M.J., McKinnon P.J. Inukai T., Grosveld G.C., Look A.T. Slug, a Highly Conserved Zinc Finger Transcriptional Repressor, Protects Hematopoietic Progenitor Cells from Radiation-Induced Apoptosis in Vivo. Cancer Cell. 2002;2;4:279–288.
188. Strom E., Sathe S., Komarov P.G., et al. Small–Molecule Inhibitor of p53 Binding to Mitochondria Protects Mice from Gamma Radiation. Nat. Chem. Biol. 2006;2;9:474–479.
189. Kudryashov Yu.B. Radiatsionnaya Biofizika (Ioniziruyushchiye Izlucheniya) = Radiation Biophysics (Ionizing Radiation). Moscow Publ., 2004. 448 p. (In Russ.).
190. Miller A. C., Cohen S., Stewart M., et al. Radioprotection by the Histone Deacetylase Inhibitor Phenylbutyrate. Radiat. Environ. Biophys. 2011;50:585–596.
191. Vlasenko T.N., Nazarov V.B., Grebenyuk A.N. Modern Approaches to Pharmacological Prevention of Radiation Injuries. Medline.ru. Rossiyskiy Biomeditsinskiy Zhurnal. 2010;11:230–253 (In Russ.).
192. Ketlinskiy S.A., Simbirtsev A.S. Tsitokiny = Cytokines. St. Petersburg, Foliant Publ., 2008. 552 p. (In Russ.).
193. Johnke R.M., Sattler J.A., Allison R.R. Radioprotective Agents for Radiation Therapy: Future Trends. Future Oncol. 2014;10;15:2345–2357.
194. Singh V.K., Yadav V.S. Role of Cytokines and Growth Factors in Radioprotection. Exp. Mol. Pathol. 2005;78;2:156–169.
195. Morselli E., Galluzzi L., Kepp O., et al. Autophagy Mediates Pharmacological Lifespan Extension by Spermidine and Resveratrol. Aging. 2009;1;12:961–970.
196. Kim H., Bernard M.E., Flickinger J., et al. The Autophagy–Induced Drug Carbamazepine is a Radiation Protector and Mitigator. Int. J. Radiat. Biol. 2011;87;10:1052–1060.
197. Koukourakis M.I. Radiation Damage and Radioprotectants: New Concepts in the Era of Molecular Medicine. British. J. Radiol. 2012;85;1012:313–330.
197. Koukourakis M. I. Radiation Damage and Radioprotectants: New Concepts in the Era of Molecular Medicine. British J. Radiol. 2012;85;1012:313–330.
198. Ushakov I.B., Ivanov A.A. Anti-Radiation Means for Ensuring the Radiation Safety of Astronauts. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2013;53;5:521-524 (In Russ.).
199. Vasin M.V. Classification of Anti-Radiation Agents as A Reflection of the Current State and Prospects for the Development of Radiation Pharmacology. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2013;53;5:459-467 (In Russ.).
200. Rozhdestvenskiy L.M. Topical Issues of Search and Research of Anti-Radiation Agents. Acute Problems in the Development of Anti-Radiation Agents: Conservatism or Modernization. Conference Materials. 2012. P. 8 (In Russ.).
201. Vasin M.V. Sredstva Profilaktiki i Lecheniya Luchevykh Porazheniy = Means of Prevention and Treatment of Radiation Injuries. Textbook. Moscow Publ., 2000. 264 p. (In Russ.).
202. Vasin M.V. Protivoluchevyye Sredstva = Radiation Protection Agents. Moscow Publ., 2020. 237 p. (In Russ.).
203. Vasin M.V. Classification of Anti-Radiation Agents as a Reflection of the Current State and Prospects for the Development of Radiation Pharmacology. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2013;53;5:459-467 (In Russ.).
204. Arora R., Kumar R., Sharma A., Tripati R.P. Herbal Radiomodulators. Applications in Medicine, Homeland Defence and Space. Ed. Arora R. Wallingford, UK; Cambridge, MA; CABI, 2008. P. 1-24.
205. Rozhdestvenskiy L.M. Current State, Problems and Prospects of Radiation Protection and Treatment. T.II (sections VII-XIV). VI Syezd po Radiatsionnym Issledovaniyam = VI Congress on Radiation Research Abstracts. Report. Moscow, October 25-28, 2010. Moscow Publ., 2010. P. 213 (In Russ.).
