JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 4
DOI: 10.33266/1024-6177-2023-68-4-81-84
A.V. Muravleva, V.E. Goldberg, E.A. Dudnikova, T.L. Kravchuk, R.V. Zelchan,
A.A. Medvedeva, O.D. Bragina, E.I. Simolina, N.O. Popova, V.V. Vysockaja,
V.A. Shatalova, A.N. Rybina, A.V. Goldberg, S.A. Tabakaev, V.I. Chernov
Metabolic 99mTc-1-Thio-D-Glucose SPECT/CT in the Diagnosis
of Brain Metastasis of Genital Diffuse-B-Large Cell Lymphoma (Clinical Case)
Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
Contact person: A.V. Muravleva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To demonstrate a rare clinical case of early recurrence of verified primary genital lymphoma and the possibility of 99mTc-1-Thio-D-glucose (99mTc-TG) SPECT/CT using to brain metastasis diagnosis.
Material and methods: A patient with a diagnosis of primary diffuse large B-cell genital lymphoma underwent magnetic resonance imaging (MRI) to assess the extent of the disease. Post-treatment follow-up included 18F-FDG PET/CT. To diagnose brain metastasis, 99mTc-TG SPECT/CT and MRI were performed.
Results: A rare case of early recurrence of diffuse large B-cell lymphoma with a primary local lesion in the genital organs is described. The possibility of modern methods of nuclear medicine in the diagnosis of early recurrence of malignant lymphoma has been demonstrated. 99mTc-TG SPECT/CT and MRI, were useful for visualization of a high metabolic brain tumor at the outpatient stage and recommendation of high-dose therapy according to the scheme MT-R was done.
Conclusion: The article presents a rare clinical case of early recurrence of diffuse large B-cell genital lymphoma. Possibilities of SPECT/CT with 99mTc-TG for visualization of lymphoma metastasis to the brain were demonstrated.
Keywords: diffuse large B-cell genital lymphoma, brain metastasis, single photon emission computed tomography, 99mTc-1-Thio-D-glucose
For citation: Muravleva AV, Goldberg VE, Dudnikova EA, Kravchuk TL, Zelchan RV, Medvedeva AA, Bragina OD, Simolina EI, Popova NO, Vysockaja VV, Shatalova VA, Rybina AN, Goldberg AV, Tabakaev SA, Chernov VI. Metabolic 99mTc-1-Thio-D-Glucose SPECT/CT in the Diagnosis of Brain Metastasis of Genital Diffuse-B-Large Cell Lymphoma (Clinical Case). Medical Radiology and Radiation Safety. 2023;68(4):81–84. (In Russian). DOI:10.33266/1024-6177-2023-68-4-81-84
References
1. Chernov V.I., Dudnikova E.A., Goldberg V.E., Kravchuk T.L., Danilova A.V., Zelchan R.V., Medvedeva A.A., Sinilkin I.G., Bragina O.D., Popova N.O., Goldberg A.V. Positron Emission Tomography in the Diagnosis and Monitoring of Lymphomas. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2018;63;6:41-50 (In Russ.).
2. Rossiyskiye Klinicheskiye Rekomendatsii po Diagnostike i Lecheniyu Zlokachestvennykh Limfoproliferativnykh Zabolevaniy = Russian Clinical Guidelines for the Diagnosis and Treatment OF Malignant Lymphoproliferative Diseases. Ed. Poddubnaya I.V., Savchenko V.G. 2018. 470 p. (In Russ.).
3. Barrington S.F., Mikhaeel N.G., Kostakoglu L., et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014;32:3048–3058. DOI: 10.1200/JCO.2013.53.5229.
4. Cheson B.D., Fisher R.I., Barrington S.F., et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and non-Hodgkin Lymphoma: the Lugano Classification // J. Clin. Oncol. 2014. No. 32. P. 3059–3068. DOI: 10.1200/JCO.2013.54.8800.
5. Dreyling M., Thieblemont C., Gallamini A., et al. ESMO Consensus Conferences: Guidelines on Malignant Lymphoma. Part 2: Marginal Zone Lymphoma, Mantle Cell Lymphoma, Peripheral T-Cell Lymphoma. Ann. Oncol. 2013;24:857–877. DOI:- 10.1093/annonc/mds643.
6. Boellaard R., Delgado-Bolton R., Oyen W.J.G., et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:328–354. https://doi.org/10.1007/s00259-014-2961-x.
7. Zeltchan R., Medvedeva A., Sinilkin I., et al. Experimental Study of Radiopharmaceuticals Based on Technetium-99m Labeled Derivative of Glucose for Tumor Diagnosis. IOP Conference Series. Materials Science and Engineering. 2016. 012054. DOI. 10.1088/1757-899X/135/1/012054.
8. Zelchan R.V., Medvedeva A.A., Sinilkin I.G. Study of the Functional Suitability of the Tumorotropic Radiopharmaceutical 99mTc-1-thio-D-Glucose in the Experiment. Molekulyarnaya Meditsina = Molecular Medicine. 2018;16;2:54–57. DOI: https://doi.org/10.29296/24999490-2018-03-11 (In Russ.).
9. Chernov V.I., Dudnikova E.A., Medvedeva A.A., Sinilkin I.G. Development Radiopharmaceuticals for Nuclear Medicine in Oncology. Meditsinskaya Vizualizatsiya = Medical Visualization. 2016;2:63–66 (In Russ.).
10. Chernov V.I., Dudnikova E.A., Zelchan R.V., et al. The First Experience of Using 99mTc-1-thio-d-Glucose for Single-Photon Emission Computed Tomography Imaging of Lymphomas. Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology. 2018;17;4:81–87. DOI: 10.21294/1814-4861-2018-17-4-81-87 (In Russ.).
11. Dudnikova E.A., Chernov V.I., Muravleva A.V., et al. Metabolic Single-Photon Emission Computed Tomography with the New Radiopharmaceutical 99mTc-1-Thio-D-Glucose in the Diagnosis and Monitoring of the Primary Breast Lymphoma (Case Report). Sibirskiy Onkologicheskiy Zhurnal = Siberian Journal of Oncology. 2020;19;5:145–153. https://doi.org/10.21294/1814-4861-2018-17-4-81-87 (In Russ.).
12. Muravleva A.V., Chernov V.I., Dudnikova E.A., et al. Metabolic Single-Photon Emission Computed Tomography with “99mtc-1-Thio-D-Glucose” ‒ New Possibilities for Hodgkin’s Lymphoma Staging. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiology. 2021;11;3:171–177. DOI: 10.21569/2222-7415-2021-11-3-171-177 (In Russ.).
