JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Reirradiation of High-Grade Brain Gliomas:
Availability and Risks. Literature Review
K.E.Medvedeva, I.A.Gulidov, D.V.Gogolin
A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia
Contact person: Medvedeva Kira Evgenievna: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
High-grade gliomas are the most common type of primary brain tumor in adults. A distinctive feature of malignant gliomas is their high aggressiveness, resistance to various types of treatment, and high recurrence rate. Depending on the grade of malignancy, a relapse can occur in months or years, however, it is inevitable for almost all patients with this type of tumor. Despite the improvement of treatment methods, the problem of recurrence of malignant brain gliomas remains relevant: reoperation is associated with the risk of developing severe neurological deficits, and previous chemotherapy often leads to severe hematological toxicity. Thus, re-irradiation is seen as an effective treatment option for tumor recurrence.
This review of the scientific literature examines various aspects of re-irradiation of high-grade gliomas, provides data on the features of diagnosis and treatment results in patients, as well as the frequency of complications.
Keywords: high-grade brain gliomas, recurrence, proton therapy, reirradiation
For citation: Medvedeva KE, Gulidov IA, Gogolin DV. Reirradiation of High-Grade Brain Gliomas: Availability and Risks. Literature Review. Medical Radiology and Radiation Safety. 2022;67(1):77-82.
DOI: 10.12737/1024-6177-2022-67-1-77-82
References
1. Global, Regional, and National Burden of Brain and Other CNS Cancer, 1990–2016: a Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet. 2019;18;4:376-393.
2. Choynzonov Ye.L., Gribova O.V., Startseva Zh.A., Ryabova A.I., Novikov V.A., Musabayeva L.I., Polezhayeva I.S. Current Approaches to Chemoradiotherapy for Malignant Gliomas. Byulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2014;13;3:119-125. https://doi.org/10.20538/1682-0363-2014-3-119-125 (In Russ.). [Чойнзонов, Е.Л., Грибова, О.В., Старцева, Ж.А., Рябова, А.И., Новиков, В.А., Мусабаева, Л.И., Полежаева, И.С. Современный подход к химиолучевой терапии злокачественных глиом головного мозга // Бюллетень сибирской медицины. 2014. Т.13, № 3. С. 119-125].
3. Verma V., Rwigema J.M., Malyapa R.S., Regine W.F., Simone C.B. 2nd. Systematic Assessment of Clinical Outcomes and Toxicities of Proton Radiotherapy for Reirradiation. Radiother Oncol. 2017;125;1:21-30. doi:10.1016/j.radonc.2017.08.005.
4. Seidensaal K., Harrabi S.B., Uhl M., Debus J. Re-Irradiation with Protons or Heavy Ions with Focus on Head and Neck, Skull Base and Brain Malignancies. Br. J. Radiol. 2020;93;1107:20190516. doi:10.1259/bjr.20190516.
5. Stupp R., Hegi M.E., Mason W.P., et. al., European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009;10;5:459-466. doi: 10.1016/S1470-2045(09)70025-7. Epub 2009 Mar 9. PMID: 19269895.
6. Barney C., Shukla G., Bhamidipati D., Palmer J.D. Re-Irradiation for Recurrent Glioblastoma Multiforme. Chin Clin Oncol. 2017;6;4:36. doi:10.21037/cco.2017.06.18.
7. Conti A., Pontoriero A., Arpa D., et. al. Efficacy and Toxicity of CyberKnife Re-Irradiation and “Dose Dense” Temozolomide for Recurrent Gliomas. Acta Neurochir. (Wien). 2012;154:203–209. doi:10.1007/s00701-011-1184-1.
8. Grosu A.L., Weber W.A., Franz M., et.al. Reirradiation of Recurrent Highgrade Gliomas Using Amino Acid PET (SPECT)/CT/MRI Image Fusion to Determine Gross Tumor Volume for Stereotactic Fractionated Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:511–519. doi:10.1016/j.ijrobp.2005.01.056.
9. Minniti G., Scaringi C., De Sanctis V., Lanzetta G., Falco T., Di Stefano D., Esposito V., Enrici R.M. Hypofractionated Stereotactic Radiotherapy and Continuous Low-Dose Temozolomide in Patients with Recurrent or Progressive Malignant Gliomas. J. Neurooncol. 2013;111:187–194. doi:10.1007/s11060-012-0999-9.
10. Kosztyla R., Chan E.K., Hsu F., et al. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained from Magnetic Resonance Imaging and 18F-FDOPA Positron Emission Tomography Delineations from Multiple Observers. Int. J. Radiat. Oncol. Biol. Phys. 2013;87;5:1100-1106. doi:10.1016/j.ijrobp.2013.09.008.
11. Kim B., Soisson E., Duma C., et.al. Treatment of Recurrent High Grade Gliomas with Hypofractionated Stereotactic Image-Guided Helical Tomotherapy. Clin. Neurol. Neurosurg. 2011;113:509–512. doi:10.1016/j.clineuro.2011.02.001.
12. Ogura K., Mizowaki T., Arakawa Y., Sakanaka K., Miyamoto S., Hiraoka M. Efficacy of Salvage Stereotactic Radiotherapy for Recurrent Glioma: Impact of Tumor Morphology and Method of Target Delineation on Local Control. Cancer Med. 2013;2:942–949. doi:10.1002/cam4.154.
13. Hundsberger T., Brügge D., Putora P.M., Weder P., Weber J., Plasswilm L. Re-Irradiation with and without Bevacizumab as Salvage Therapy for Recurrent or Progressive High-Grade Gliomas // J. Neurooncol. 2013;112:133–139. doi:10.1007/s11060-013-1044-3.