206. Koterov A.N., Biryukov A.P. Role of Radiobiology for Radiation Epidemiology Using for Radiation Protection. Int. J. Low Radiat. 2010;7;6:473-499.
207. Rothkamm K., Lobrich M. Evidence for Lack of DNA Double-Strand Break Repair in Human Cells Exposed to Very Low x-Ray Doses. Proc. Natl. Acad. Sci. USA. 2003;100;9:5057–5062.
208. BEIR VII Report 2006. Phase 2. Health Risks from Exposure to Low Levels of Ionizing Radiation. Committee to Assess Health Risks from Exposure to Low| Levels of Ionizing Radiation, National Research Council. URL: http://wwwinap.edu/catalog/11340.html.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.11.2022. Accepted for publication: 25.01.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2
DOI: 10.33266/1024-6177-2023-68-2-29-34
A.F. Bobrov1, T.M. Novikova2, V.I. Sedin1, L.I. Fortunatova1
System Criteria for Differential Express Diagnostics of Prenosological Disorders of Occupational Health of Employees
at Nuclear Power Facilities
1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
2Central Medical and Sanitary Unit No. 91, Lesnoy, Russia
Contact person: A.F. Bobrov, e-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Development of complex criteria of differential express-diagnostics of pre-dosological disorders of occupational health of employees of nuclear facilities.
Material and methods: The study object was male workers of the main production facilities of the Electrohimpribor Combine undergoing periodic medical examinations and psychophysiological examinations. The state of health was assessed according to the employee’s belonging to the dispensary observation group in accordance with Order No. 404n of the Ministry of Health of the Russian Federation of April 27, 2021. The psychophysiological state was assessed using a hardware-software complex for group psychophysiological examination APK PFS-CONTROL. Additional testing techniques included assessment of vibraimage parameters, evaluated using computer programs HealthTest and VibraMI, developed in ELSIS (St. Petersburg). Totally 943 man-surveys were carried out with different combination of testing methods. The average age of the workers was (42.0 ± 1.7) years, total work experience was (23 ± 1.3) years, and work experience in the specialty was (13.0 ± 1.8) years.
Results: As a criteria of prenosological health disorders we used the characteristics of the worker’s adaptation to the factors of life activity. Adaptation disorders are evaluated according to three specific criteria: 1) assessment of the functional state of the cardiovascular system according to HRV data; 2) rapid assessment of the psychophysiological state according to vibraimage parameters; 3) assessment of personal and special abilities according to multiple intelligence assessment. For each of the criteria a “traffic light” of states and decisive rules of their formalized identification were developed. Characteristics of unfavorable states are given. Complex express-diagnostics of pre-dosological disorders of occupational health is carried out using integral index, which is a weighted sum of private “traffic light” indexes with a ball score. The formalized express-diagnostics of premalignant disorders is carried out using linear discriminant functions with an average recognition accuracy of 96.4 % or a probabilistic nomogram, which allows to graphically estimate the risk level of health disorders.
Conclusion: Improvement of medical-psychophysiological support of employees of nuclear facilities is connected with introduction of methods and criteria of differential express-diagnosis of prenosological disorders of health. The developed criteria of express-diagnostics of pre-dosological disorders of occupational health expand the existing methodological and criteria base of periodic medical examinations of nuclear industry workers, strengthen their preventive orientation with the purpose of timely application of medical, psychophysiological, organizational and other measures on preservation and maintenance of occupational health of personnel.
Keywords: nuclear industry workers, prenosological conditions, rapid diagnostics, vibraimage technology, multiple intelligence, cardiovascular system, activity index of regulatory systems
For citation: Bobrov AF, Novikova TM, Sedin VI, Fortunatova LI.System Criteria for Differential Express Diagnostics of Prenosological Disorders of Occupational Health of Employees at Nuclear Power Facilities. Medical Radiology and Radiation Safety. 2023;68(2):
29–34. (In Russian). DOI: 10.33266/1024-6177-2023-68-2-29-34
References
1. Bayevskiy R.M. Prognozirovaniye Sostoyaniy na Grani Normy i Patologii = Prediction of Condition on the Brink of Norm and Pathology. Moscow, Meditsine Publ., 1979. 298 p. (In Russ.).