13. Chernov V., Dudnikova E., Zelchan R., Medvedeva A., Rybina A., Bragina O., Goldberg V., Muravleva A., Sörensen J., Tolmachev V. Phase I Clinical Trial Using [99mTc]Tc-1-thio-D-glucose for Diagnosis of Lymphoma Patients. Pharmaceutics. 2022;14:1274.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.02.2022. Accepted for publication: 27.03.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 3
DOI: 10.33266/1024-6177-2023-68-3-5-10
N.Yu. Vorobyeva1, 2, A.A. Osipov2, A.K. Chigasova3, M.V. Pustovalova1, 4,
D.I. Kabanov1, V.G. Barchukov1, O.A. Kochetkov1, A.N. Osipov1, 2
Comparative Study of Changes in the γh2ax and 53bp1 Foci Number in Human Mesenchymal Stromale Cells Incubated with 3H-thymidine or Tritiated Water
1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
2 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences Moscow, Russia
3 Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
4 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
Contact person: N.Yu. Vorobyeva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Comparative study of changes in the number of foci of DNA (DSB) marker proteins (γH2AX and 53BP1) in human mesenchymal stromal cells (MSCs) incubated with 3H-thymidine or HTO for 24, 48, and 72 h.
Material and methods: We used the primary culture of human MSCs of passage 5–6, obtained from the collection of LLC “BioloT” (Russia). A sterile solution of 3H-thymidine or HTO with a specific activity of 100 to 400 MBq/l was added to the nutrient medium and incubated under standard conditions of a CO2 incubator for 24, 48, and 72 hours. To quantify γH2AX foci and the proportion of proliferating cells using antibodies to γH2AX, 53BP1 and Ki67 (a marker protein for cell proliferation), were used, respectively. Statistical analysis of the obtained data was carried out using the statistical software package Statistica 8.0 (StatSoft). To assess the significance of differences between samples, Student’s t-test was used.
Results: Incubation of MSCs with 3H-thymidine with a specific radioactivity of 100-400 MBq/l in the first 24 hours leads to a dose-dependent increase in the number of γH2AX and 53BP1 foci. With a further increase in the incubation time to 48 h and 72 h, a saturation effect is observed ‒ the number of foci reaches a plateau. A statistically significant increase in the number of γH2AX and 53BP1 foci in MSCs incubated with HTO was observed only in actively proliferating cells during the first 24 h of incubation in a medium with specific radioactivity of 300 and 400 MBq/l, after which, with a decrease in proliferative activity, it decreased to control values. Calculations made on the basis of the results of a quantitative analysis of γH2AX and 53BP1 foci after 24 h of incubation of MSCs with tritium compounds obtained in the course of the work show, that under the influence of 3H-thymidine ~ 6 times more DNA double-strand breaks are induced than under the influence of HTO.
Keywords: mesenchymal stromal cells, γH2AX, 53BP1, DNA double-strand breaks, cell proliferation, tritium, incubation
For citation: Vorobyeva NYu, Osipov AA, Chigasova AK, Pustovalova MV, Kabanov DI, Barchukov V., Kochetkov OA, Osipov AN. Comparative Study of Changes in the γh2ax and 53bp1 Foci Number in Human Mesenchymal Stromale Cells Incubated with 3h-thymidine or Tritiated Water. Medical Radiology and Radiation Safety. 2023;68(3):5–10. (In Russian). DOI: 10.33266/1024-6177-2023-68-3-5-10
References
1. Гурьев Д.В., Кочетков О.А., Барчуков В.Г., Осипов А.Н. Биологические эффекты органических и неорганических соединений трития // Медицинская радиология и радиационная безопасность. 2020. Т.65, № 2. С. 5-10. https://doi.org/10.12737/1024-6177-2020-65-2-5-10. [Guryev D.V., Kochetkov O.A., Barchukov V.G., Osipov A.N. Biological Effects of Organic and Inorganic Compounds of the Tritium. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2020;65;2:5-10. https://doi.org/10.12737/1024-6177-2020-65-2-5-10 (In Russ.)].
2. Little M.P., Lambert B.E. Systematic Review of Experimental Studies on the Relative Biological Effectiveness of Tritium. Radiat Environ Biophys. 2008;47;1:71-93. doi: 10.1007/s00411-007-0143-y.
3. Kim S.B., Baglan N., Davis P.A. Current Understanding of Organically Bound Tritium (OBT) in the Environment. Journal of Environmental Radioactivity. 2013;126:83-91. doi: 10.1016/j.jenvrad.2013.07.011.
4. Harrison J.D., Khursheed A., Lambert B.E. Uncertainties in Dose Coefficients for Intakes of Tritiated Water and Organically Bound Forms of Tritium by Members of the Public. Radiation Protection Dosimetry. 2002;98;3:299-311.
5. Alloni D., Cutaia C., Mariotti L., Friedland W., Ottolenghi A. Modeling Dose Deposition and DNA Damage Due to Low-Energy Beta(-) Emitters. Radiation Research. 2014;182;3:322-330. doi: 10.1667/RR13664.1.
6. Rodneva S.M., Osipov A.A., Guryev D.V., Tsishnatti A.A., Fedotov Y.А., Yashkina E.I., et al. Comparative Study of the γH2AX Foci Forming in Human Lung Fibroblasts Incubated in Media Containing Tritium-Labeled Thymidine or Amino Acids. Bulletin of Experimental Biology and Medicine. 2021;172;2:245-9. doi: 10.1007/s10517-021-05370-6.
7. Mladenova V., Mladenov E., Stuschke M., Iliakis G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules. 2022;27;5. doi: 10.3390/molecules27051540.
8. Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. International Journal of Molecular Sciences. 2022;23;21. doi: 10.3390/ijms232112937.
9. Sishc B.J., Davis A.J. The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel). 2017;9;7. doi: 10.3390/cancers9070081.
10. Rothkamm K., Barnard S., Moquet J., Ellender M., Rana Z., Burdak-Rothkamm S. DNA Damage Foci: Meaning and Significance. Environ Mol. Mutagen. 2015;56;6:491-504. doi: 10.1002/em.21944.
11. Bushmanov A., Vorobyeva N., Molodtsova D., Osipov A.N. Utilization of DNA Double-Strand Breaks for Biodosimetry of Ionizing Radiation Exposure. Environmental Advances. 2022;8:100207. doi: 10.1016/j.envadv.2022.100207.
12. Scully R., Xie A. Double Strand Break Repair Functions of Histone H2AX. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2013;750;1-2:5-14. doi: 10.1016/j.mrfmmm.2013.07.007.
13. Shibata A., Jeggo P.A. Roles for 53BP1 in the Repair of Radiation-Induced DNA Double Strand Breaks. DNA Repair. 2020;93:102915. doi: 10.1016/j.dnarep.2020.102915.
14. Vorob’eva N.Y., Kochetkov O.A., Pustovalova M.V., Grekhova A.K., Blokhina T.M., Yashkina E.I., et al. Comparative Analysis of the Formation of γH2AX Foci in Human Mesenchymal Stem Cells Exposed to 3H-Thymidine, Tritium Oxide, and X-Rays Irradiation. Bulletin of Experimental Biology and Medicine. 2018;166;1:178-181. doi: 10.1007/s10517-018-4309-1.