2. Bayevskiy R.M. Otsenka Adaptatsionnykh Vozmozhnostey Organizma i Risk Razvitiya Zabolevaniy = Assessment of Adaptive Capacity of the Organism and the Risk of Diseases. Moscow, Meditsine Publ., 1997. P. 104 (In Russ.).
3. Kaznacheyev V.P. Donozologicheskaya Diagnostika v Praktike Massovykh Obsledovaniy Naseleniya = Prenosological Diagnostics in Practice of Mass Screening of the Population. / Ed. Kaznacheyev V.P., Bayevskiy R.M., Berseneva A.P. Leningrad, Meditsina Publ., 1980. 225 p. (In Russ.).
4. Minkin V.A. Vibroizobrazheniye, Kibernetika i Emotsii = Vibroimage, Cybernetics and Emotions. St. Petersburg, Renome Publ., 2020. 164 p. DOI: 10.25696/ELSYS.B.RU.VCE.2020 (In Russ.).
5. Minkin V.A. Vibroizobrazheniye = Vibroimage. St. Petersburg, Renome Publ., 2007. 108 p. DOI: 10.25696/ELSYS.B.RU.VI.2007; ISBN 978-5-98947-074-7(In Russ.).
6. R FMBA of Russia 2.2.9.84-2015. Organization and Conduct of Psychophysiological Examinations of Employees of Organizations Operating Especially Radiation Hazardous and Nuclear Hazardous Industries and Facilities in the Field of Atomic Energy Use, When Employees Undergo Medical Examinations in Medical Organizations of FMBA of Russia. Methodological Recommendations (Approved by FMBA of Russia on 29.12.2015). URL: https://legalacts.ru/doc/r-fmba-rossii-22984-2015-organizatsija-i-provedenie-psikhofiziologicheskikh-obsledovanii/ (Date of Access: 24.03.2022) (In Russ.).
7. Sistema Diagnostiki Psikhofiziologicheskogo Sostoyaniya i Funktsionalnogo Zdorovya Cheloveka = Diagnostic System of Psycho-Physiological State and Functional Health of a Person. Operation Manual. Version: VibraHT. St. Petersburg, Elsis Publ., 2020. URL: http: https://psymaker.com/downloads/VibraHTRus.pdf (Date of Access: 24.03.2022) (In Russ.).
8. Sistema Psikhofiziologicheskogo Profaylinga = Psychophysiological Profiling System. Software, Operation Manual Version: VibraMI10 (VibraMI10). St. Petersburg, Elsis Publ., 2016. URL: http://psymaker.com/downloads/VibraMI10Ru.pdf (Date of Access: 24.03.2022) (In Russ.).
9. Roracher, G., Inanaga K. Microvibration: Its Biological Function and Clinical and Diagnostic Significance. Verlag Hans Huber Bern Publishers, 1969. 160 p.
10. Bobrov A.F., Novikova T.M., Proskuryakova N.L., Sedin V.I., Shchelkanova Ye.S., Fortunatova L.I., Kalinina M.Yu. Express-Diagnostics of the Health of Workers of Dangerous Productions. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2022;67;3:89-93. DOI:10.33266/1024-6177-2022-67-3-89-93 (In Russ.).
11. Gardner, G. Structure of Mind: Theory of Multiple Intelligence. Translated from English. Moscow Publ., 2007. 512 p.
12. Minkin V.A., Nikolayenko Ya.N. Vibroizobrazheniye i Mnozhestvennyy Intellekt = VibraImage and Multiple Intelligence. St. Petersburg, Renome Publ., 2017. 156 p. (In Russ.).
13. Bobrov A.F., Ivanov V.V., Novikova T.M., Kuznetsova L.I., Shcheblanov V.Yu. Express-Evaluation of Psychophysiological Adaptation of Workers of Dangerous Productions on the Characteristics of Multiple Intelligence. Mediko-Biologicheskiye i Sotsialno-Psikhologicheskiye Problemy Bezopasnosti v Chrezvychaynykh Situatsiyakh = Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2019;3:74-84. DOI 10.25016/2541-7487-2019-0-3-74-84 (In Russ.)