15. Bártová E., Legartová S., Dundr M., Suchánková J. A Role of the 53BP1 Protein in Genome Protection: Structural and Functional Characteristics of 53BP1-Dependent DNA Repair. Aging. 2019;11;8:2488-2511. doi: 10.18632/aging.101917.
16. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15(1):7-18. doi: 10.1038/nrm3719.
17. Markova E., Vasilyev S., Belyaev I. 53BP1 Foci as a Marker of Tumor Cell Radiosensitivity. Neoplasma. 2015;62;5:770-776. doi: 10.4149/neo_2015_092.
18. Niotis A., Tsiambas E., Fotiades P.P., Ragos V., Polymeneas G. ki-67 and Topoisomerase IIa Proliferation Markers in Colon Adenocarcinoma. J. BUON. 2018;23;7:24-27.
19. Mennan C., Garcia J., Roberts S., Hulme C., Wright K. A Comprehensive Characterisation of Large-Scale Expanded Human Bone Marrow and Umbilical Cord Mesenchymal Stem Cells. Stem Cell Res Ther. 2019;10;1:99. doi: 10.1186/s13287-019-1202-4.
20. Guo Z., Yang J., Liu X., Li X., Hou C., Tang P.H., et al. Biological Features of Mesenchymal Stem Cells from Human Bone Marrow. Chin. Med. J. (Engl). 2001;114;9:950-953.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was carried out with the support of the RGNF (project No. 22-2400490).
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.01.2022. Accepted for publication: 25.02.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 3
DOI: 10.33266/1024-6177-2023-68-3-16-20
F.S. Torubarov, Z.F. Zvereva, I.A. Galstyan, N.A. Metlyaeva
Features of Clinical Manifestations of the Primary Reaction
in Combined Radiation Injury (Radiation Exposure and Mechanical Head Injury)
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Z.F. Zvereva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To describe, on the basis of literature data, the features of the primary reaction of a person with a combined radiation injury – radiation exposure and mechanical head injury – in order to substantiate the possibility of using the symptoms of the primary reaction to predict the severity of acute radiation sickness (ARS).
Material and methods: Analysis of literature data.
Results: Based on the literature data, the clinical symptoms of the primary reaction in human radiation damage in a different dose range, and traumatic brain injuries are described: – concussion of the brain; – mild brain injury; – moderate brain injury.
To characterize the clinical picture of the combined effects of radiation injury and mechanical head injury, the symptoms of the primary reaction were compared with the symptoms of traumatic brain injury. Such symptoms of the primary reaction as vomiting, nausea, headache, dizziness in the most severe form of traumatic brain injury – a moderate brain injury – are diagnosed somewhat more often than in acute radiation sickness. In less severe forms of traumatic brain injury – concussion, mild brain injury – the frequency and severity of these symptoms are close to ARS.
In the complex clinical picture of combined radiation exposure and traumatic brain injury, the most different symptoms of the two components of combined radiation damage are the state of consciousness and the characteristics of the skin.
Conclusion: Clinical symptoms of the primary reaction to radiation exposure in conditions of combined radiation damage in the presence of head trauma lose their diagnostic significance for the early prognosis of the severity of developing ARS. In the clinical picture of combined radiation exposure and mechanical head injury, the most pronounced leading components should be the state of consciousness and the characteristics of the skin.
Keywords: combined radiation injury, mechanical head injury, primary reaction
For citation: Torubarov FS, Zvereva ZF, Galstyan IA, Metlyaeva NA. Features of Clinical Manifestations of the Primary Reaction in Combined Radiation Injury (Radiation Exposure and Mechanical Head Injury). Medical Radiology and Radiation Safety. 2023;68(3):16–20. (In Russian). DOI: 10.33266/1024-6177-2023-68-3-16-20
References
1. Kombinirovannyye Radiatsionnyye Porazheniya: Patogenez, Klinika, Lechenie = Combined Radiation Damage: Pathogenesis, Clinic, Treatment. Ed. Tsyba A.F., Farshatov M.N. Moscow, Meditsina Publ., 1992. 288 p. (In Russ.).
2. Silyavin S.B. Kombinirovannyye Radiatsionnyye Cherepno-Mozgovyye Porazheniya: Eksperimentalnoye Issledovaniye = Combined Radiation Craniocerebral Lesions: An Experimental Study. Extended Abstract of Candidate’s thesis in Medicine. St. Petersburg Publ., 2002. 22 p.
(In Russ.).
3. Legeza V. I., Grebenyuk A. N., Boyarintsev V. V. Kombinirovannyye Radiacionnyye Porazheniya i ih Komponenty = Combined Radiation Damage and Their Components. St. Petersburg, Foliant Publ., 2015. 216 p. ISBN 978-5-93929-254-2 (In Russ.).
4. Khoruzhenko A.F. Combined Radiation Damage in Emergency Situations of Peacetime and Wartime. Strategiya Grazhdanskoy Zashchity: Problemy i Issledovaniya. 2014;4;1:310-23 (In Russ.).
5. Khromov B.M. Kombinirovannyye Luchevyye Porazheniya = Combined Radiation Lesions. Moscow, Medgiz Publ., 1959. 343 p. (In Russ.).
6. Grebenyuk A.N., Legeza V.I., Evdokimov V.I., Saluhov V.V., Timoshevskiy A.A. Clinic, Prevention and Treatment of Radiation Damage. Part 2. Radiatsionnaya Meditsina = Radiation Medicine. Studies. Manual. Ed. Aleksanin S.S., Grebenyuk A.N. St. Petersburg Publ., 2013. 156 p. (In Russ.).
7. Torubarov F.S., Zvereva Z.F. Nevrologicheskiye Aspekty Ostroy Luchevoy Bolezni Cheloveka (Klinicheskiye Nablyudeniya) = Neurological Aspects of Acute Human Radiation Sickness (Clinical Observations). Moscow, A.I. Burnasyan FMBC Publ., 2009. 208 p. (In Russ.).
8. Byvaltsev V.A. Cherepno-Mozgovaya Travma = Traumatic Brain Injury: Textbook. Ed. Byvaltsev V.A. Kalinin A.A., et al. Irkutsk Publ., 2018. 154 p. (In Russ.).
9. Yakovlev N.A., Kargapolov A.V., Fomichev V.V., Slyusar T.A. Sposob Differencialnoy Diagnostiki Sotryaseniya Golovnogo Mozga i Ushiba Golovnogo Mozga Lyogkoy Stepeni = Method of Differential Diagnosis of Concussion and Mild Brain Injury. Patent for the Invention RU 2207572 C1, 27.06.2003. Application No. 2001133578/14 dated 10.12.2001 (In Russ.).