14. Kim J.-O. Factor, Discriminant and Cluster Analysis. Moscow, Finances and Statistics Publ., 1989. 215 p.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.11.2022. Accepted for publication: 25.01.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 2
DOI: 10.33266/1024-6177-2023-68-2-53-59
A.N. Koterov, L.N. Ushenkova, I.G. Dibirgadzhiev, M.V. Kalinina, A.P. Biryukov
The First Radioprotectors:
For in vivo Experiments the Official Historical Milestone is Postponed by Six Years
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Alexey N. Koterov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Historical essays in monographs, in reviews and in the introductions of experimental works on theme of the first studies of radioprotectors are considered. It was found that such studies began to be carried out only during the development and use of atomic weapons, but not during the previous order of 40 years of radiotherapy (with the exception of the effect of hypoxia as such, and not caused by drugs).
In most publications, the work of Patt H.M. et al., 1949 on the cysteine action (USA) is called as pioneer research, what is not quite right (it is only right for thiol compounds). A paper by Joseph Maisin (Belgium) in the journal ‘Acta Biologica Belgica’ which published only in 1941–1943 in the occupied Brussels, should be considered as a real milestone for animal experiments (Vol. III–IV. P. 117). In this study, referenced only in a single work (Bacq Z.M. et al., 1951), the radioprotective effect of p-aminobenzoic acid (PABA) was demonstrated in rodents. In the same year, the radioprotective effect of estrogens was shown in mice (Treadwelal A. DEG. et al., February 1943).
A brief summary of the stages of radioprotective agents study is presented, starting from 1942 (W.M. Dale et al.; protection of the enzyme in solution) and up to the 1954, when all the main classes of radioprotectors were discovered and the corresponding mechanisms of effects were proposed.
Keywords: radioprotective agents, first radioprotectors, history
For citation: Koterov AN, Ushenkova LN, Dibirgadzhiev IG, Kalinina MV, Biryukov AP. The First Radioprotectors: For in vivo Experiments, the Official Historical Milestone is Postponed by Six Years. Medical Radiology and Radiation Safety. 2023;68(2):53–59.
(In Russian). DOI: 10.33266/1024-6177-2023-68-2-53-59
References
1. Мозжухин А.С., Рачинский Ф.Ю. Химическая профилактика радиационных поражений. М.: Атомиздат, 1979. 192 с. Mozzhukhin A.S., Rachinskiy F.Yu. Khimicheskaya Profilaktika Radiatsionnykh Porazheniy = Chemical Prevention of Radiation Injuries. Moscow Atomizdat Publ., 1979. 192 p. (In Russ.)
2. Владимиров В.Г., Красильников И.И., Арапов О.В. Радиопротекторы: структура и функция / Под ред. Владимирова В.Г. Киев: Наук. думка, 1989. 264 с.
3. Теоретические основы радиационной медицины Т.1 // Радиационная медицина / Под ред. акад. РАМН Ильина Л.А. М.: Изд. АТ, 2004. 992 с.
4. Васин М.В. Противолучевые лекарственные средства. М., 2010. 180 с.
5. Vasin M.V., Ushakov I.B. Comparative Efficacy and the Window of Radioprotection for Adrenergic and Serotoninergic Agents and Aminothiols in Experiments with Small and Large Animals // J. Radiat. Res. 2015. V.56, № 1. P. 1–10. DOI: 10.1093/jrr/rru087.
6. Васин М.В., Ушаков И.Б. Потенциальные пути повышения устойчивости организма к поражающему действию ионизирующего излучения с помощью радиомитигаторов // Успехи современной биологии. 2019. Т.139, № 3. С. 235–253. DOI: 10.1134/S0042132419030098.
7. Васин М.В. Препарат Б-190 (индралин) в свете истории формирования представлений о механизме действия радиопротекторов // Радиационная биология. Радиоэкология. 2020. Т.60, № 4. С. 378–395. DOI: 10.31857/S0869803120040128.
8. Hempelmann L.H., Lisco H., Hoffman J.G. The Acute Radiation Syndrome: a Study of Nine Cases and a Review of the Problem // Ann. Intern. Med. 1952. V.36, No. 2. Pt. 1. P. 279–510. DOI: 10.7326/0003-4819-36-2-279.
9. Бак З.М. Химическая защита от ионизирующей радиации / Под ред. А.М. Кузина; пер. с англ. Кузина Р.А. М.: Атомиздат, 1968. 264 с.
10. Куна П. Химическая радиозащита / Пер. с чешск. М.: Медицина, 1989. 192 с.
11. Weiss J.F., Landauer M.R. History and Development of Radiation-Protective Agents // Int. J. Radiat. Biol. 2009. V.85, No. 7. P. 539–573. DOI: 10.1080/09553000902985144.
12. Hall E.J., Giaccia A.J. Radiobiology for the Radiologists. Philadelphia etc.: Wolter Kluwer, Lippincott Williams & Wilkins, 2019. 1161 p.
13. Kamran M.Z., Ranjan A., Kaur N., Sur S., Tandon V. Radioprotective Agents: Strategies And Translational Advances // Med. Res. Rev. 2016. V.36, No. 3. P. 461–493. DOI: 10.5604/17322693.1208039.
14. Kashiwakura I. Overview of Radiation-Protective Agent Research and Prospects for the Future // Jpn. J. Health Phys. 2017. V.52, No. 4. P. 285–295. DOI:10.5453/jhps.52.285.
15. Obrador E., Salvador R., Villaescusa J., Soriano J.M., Estrela J.M., Montoro A. Radioprotection and Radiomitigation: from the Bench to Clinical Practice // Biomedicines. 2020. V.8, No. 11. P. 461. DOI: 10.3390/biomedicines8110461.
16. Bene B.J., Blakely W.F., Burmeister D.M., Cary L., Chhetri S.J., Davis C.M. et al. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute // Radiat. Res. 2021. V.196, No. 2. P. 129–146. DOI: 10.1667/21-00064.1.
17. Bacq Z.M., Herve A., Lecomte J., Fisher P., Blavier J. Protection Contre le Rayonnement X Par la Beta-Mercaptorthylamine // Arch. Intern. Physiol. 1951. V.59, No. 4. P. 442–447. DOI: 10.3109/13813455109150836.
18. Bacq Z.M., Mugard H., Herve A. Action des Rayons Roentgen, du Cyanure et de Divers Radioprotecteurs sur les Infusoires // Acta Radiol. 1952. V.38, No. 6. P. 489–505. DOI: 10.3109/00016925209177033.
19. Bacq Z.M., Dechamps G., Fischer P., Herve A., Le Bihan H., Lecomte J., et al. Protection Against X-Rays and Therapy of Radiation Sickness with Beta-Mercaptoethylamine // Science. 1953. V.17, No. 3049. P. 633–636. DOI: 10.1126/science.117.3049.633.
20. Bacq Z.M. The Amines and Particularly Cystamine as Protectors Against Roentgen Rays // Acta Radiol. 1954. V.41, No. 2. P. 47–55. DOI: 10.3109/00016925409175832.
21. Varanda E.A., Tavares D.C. Radioprotection: Mechanisms and Radioprotective Agents Including Honeybee Venom // J. Venom. Anim. Toxins. 1998. V.4, No. 1. P. 5–21. DOI: 10.1590/S0104-79301998000100002.
22. Patt H.M., Tyree E.B., Straube R.L., Smith D.E. Cysteine Protection Against X Irradiation // Science. 1949. V.110, No. 2852. P. 213–214. DOI: 10.1126/science.110.2852.213.
23. The James Lind Library. Building the Library. Электронный ресурс: https://www.jameslindlibrary.org/about-the-library/building-the-library/ (Data 27.11/2022).
24. Котеров А.Н., Тихонова О.А., Ушенкова Л.Н., Бирюков А.П. История контролируемых испытаний в медицине: реальные приоритеты мало известны. Сообщение 2. От ранних экспериментов до наших дней: без чередования и рандомизации // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021. Т.14, № 3. С. 423–444. DOI: 10.17749/2070-4909/farmakoekonomika.2021.062.
25. Weiss J. Radiochemistry of Aqueous Solutions // Nature. 1944. No. 153. P. 748–750. DOI: 10.1038/153748A0.
26. Ярмоненко С.П., Вайнсон А.А. Радиобиология человека и животных. М.: Высшая школа, 2004. 549 с.
27. Krishnan M., Singh A.K. Emerging Strategies in Radiation Countermeasure Research // Int. J. Radiol. Radiat. Ther. 2017. V.4, No. 6. P. 460–464. DOI: 10.15406/ijrrt.2017.04.00117.