10. Manzhurtsev A.V., Vasyukova O.R., Menshchikov P.E., Ublinskiy M.V., Melnikov I.A., Akhadov T.A., Semenova N.A. Preliminary study of the microstructure of the brain by diffusion tensor tomography in the acute period of brain concussion. Issledovaniya i Praktika v Meditsine = Research’n Practical Medicine Journal. 2019;6;4:102-108 (In Russ.).
11. Gayvoronskaya V.I., Persichkina N.V. Diagnostic Significance of Clinical and Morphological Manifestations of Traumatic Brain Injury of Varying Severity. Problemy Ekspertizy v Meditsine = Medical Examination Problems. 2001;1;4:17-19 (In Russ.).
12. Legkaya Cherepno-Mozgovaya Travma = Mild Traumatic Brain Injury. Clinical Recommendations. Moscow Publ., 2016. 23 p. (In Russ.).
13. Karakulova Yu.V., Selyanina N. V., Eroshina O.A. Quality of Life of Patients in the Acute Period of Traumatic Brain Injury Under the Influence of Neurotrophic Therapy. Byulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2011;10;2:122-126 (In Russ.).
14. Drozdova E.A., Zakharov V. V. Comparative Assessment of Cognitive Impairment in the Acute Period of Traumatic Brain Injury of Mild and Moderate Severity. Nevrologicheskiy Zhurnal = Neurological Journal. 2012;6:12-18 (In Russ.).
15. Lebedev V.V., Krylov V.V., Martynenko A.V. Problems of Computed Tomographic Classification of Brain Contusions. Almanakh Klinicheskoy Meditsiny = Almanac of Clinical Medicine. 2001;4:90-92
(In Russ.).
16. Kitayev V.M. Kitayev S.V. Luchevaya Diagnostika Zabolevaniy Golovnogo Mozga = Radiation Diagnostics of Brain Diseases. Moscow MEDpress-Inform Publ., 2015. 136 p. (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.01.2022. Accepted for publication: 25.02.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 3
DOI: 10.33266/1024-6177-2023-68-3-11-15
A.V. Simakov, Y.V. Abramov, N.L. Proskuryakova, T.M. Alferova
Health Physics Criteria for Assessing the Radiation Situation
with Changing Technology at a Nuclear Fuel Cycle Enterprise
A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Y.V. Abramov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To select and justify health physics criteria necessary and sufficient in assessing the potential hazard for the personnel and public from the implementation of the planned activity, which can lead to deterioration in the radiation situation at the nuclear fuel cycle (NFC) enterprise.
Results: To promptly assess the feasibility of carrying out an event planned at the NFC enterprise, a methodology has been developed for assessing radiation safety and protection in case of potential deterioration in the radiation situation.
Conclusion: Each planned event that may lead to deterioration in the radiation situation at a NFC enterprise should result in neither significant changes in the radiation situation nor exceeding the established health physics criteria:
• non-exceeding main dose constraints;
• non-increasing the category of potential radiation hazard of the NFC enterprise;
• non-increasing the class of work with unsealed radiation sources;
• permissible increase in the class of working conditions of the personnel based on the findings of special assessment of working conditions.
In a comparative assessment of the competitiveness of radiation technologies, potential change in the radiation situation and the cost of implementing compensatory measures should be pre-evaluated to protect the personnel and public in case of deterioration in the radiation situation following the introduction of new technologies.
Keywords: radiation safety, radiation protection, changing technology, health physics criterion, personnel, measurement uncertainty
For citation: Simakov AV, Abramov YV, Proskuryakova NL, Alferova TM. Health Physics Criteria for Assessing the Radiation Situation with Changing Technology at a Nuclear Fuel Cycle Enterprise. Medical Radiology and Radiation Safety. 2023;68(3):11–15.
(In Russian). DOI: 10.33266/1024-6177-2023-68-3-11-15
References
1. Simakov A.V., Abramov Yu.V., Petrov S.V., Rogozhkin V.Yu., et al. Prognostic Assessment of Changing Radiation Situation when Manufacturing Fuel for PWR Reactor VVER-440 from Regenerated Uranium. Sbornik Tezisov VII Mezhdunarodnogo Simpoziuma Ural Atomnyy = VII International Symposium Ural Atomic. Collection of Abstracts. Ekaterinburg Publ., 1999. P. 5-7 (In Russ.).
2. Simakov A.V., Abramov Yu.V., Petrov S.V., Stepanov S.V., Isayev O.V. Methodic Approaches to Assessing the Contribution of Impurity Radionuclides to the Formation of Effective Doses of Occupational Exposure at NFC Enterprises. Sbornik Tezisov VII Mezhdunarodnogo Simpoziuma Ural Atomnyy = VII International Symposium Ural Atomic. Collection of Abstracts. Ekaterinburg Publ., 1999. P. 3-4 (In Russ.).
3. SanPiN 2.6.1.2523—09. Radiation Safety Standards (NRB-99/2009) (In Russ.).
4. SP 2.6.1.2612-10. Main Medical Rules for Radiation Safety (OSPORB-99/2010) (In Russ.).
5. MU 2.6.1.15 – 06. Decision Making Criteria in the Event of Planned Change in Technology at the NFC Enterprise, the Facility Reconstruction and Change of Functions. Guidelines. Ed. Simakov A.V., Abramov Yu.V., et al. (In Russ.).
6. MU 2.6.1.044 -08. Establishing a Class of Works when Managing Unsealed Radiation Sources. Guidelines. Ed. Simakov A.V., Abramov Yu.V., et al. (In Russ.).
7. Method for Conducting the Special Assessment of Work Conditions (Approved by Order of Ministry of Labor of the Russian Federation Dated November14, 2016, No. 642n); (In Russ.).
8. R 2.6.5.07 - 19. Health Physics Criteria for the Special Assessment and Classification of Work Conditions when Managing Radiation Sources. Guidance. Ed. Simakov A.V., Abramov Yu.V., Proskuryakova N.L., et al. (In Russ.).
9. MU 2.6.5. 08 – 2019. Establishing Categories of Potential Hazard of Radiation Facilities. Guidelines. Ed. Simakov A.V., Abramov Yu.V., Barkovskiy A.N., et al. (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.01.2022. Accepted for publication: 25.02.2023.
Medical Radiology and Radiation Safety. 2023. Vol. 68. № 3
DOI: 10.33266/1024-6177-2023-68-3-21-32
A.N. Koterov1, L.N. Ushenkova1, I.G. Dibirgadzhiev1 A.A. Wainson2, M.V. Kalinina1, A.P. Biryukov1
Excess Relative Risk of Cataractogenic Lense Disordes in Nuclear Workers: Systematic Review and Meta-analysis
1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia
2N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
Contact person: Alexey N. Koterov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
The lens cells are the most radiosensitive cells in the body, surpassing even lymphocytes in key parameters. Radiation damages in the lens can be observed at relatively low doses, in connection with which a number of authors attribute to these effects not a deterministic, but a stochastic nature.