28. Singh V.K., Seed T.M., Olabisi A.O. Drug Discovery Strategies for Acute Radiation Syndrome // Expert. Opin. Drug Discov. 2019. V.14, No. 7. P. 701–715. DOI: 10.1080/17460441.2019.1604674.
29. Storer J.B., Coon J.M. Protective Effect of Para-Aminopropiophenone Against Lethal Doses of X-Radiation // Proc. Soc. Exp. Biol. Med. 1950. V.74, No. 1. P. 202–204. DOI: 10.3181/00379727-74-17854.
30. Dale W.M. The Effect of X-Rays on the Conjugated Protein d-Amino-Acid Oxidase // Biochem. J. 1942. V.36, No. 1–2. P. 80–85. DOI: 10.1042/bj0360080.
31. Атомная энергия: Краткая энциклопедия / Отв. ред. Емельянов В.С. М.: Большая советская энциклопедия, 1958. 612 с.
32. Какушкина М.Л., Кудряшов Ю.Б., Рачинский Ф.Ю., Дмитриева Н.Г. Применение радиомиметической модели (эритроцитарной) для изучения потенциальных радиопротекторов группы тиазолидина // Радиобиология. 1964. Т.4, № 5. С. 632–635.
33. Петрова Н.Д., Шальнов М.И. Исследование ДНК, РНК, гидролизата РНК и оротовой кислоты как радиопротекторов для лейкопоэза у кроликов и крыс // Радиобиология. 1966. Т.6, № 1. С. 101–104.
34. Александров С.Н., Галковская К.Ф. О снижении эффективности защитного действия цистеамина при повторном лучевом воздействии // Докл. АН СССР. 1953. Т.152, № 1. С. 215–218.
35. ICRP Publication 118. ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs — Threshold Doses for Tissue Reactions in a Radiation Protection Context // Annals of the ICRP / Ed. Clement C.H. Amsterdam — New York: Elsevier, 2012. 325 p.
36. Singh V.K., Seed T.M. A Review of Radiation Countermeasures Focusing On Injury-Specific Medicinals And Regulatory Approval Status: Part I. Radiation Sub-Syndromes, Animal Models and FDA-Approved Countermeasures // Int. J. Radiat. Biol. 2017. V.93, No. 9. P. 851–869. DOI: 10.1080/09553002.2017.1332438.
37. Легеза В.И., Ушаков И.Б., Гребенюк А.Н., Антушевич А.Е. Радиобиология, радиационная физиология и медицина: Словарь-справочник. СПб: Фолиант, 2017. 176 с.
38. Васин М.В. Классификация противолучевых средств как отражение современного состояния и перспективы развития радиационной фармакологии // Радиац. биология. Радиоэкология. 2013. Т.53, № 5. С. 459–467. DOI: 10.7868/S0869803113050160.
39. Саксонов П.П., Шашков В.С., Сергеев. П.В. Радиационная фармакология. М.: Медицина, 1976. 256 с.
40. Chapman W.H., Cronkite E.P. Further Studies of Beneficial Effect of Glutathione on X-Irradiation Mice // Proc. Soc. Exptl. Biol. Med. 1950. V.75, No. 2. P. 318–322. DOI: 10.3181/00379727-75-18185.
41. Cronkite E.P., Brecher G., Chapman W.H. Mechanism of Protective Action of Glutathione Against Whole Body Irradiation // Proc. Soc. Exp. Biol. Med. 1951. V.76, No. 2. P. 396–398. DOI: 10.3181/00379727-76-18502.
42. Treadwelal A.DEG., Gardner W.U., Lawrence J.H., Van Nouhuys F. Effect of Combining Estrogen with Lethal Doses of Roentgen-Ray in Swiss Mice // Endocrinology. 1943. V.32, No. 2. P. 161–164. DOI: 10.1210/endo-32-2-161.
43. Latarjet R., Ephrati E. Protective Influence of Certain Substances Against Inactivation of a Bacteriophage by X-Rays // C. R. Seances Soc. Biol. Fil. 1948. V.142, No. 7–8. P. 497–499. (In French.).
44. Herve A., Bacq Z.M. Cyanure et dose lethale de rayon X // C. R. Soc. Biol. 1949. No. 143, P. 881–883.
45. Bacq Z.M., Herve A. Protection of Mice Against a Lethal Dose of X Rays by Cyanide, Azide and Malononitrile // Br. J. Radiol. 1951. V.24, No. 287. P. 617–521. DOI: 10.1259/0007-1285-24-287-617.
46. Гудков С.В., Попова Н.Р., Брусков В.И. Радиозащитные вещества: история, тенденции и перспективы // Биофизика. 2015. Т.60, № 4. С. 801–811.
47. Тиунов Л.А., Васильев Г.А. Противолучевые средства: Справочник. М.-Л.: Наука. 1961. 107 с.
48. Тиунов Л.А., Васильев Г.А., Вальдштейн Э.А. Противолучевые средства. Справочник. М.-Л.: Наука. 1964. 318 с.
49. Рамайя Л.К., Померанцева М.Д., Малашенко А.М. Влияние парааминобензойной кислоты на радиочувствительность мышей разных линий // Радиац. биология. Радиоэкология. 2002. Т. 42. № 2. С. 169–172.
50. Para-Aminobenzoic Acid Chemical Compound. Britannica (Encyclopedia). Электронный ресурс: https://www.britannica.com/science/para-aminobenzoic-acid (Data 30.11.2022).
51. Donnelly G.L., Holman R.L. The Stimulating Influence of Sodium Citrate on Cellular Regeneration and Repair in the Kidney Injured by Uranium Nitrate // J. Pharmacol. Exp. Ther. 1942. V.75, No. 1. P. 11–17.
52. Dunjic A. Joseph Maisin (1893–1971) // Radiat. Res. 1972. V.49, No. 2. P. 473–475.
53. Vergara P., Souilem O., Pekow C., De Vroey G. Obituary. Professor Jean-Rene Maisin // Lab. Anim. 2018. V.52, No. 3. P. 319. DOI: 10.1177/0023677218773200.
54. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 2. Постулаты Генле-Коха и критерии причинности неинфекционных патологий до Хилла // Радиац. биология. Радиоэкология. 2019. Т.59, № 4. С. 341–375. DOI: 10.1134/S0869803119040052.
55. Smith G.D., Egger M. The First Reports on Smoking and Lung Cancer: Why Are They Consistently Ignored? // Bull. World Health Organ. 2005. V.83, No. 10. P. 799–800.
56. Dale W.M., Gray L.H., Meredith W.J. The Inactivation of an Enzyme (Carboxypeptidase) by X- and α-Radiation // Phil. Trans. Roy. Soc. 1949. V.242, No. 840. P. 33–62.
57. Lea D.E. The Action of Radiations on Dilute Aqueous Solutions: The Spatial Distribution of H* and OH* // Brit. J. Radiol. 1947. V.1, Suppl. P. 59–64.
58. Patt H.M., Smith D.E., Tyree E.B., Straube R.L. Further Studies on Modification of Sensitivity to X-Ray by Cysteine // Proc. Soc. Exp. Biol. & Med. 1950. V.73, No. 1. P. 18–21. DOI: 10.3181/00379727-73-17561.
59. Gray J.L., Tew J.T., Jensen H. Protective Effect of Serotonin and Paraaminopropiophenon Against Lethal Doses of X-Irradiation // Proc. Soc. Exptl. Biol. Med. 1952. V.80, No. 4. P. 604–607. DOI: 10.3181/00379727-80-19706.
60. Жеребченко П.Г. Противолучевые свойства индолилалкиламинов. М.: Атомиздат, 1971. 200 с.
61. Gray J.L., Moulden E.J., Tew J.T., Jensen H. Protective Effect of Pitressin and of Epinephrine Against Total Body X-Irradiation // Proc. Soc. Exptl. Biol. Med. 1952. V.79, No. 3. P. 384–387. DOI: 10.3181/00379727-79-19388.
62. Gerschman R., Gilbert D.L., Nye S.W., et al. Oxygen Poisoning and X-Irradiation: a Mechanism in Common // Science. 1954. V.119, No. 3097. P. 623–626. DOI: 10.1126/science.119.3097.623.
63. Bond V.P., Cronkite E.P. Effects of Radiation on Mammals // Annu. Rev. Physiol. 1957. No. 18. P. 483–526. DOI: 10.1146/annurev.ph.18.030156.002411.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.11.2022. Accepted for publication: 25.01.2023.