Although cataractogenic consequences do not always affect visual acuity, and lens undergo successful surgical correction, when irradiating various professional groups, including workers in the nuclear industry, these consequences are regarded in importance immediately after malignant neoplasms and diseases of the circulatory system. The presented study showed that there are very few publications on the lens disorders in nuclear workers – only 20 sources were identified (1967–2022), and no data were found on the effects of low doses (0.1 Gy for low LET radiation).
When conducting a meta-analysis for ERR at 1 Gy/Sv for radiation damage in the lens of nuclear workers, three cohorts turned out to be relevant: a small group in the American study of transuranium elements processing, Mayak personnel and ROSATOM workers – liquidators of the Chernobyl accident. The sample was homogeneous, publication bias was unlikely, and, according to the results of a meta-analysis (Fixed effect model), ERR per 1 Gy/Sv was 0.30 (95 % confidence intervals: 0.25; 0.35).
Based on the earlier work (Koterov A.N. et al, 2022) of the mean cumulative dose of external exposure for nuclear workers as a world professional category, which amounted to 31.1 mSv, the calculation showed that with ERR = 0.3 per 1 Gy/Sv excess prevalence of cataracts for a group of ‘average’ workers is 0.0093. This corresponds to an increase in prevalence of 0.096 % over a background level of 10.3 % for potentially radiogenic cataracts (last value taken from a meta analysis by Hashemi H. et al., 2020). Such an increase is unlikely to have practical significance. Although for some cohorts (Sellafield, PO ‘Mayak’) there may be groups with significant cumulative doses and, therefore, with increased risks.
The importance of the risks of cataractogenic disorders in the lens in radiation workers may be due to a decrease in professional suitability, since the artificial lens, as a rule, is poorly capable of accommodation.
Keywords: nuclear workers, lens disorders, cataracts, systematic review, meta-analysis
For citation: Koterov AN, Ushenkova LN, Dibirgadzhiev IG, Wainson AA, Kalinina MV, Biryukov AP. Excess Relative Risk of Cataractogenic Lense Disorders in Nuclear Workers: Systematic Review and Meta-analysis. Medical Radiology and Radiation Safety. 2023;68(3):21–32. (In Russian). DOI: 10.33266/1024-6177-2023-68-3-21-32
References
1. Ashmore J.P., Krewski D., Zielinski J.M., Jiang H., Semenciw R., Band P.R. First Analysis of Mortality and Occupational Radiation Exposure Based on the National Dose Registry of Canada // Am. J. Epidemiol. 1998. V.148, No. 6. P. 564–574. https://doi.org/10.1093/oxfordjournals.aje.a009682.
2. UNSCEAR 1972. Report to the General Assembly, with Scientific Annex. Vol. I. ‘Level’. Annex C. Doses from Occupational Exposure. United Nations. New York, 1972. P. 173–186.
3. ICRP Publication 118. ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context. Annals of the ICRP. Ed. Clement C.H. Amsterdam – New York: Elsevier, 2012. 325 p.
4. Little M.P., Azizova T.V., Hamada N. Low- and Moderate-Dose Non-Cancer Effects of Ionizing Radiation in Directly Exposed Individuals, Especially Circulatory and Ocular Diseases: A Review of the Epidemiology // Int. J. Radiat. Biol. 2021. V.97, No. 6. P. 782–803. https://doi.org/10.1080/09553002.2021.1876955.
5. Della Vecchia E., Modenese A., Loney T., Muscatello M., Paulo M.S., Rossi G., Gobba F. Risk of Cataract in Health Care Workers Exposed to Ionizing Radiation: a Systematic Review // Med. Lav. 2020. V.111, No. 4. P. 269–284. https://doi.org/10.23749/mdl.v111i4.9045.
6. Elmaraezy A., Morra M.E., Mohammed A.T., Al-Habaa A., Elgebaly A., Ghazy A.A., et al. Risk of Cataract among Interventional Cardiologists and Catheterization Lab Staff: A Systematic Review and Meta-Analysis // Catheter Cardiovasc Interv. Actions. 2017. V.90, No. 1.
P. 1–9. doi: 10.1002/ccd.27114.
7. Dauer L., Blakely E., Brooks A., Hoel D. Epidemiology and Mechanistic Effects of Radiation on the Lens of The Eye: Review and Scientific Appraisal of the Literature. Technical Report. Electric Power Research Institute (EPRI). Newburgh: NY, 2014. 142 p.
8. Ainsbury E.A., Bouffler S.D., Dorr W., Graw J., Muirhead C.R., Edwards A.A., Cooper J. Radiation Cataractogenesis: a Review of Recent Studies // Radiat. Res. 2009. V.172, No. 1. P. 1–9. https://doi.org/10.1667/RR1688.1.
9. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons Ltd, 2009. 421 p.
10. Hamada N. Ionizing Radiation Sensitivity of the Ocular Lens and Its Dose Rate Dependence // Int. J. Radiat. Biol. 2017. V.93, No. 10. P. 1024–1034. https://doi.org/10.1080/09553002.2016.1266407.
11. Hammer G.P., Scheidemann-Wesp U., Samkange-Zeeb F., Wicke H., Neriishi K., Blettner M. Occupational Exposure to Low Doses of Ionizing Radiation and Cataract Development: a Systematic Literature Review and Perspectives on Future Studies // Radiat. Environ. Biophys. 2013. V.52, No. 3. P. 303–319. https://doi.org/10.1007/s00411-013-0477-6.
12. Thome C., Chambers D.B., Hooker A.M., Thompson J.W., Boreham D.R. Deterministic Effects to the Lens of the Eye Following Ionizing Radiation Exposure: Is there Evidence to Support a Reduction in Threshold Dose? // Health Phys. 2018. V.114, No. 3. P. 328–343. https://doi.org/10.1097/HP.0000000000000810.
13. Ainsbury E.A., Dalke C., Hamada N., Benadjaoud M.A., Chumak V., Ginjaume M., et al. Radiation-Induced Lens Opacities: Epidemiological, Clinical and Experimental Evidence, Methodological Issues, Research Gaps and Strategy // Environ. Int. 2021. No. 146. P. 106213. https://doi.org/10.1016/j.envint.2020.106213.
14. Ainsbury E.A., Barnard S., Bright S., Dalke C, Jarrin M, Kunze S et al. Ionizing Radiation Induced Cataracts: Recent Biological and Mechanistic Developments and Perspectives for Future Research // Mutat. Res. Rev. Mutat. Res. 2016. V.770, No. Pt. B. P. 238–261. https://doi.org/10.1016/j.mrrev.2016.07.010.
15. Hamada N., Azizova T.V., Little M.P. An Update on Effects of Ionizing Radiation Exposure on the Eye // Br. J. Radiol. 2020. V.93, No. 1115. P. 20190829. https://doi.org/10.1259/bjr.20190829.
16. Averbeck D., Salomaa S., Bouffler S., Ottolenghi A., Smyth V., Sabatier L. Progress in Low Dose Health Risk Research: Novel Effects and New Concepts in Low Dose Radiobiology // Mutat. Res. 2018. No. 776. P. 46–69. https://doi.org/10.1016/j.mrrev.2018.04.001.
17. Hamada N., Fujimichi Y., Iwasaki T., Fujii N., Furuhashi M., Kubo E., et al. Emerging Issues in Radiogenic Cataracts and Cardiovascular Disease // J. Radiat. Res. 2014. V.55, No. 5. P. 831–846. https://doi.org/10.1093/jrr/rru036.
18. Shore R.E., Neriishi K., Nakashima E. Epidemiological Studies of Cataract Risk at Low to Moderate Radiation Doses: (Not) Seeing Is Believing // Radiat. Res. 2010. V.174, No. 6. P. 889–894. https://doi.org/10.1667/RR1884.1.
19. Rehani M.M., Vano E., Ciraj-Bjelac O., Kleiman N.J. Radiation and Cataract // Radiat. Prot. Dosimetry. 2011. V.147, No. 1–2. P. 300–304. https://doi.org/10.1093/rpd/ncr299.
20. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. Valentin J. Amsterdam – New York: Elsevier, 2007. 329 p.
21. Bannik K., Rossler U., Faus-Kessler T., Gomolka M., Hornhardt S., Dalke C. et al. Are Mouse Lens Epithelial Cells More Sensitive to γ-Irradiation than Lymphocytes? // Radiat. Environ. Biophys. 2013. V.52, No. 2. P. 279–286. https://doi.org/10.1007/s00411-012-0451-8.
22. Markiewicz E., Barnard S., Haines J., Coster M., van Geel O., Wu W. et al. Nonlinear Ionizing Radiationinduced Changes in Eye Lens Cell Proliferation, Cyclin D1 Expression and Lens Shape // Open Biol. 2015. V.5, No. 4. P. 150011. https://doi.org/10.1098/rsob.150011.
23. McCarron R.A., Barnard S.G.R., Babini G., Dalke C., Graw J., Leonardi S., et al. Radiation-Induced Lens Opacity and Cataractogenesis: a Lifetime Study Using Mice of Varying Genetic Backgrounds // Radiat. Res. 2022. V.197, No. 1. P. 57–66. https://doi.org/10.1667/RADE-20-00266.1.
24. Barnard S.G.R., Hamada N. Individual Response of the Ocular Lens to Ionizing Radiation // Int. J. Radiat. Biol. 2023. V.99, No. 2. P. 138–154. doi: 10.1080/09553002.2022.2074166.
25. Nakashima E., Neriishi K., Minamoto A. A Reanalysis of Atomic-Bomb Cataract Data, 2000–2002: a Threshold Analysis // Health Phys. 2006. No. 902. P. 154–160. https://doi.org/10.1097/01.hp.0000175442.03596.63.
26. Laskowski L., Williams D., Seymour C., Mothersill C. Environmental and Industrial Developments in Radiation Cataractogenesis // Int. J. Radiat. Biol. 2020. No. 26. P. 1–9. https://doi.org/10.1080/09553002.2020.1767820.
27. Cucinotta F.A., Manuel F.K., Jones J., Iszard G., Murrey J., Djojonegro B., Wear M. Space Radiation and Cataracts in Astronauts // Radiat. Res. 2001. V.156, No. 5. P. 460–466. https://doi.org/10.1667/0033-7587(2001)156[0460:sracia]2.0.co;2.
28. Rafnsson V., Olafsdottir E., Hrafnkelsson J., Sasaki H., Arnarsson A., Johansson F. Cosmic Radiation Increases the Risk of Nuclear Cataract in Airline Pilots // Arch. Opthalmol. 2005. V.123, No. 8. P. 1102–1105. https://doi.org/10.1001/archopht.123.8.1102.
29. Klein B.E., Klein R., Linton K.L., Franke T. Diagnostic X-Ray Exposure and Lens Opacities: the Beaver Dam Eye Study // Am. J. Public Health. 1993. V.83, No. 4. P. 588–590. https://doi.org/10.2105/ajph.83.4.588.
30. Klein B.E., Klein R.E., Moss S.E. Exposure to Diagnostic X-Rays and Incident Age-Related Eye Disease // Ophthalmic. Epidemiol. 2000. V.7, No. 1. P. 61–65. https://doi.org/10.1076/0928-6586(200003)711-2FT061.
31. Poon R., Badawy M.K. Radiation Dose and Risk to the Lens of the Eye During CT Examinations of the Brain // J. Med. Imaging Radiat. Oncol. 2019. V.63, No. 6. P. 786–794. https://doi.org/10.1111/1754-9485.12950.
32. Picano E., Vano E., Domenici L., Bottai M., Thierry-Chef I. Cancer and Non-Cancer Brain and Eye Effects of Chronic Low-Dose Ionizing Radiation Exposure // BMC Cancer. 2012. No. 12. P. 157. https://doi.org/10.1186/1471-2407-12-157.
33. Shore R.E. Radiation Impacts on Human Health: Certain, Fuzzy, and Unknown // Health Physics. 2014. V.106, No. 2. P. 196–205. https://doi.org/10.1097/hp.0000000000000021.
34. Shore R.E. Radiation and Cataract Risk: Impact of Recent Epidemiologic Studies on ICRP Judgments // Mutat. Res. Rev. Mutat. Res. 2016. V.770, P. Pt. B. P. 231–237. https://doi.org/10.1016/j.mrrev.2016.06.006.
35. Chylack L.T. Jr., Wolfe J.K., Singer D.M., Leske M.C., Bullimore M.A., Bailey I.L., et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group // Arch. Ophthalmol. 1993. V.111, No. 6. P. 831–836. https://doi.org/10.1001/archopht.1993.01090060119035.
36. Merriam G.R.Jr., Focht E.F. A Clinical Study of Radiation Cataracts and the Relationship to Dose // Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1957. V.77, No. 5. P. 759–785.
37. Merriam G.R.Jr., Focht E.F. A Clinical and Experimental Study of the Effect of Single and Divided Doses of Radiation on Cataract Production // Trans. Am. Ophthalmol. Soc. 1962. No. 60. P. 35–52.
38. SparrowO J.M., Bron A.J., Brown N.A., Ayliffe W., Hill A.R. The Oxford Clinical Cataract Classification and Grading System // Int. Ophthalmol. 1986. V.9, No. 4. P. 207–225. https://doi.org/10.1007/BF00137534.
39. Klein B.E., Klein R., Linton K.L., Magli Y.L., Neider M.W. Assessment of Cataracts from Photographs in the Beaver Dam Eye Study // Ophthalmology. 1990. V.97, No. 11. P. 1428–1433. https://doi.org/10.1016/s0161-6420(90)32391-6.
40. Thylefors B., Chylack L.T. Jr., Konyama K., Sasaki K., Sperduto R., Taylor H.R., West S. A Simplified Cataract Grading System // Ophthalmic Epidemiol. 2002. V.9, No. 2. P. 83–95. https://doi.org/110.1076/opep.9.2.83.1523.
41. Neriishi K., Nakashima E., Minamoto A., Fujiwara S., Akahoshi M., Mishima H.K., et al. Postoperative Cataract Cases among Atomic Bomb Survivors: Radiation Dose Response and Threshold // Radiat. Res. 2007. V.168, No. 4. P. 404–408. https://doi.org/10.1667/RR0928.1.
42. Su Y., Wang Y., Yoshinaga S., Zhu W., Tokonami S., Zou J., et al. Lens Opacity Prevalence among the Residents in High Natural Background Radiation Area in Yangjiang, China // J. Radiat. Res. 2021. V.62, No. 1. P. 67–72. https://doi.org/10.1093/jrr/rraa073.
43. Worgul B.V., Kundiyev Y.I., Sergiyenko N.M. Chumak V.V., Vitte P.M., Medvedovsky C., et al. Cataracts among Chernobyl Clean-up Workers: Implications Regarding Permissible Eye Exposure // Radiat. Res. 2007. V.167, No. 2. P. 233–243. https://doi.org/10.1667/rr0298.1.
44. Бекман И.Н. Ядерная индустрия: Курс лекций. М.: Изд-во МГУ, 2005. 867 с.
45. Berrington de Gonzalez A., Bouville A., Rajaraman P., Schubauer-Berigan M. Ionizing Radiation. Schottenfeld and Fraumeni Cancer Epidemiology and Prevention. Ed. Thun M.J., Linet M.S., Cerhan J.R., Haiman C., Schottenfeld D. New York: Oxford University Press, 2018. P. 227–248.
46. Breuer F., Strambi E. Evaluation and Rational Recording of Irradiation Doses of Nuclear Workers // Minerva Fisiconucl. 1966. V.10, No. 2. P. 165–170 (In Italian.).
47. IARC 1994. IARC Study Group on Cancer Risks among Nuclear Industry Workers. Direct Estimates of Cancer Mortality Due to Low Doses of Ionising Radiation: an International Study. IARC Study Group on Cancer Risk among Nuclear Industry Workers // Lancet. 1994. V.344, No. 8929. P. 1039–1043. https://doi.org/10.1016/S0140-6736(94)91706-X.
48. Voelz G.L. Eye-Survey Study of Nuclear-Reactor Workers // J. Occup. Med. 1967. V.9, No. 6. P. 286–292.
49. Griffith T.P., Pirie A., Vaughan J. Possible Cataractogenic Effect of Radionuclides Deposited Within the Eye from the Blood Stream // Br. J. Ophthalmol. 1985. V.69, No. 3. P. 219–227. https://doi.org/10.1136/bjo.69.3.219.
50. Михайлина Т.Н., Виноградова М.В. О формировании лучевой и инволюционной катаракт у человека при радиационном воздействии // Вестник офтальмологии. 1992. Т.108, № 1. С. 40–48.
51. Okladnikova N.D., Pesternikova V.S., Sumina M.V., Doshchenko V.N. Occupational Diseases from Radiation Exposure at the First Nuclear Plant in the USSR // Sci. Total Environ. 1994. V.142, No. 1–2. P. 9–17. https://doi.org/10.1016/0048-9697(94)90067-1.
52. Гуськова А.К. 50 лет атомной промышленности России – глазами врача // Атомная энергия. 1999. Т.87, № 6. С. 479–485.
53. Гуськова А.К. Атомная отрасль страны глазами врача. М.: Реальное Время, 2004. 240 с.
54. Jacobson B.S. Cataracts in Retired Actinide-Exposed Radiation Workers // Radiat. Prot. Dosimetry. 2005. V.113, No. 1. P. 123–125. https://doi.org/10.1093/rpd/nch427.
55. Muksinova K., Kirillova E.N., Zakharova M.L., et al. A Repository of Bio-Specimens from Mayak Workers Exposed to Protracted Radiation // Health Phys. 2006. V.90, No. 3. P. 263–265. https://doi.org/10.1097/01.HP.0000175441.68227.ff.
56. Окладникова Н.Д., Сумина М.В., Пестерникова В.С., Азизова Т.В., Кабашева Н.Я. Отдаленные последствия внешнего γ-облучения по результатам наблюдения за персоналом первого в стране предприятия атомной промышленности // Клин. медицина. 2007. Т.85, № 10. С. 21–26.
57. Okladnikova N.D., Sumina M.V., Pesternikova V.S. Long-Term Effects of External γ-Irradiation Based on the Results of Monitoring the Personnel of the Country›s First Nuclear Industry Enterprise // Wedge. the Medicine. 2007. No. 10. P. 21–26.
58. Azizova T.V., Bragin E.V., Hamada N., Bannikova M.V. Risk of Cataract Incidence in a Cohort of Mayak PA Workers Following Chronic Occupational Radiation Exposure // PLoS One. 2016. V.11, No. 10. P. e0164357. https://doi.org/10.1371/journal.pone.0164357.
59. Брагин Е.В., Азизова Т.В., Банникова М.В. Заболеваемость катарактой в когорте работников, подвергшихся профессиональному облучению // Офтальмология. 2016. Т.13, № 2. С. 115–121. https://doi.org/10.17116/oftalma2017133257-63.
60. Туков А.Р., Шафранский И.Л., Капитонова Н.В. и др. Риск развития катаракты в условиях острого и хронического облучения // Саратовский научно-медицинский журнал. 2016. Т.12, № 4. С. 678–684.
61. Туков А.Р., Шафранский И.Л., Прохорова О.Н., Зиятдинов М.Н. Риск развития радиационной катаракты у работников атомной промышленности – участников ликвидации последствий аварии на ЧАЭС // Радиация и риск. 2019. Т.28, № 1. С. 37–46. https://doi.org/10.21870/0131-3878-2019-28-1-37-46.
62. Брагин Е.В., Азизова Т.В., Банникова М.В. Риск заболеваемости старческой катарактой у работников предприятия атомной промышленности // Вестник офтальмологии. 2017. Т.133, № 2. С. 57–63. https://doi.org/10.17116/oftalma2017133257-63.
63. Азизова Т.В., Брагин Е.В., Хамада Н., Банникова М.В. Оценка риска заболеваемости старческой катарактой в когорте работников предприятия атомной промышленности ПО «Маяк» // Медицинская радиология и радиационная безопасность. 2018. Т.63, № 4. С. 15–21. https://doi.org/10.12737/article-5b83b0430902e8.35861647.
64. Azizova T.V., Hamada N., Grigoryeva E.S., Bragin E.V. Risk of Various Types of Cataracts in a Cohort of Mayak Workers Following Chronic Occupational Exposure to Ionizing Radiation // Eur. J. Epidemiol. 2018. V.33, No. 12. P. 1193–204. https://doi.org/10.1007/s10654-018-0450-4.
65. Азизова Т.В., Хамада Н., Григорьева Е.С., Брагин Е.В. Риск катаракты различных типов в когорте работников, подвергшихся профессиональному хроническому облучению // Медицинская радиология и радиационная безопасность. 2020. Т.65, № 4. С. 48–57. https://doi.org/10.12737/1024-6177-2020-65-4-48-57.
66. Azizova T.V., Hamada N., Bragin E.V., et al. Risk of Cataract Removal Surgery in Mayak PA Workers Occupationally Exposed to Ionizing Radiation Over Prolonged Periods // Radiat. Environ. Biophys. 2019. V.58, No. 2. P. 139–149. https://doi.org/10.1007/s00411-019-00787-0.
67. Казымбет П.К., Джанабаев Д.Д., Сайфулина Е.A., Кашкинбаев Е.T., Ибраева Д.С., Хусаин Ш.К. Оценка риска соматических заболеваний в когорте работников урановой промышленности, подвергающихся радиационному воздействию в малых дозах. Сообщение II // Наука и Здравоохранение. 2019. Т.21, № 5. С. 81–87.
68. Park S., Lee D.N., Jin Y.W., et al. Non-Cancer Disease Prevalence and Association with Occupational Radiation Exposure among Korean Radiation Workers // Sci. Rep. 2021. V.11, No. 1. P. 22415. https://doi.org/10.1038/s41598-021-01875-2.
69. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Медицинская радиология и радиационная безопасность. 2013. Т.58, № 2. С. 5–21.
70. Котеров А.Н., Вайнсон А.А. Конъюнктурный подход к понятию о диапазоне малых доз радиации с низкой ЛПЭ в зарубежных обзорных источниках: нет изменений за 18 лет // Медицинская радиология и радиационная безопасность. 2022. Т.67, № 5. С. 33–40. https://doi.org/10.33266/1024-6177-2022-67-5-33-40.
71. Seals K.F., Lee E.W., Cagnon C.H., Al-Hakim R.A., Kee S.T. Radiation-Induced Cataractogenesis: a Critical Literature Review for the Interventional Radiologist // Cardiovasc. Intervent. Radiol. 2016. V.39, No. 2. P. 151–160. https://doi.org/10.1007/s00270-015-1207-z.
72. Chodick G., Bekiroglu N., Hauptmann M., Alexander B.H., Freedman D.M., Doody M.M., et al. Risk of Cataract after Exposure to Low Doses of Ionizing Radiation: a 20-Year Prospective Cohort Study among US Radiologic Technologists // Am. J. Epidemiol. 2008. V.168, No. 6. P. 620–631. https://doi.org/10.1093/aje/kwn171.
73. Milacic S. Risk of Occupational Radiation-Induced Cataract in Medical Workers // Med. Lav. 2009. V.100, No. 3. P. 178–186.
74. Rajabi A.B., Noohi F., Hashemi H., et al. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff // Res. Cardiovasc. Med. 2015. V.4, No. 1. P. e25148. https://doi.org/10.5812/cardiovascmed.25148.
75. Andreassi M.G., Piccaluga E., Guagliumi G., Del Greco M., Gaita F., Picano E. Occupational Health Risks in Cardiac Catheterization Laboratory Workers // Circ. Cardiovasc. Interv. 2016. V.9, No. 4. P. e003273. https://doi.org/10.1161/circinterventions.115.003273.
76. Lian Y., Xiao J., Ji X., Guan S., Ge H., Li F., Ning Li., Liu J. Protracted Low-Dose Radiation Exposure and Cataract in a Cohort of Chinese Industry Radiographers // Occup. Environ. Med. 2015. V.72, No. 9.
P. 640–647. https://doi.org/10.1136/oemed-2014-102772.
77. Ozasa K., Shimizu Y., Suyama A., Kasagi F., Soda M., Grant E.J., et al. Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: an Overview of Cancer and Noncancer Diseases // Radiat. Res. 2012. V.177, No. 3. P. 229–243. https://doi.org/10.1667/RR2629.1.
78. Anderson J.L., Bertke S.J., Yiin J., Kelly-Reif K., Daniels R.D. Ischaemic Heart and Cerebrovascular Disease Mortality in Uranium Enrichment Workers // Occup. Environ. Med. 2020. V.78, No. 2. P. 105–111. https://doi.org/10.1136/oemed-2020-106423.
79. Moher D., Liberati A., Tetzlaff J., Altman D.G., The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement // PLoS Med. 2009. V.6, No. 7. P. e1000097. https://doi.org/10.1371/journal.pmed.1000097.
80. Омельяновский В.В., Авксентьева М.В., Сура М.В., Хачатрян Г.Р., Федяева В.К. Методические рекомендации по проведению мета-анализа. М.: ФГБУ «ЦЭККМП» Минздрава России, 2017. 28 с.
81. Little M.P. Radiation and Circulatory Disease // Mutat Res. 2016. V.770, No. Pt B. P. 299–318. https://doi.org/10.1016/j.mrrev.2016.07.008.
82. Bernstein J., Dauer L., Dauer Z., Hoel D., Woloschak G. Cardiovascular Risk from Low Dose Radiation Exposure: Review and Scientific Appraisal of the Literature. Technical Report // EPRI. 2020. 144 p. https://www.epri.com/research/products/000000003002018408.
83. Котеров А.Н., Туков А.Р., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Средняя накопленная доза облучения для работников мировой ядерной индустрии: малые дозы, малые эффекты. Сравнение с дозами для медицинских радиологов // Радиационная биология. Радиоэкология. 2022. Т.62, № 3. С. 227–239. https://doi.org/10.31857/S0869803122030043.
84. Hashemi H., Pakzad R., Yekta A., et al. Global and Regional Prevalence of Age-Related Cataract: a Comprehensive Systematic Review and Meta-Analysis // Eye. 2020. V.34, No. 8. P. 1357–1370. https://doi.org/10.1038/s41433-020-0806-3.
85. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения // Медицина катастроф. 2021. № 3. С. 34–41. https://doi.org/10.33266/2070-1004-2021-3-34-41.
86. Ong H.S., Evans J.R., Allan B.D.S. Accommodative Intraocular Lens Versus Standard Monofocal Intraocular Lens Implantation in Cataract Surgery // Cochrane Database Syst. Rev. 2014. No 5. P. CD009667. https://doi.org/10.1002/14651858.CD009667.pub2.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The work was carried out on the budget topic of the research of the FMBA of Russia and was not supported by any other sources of funding.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.01.2022. Accepted for publication: 25.02.2023.