14. Xu Weilin, et al. The Performance of 11C-Methionine PET in the Differential Diagnosis of Glioma Recurrence. Oncotarget. 2017;8;53:91030-91039. doi:10.18632/oncotarget.19024
15. Kawai N., Okauchi, M., et.al. No Shinkei Geka. Neurological surgery. 2010;38;11:985–995.
16. Sharma Rajnish, et al. A Comparison Study of (11)C-Methionine and (18)F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Scans in Evaluation of Patients with Recurrent Brain Tumors. Indian Journal of Nuclear Medicine. 2016;31;2:93-102. doi:10.4103/0972-3919.178254.
17. Hotta M., Minamimoto R., Miwa K. 11C-Methionine-PET for Differentiating Recurrent Brain Tumor from Radiation Necrosis: Radiomics Approach with Random Forest Classifier. Sci. Rep. 2019;9;1:15666. doi:10.1038/s41598-019-52279-2.
18. Galldiks N., Dunkl V., Stoffels G., Hutterer M., Rapp M., Sabel M., et al. Diagnosis of Pseudoprogression in Patients with Glioblastoma Using O-(2-[(18)F]fluoroethyl)-l-Tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging. 2015;42;5:685–695. Doi: 10.1007/s00259-014-2959-4.
19. Harat M., Małkowski B., Makarewicz R. Pre-Irradiation Tumour Volumes Defined by MRI and Dual Time-Point FET-PET for the Prediction of Glioblastoma Multiforme Recurrence: A Prospective Study. Radiother Oncol. 2016;120;2:241-247. doi:10.1016/j.radonc.2016.06.004.
20. Piroth M.D., Holy R., Pinkawa M., Stoffels G., Kaiser H.J., Galldiks N., et al. Prognostic Impact of Postoperative, Pre-Irradiation (18)F-Fluoroethyl-l-Tyrosine Uptake in Glioblastoma Patients Treated with Radiochemotherapy. Radiother Oncol 2011;99:218–24.
21. B Nanditha Sesikeran, Sayan Paul, Kanhu Charan Patro, Manoj K Gupta. Radiobiology of Re-irradiations. Journal of Current Oncology. 2018;1:35-39.
22. Mayer R., Sminia P. Reirradiation Tolerance of the Human Brain. Int. J. Radiat. Oncol. Biol. Phys. 2008;70:1350-1360.
23. Lawrence Y.R., Li X.A., el Naqa I., et al. Radiation Dose-Volume Effects in the Brain. Int. J. Radiat. Oncol. Biol. Phys. 2010;76(3 Suppl):S20-S27. doi:10.1016/j.ijrobp.2009.02.091.
24. Veninga T., Langendijk H.A., Slotman B.J., Rutten E.H., van der Kogel A.J., Prick M.J., Keyser A., van der Maazen R.W. Reirradiation of Primary Brain Tumours: Survival, Clinical Response and Prognostic Factors. Radiother Oncol. 2001;59;2:127-137.
25. Navarria P., Minniti G., Clerici E., et al. Re-Irradiation for Recurrent Glioma: Outcome Evaluation, Toxicity and Prognostic Factors Assessment. A Multicenter Study of the Radiation Oncology Italian Association (AIRO). J. Neurooncol. 2019;142;1:59-67. doi:10.1007/s11060-018-03059-x.
26. Combs S.E., Widmer V., Thilmann C., Hof H., Debus J., Schulz-Ertner D. Stereotactic Radiosurgery (SRS): Treatment Option for Recurrent Glioblastoma Multiforme (GBM). Cancer. 2005;104;6:2168-2173. doi: 10.1002/cncr.21429.
27. Cho K.H., Hall W.A., Gerbi B.J., Higgins P.D., McGuire W.A., Clark H.B. Single Dose Versus Fractionated Stereotactic Radiotherapy for Recurrent High-Grade Gliomas. Int. J. Radiat. Oncol. Biol. Phys. 1999;45;5:1133-1141. doi: 10.1016/s0360-3016(99)00336-3. PMID: 10613305.
28. Ernst-Stecken A., Ganslandt O., Lambrecht U., Sauer R., Grabenbauer G. Survival and Quality of Life After Hypofractionated Stereotactic Radiotherapy for Recurrent Malignant Glioma. J. Neurooncol. 2007;81;3:287-294. doi: 10.1007/s11060-006-9231-0. Epub 2006 Sep 20. PMID: 17031558.
29. Moller S., Law I., Munck Af Rosenschold P., et al. Prognostic Value of 18F-FET PET Imaging in Re-Irradiation of High-Grade Glioma: Results of a Phase I Clinical Trial. Radiother Oncol. 2016;121;1:132-137. doi:10.1016/j.radonc.2016.08.014.
30. Shen C.J., Kummerlowe M.N., Redmond K.J., et al. Re-Irradiation for Malignant Glioma: Toward Patient Selection and Defining Treatment Parameters for Salvage. Adv Radiat Oncol. 2018;3;4:582‐590. doi:10.1016/j.adro.2018.06.005.
31. Baehr A., Trog D., Oertel M., et al. Re-Irradiation for Recurrent Glioblastoma Multiforme: a Critical Comparison of Different Concepts. Strahlenther Onkol. 2020;196;5:457-464. doi:10.1007/s00066-020-01585-0.
32. Furlan C., Arcangeli S., Avanzo M., et al. Policies for Reirradiation of Recurrent High-Grade Gliomas: a Survey among Italian Radiation Oncologists. Tumori. 2018;104;6:466-470. doi:10.5301/tj.5000615
33. Combs S.E., Debus J., Schulz-Ertner D. Radiotherapeutic Alternatives for Previously Irradiated Recurrent Gliomas. BMC Cancer. 2007;7:167. doi:10.1186/1471-2407-7-167.
34. Grosshans D.R., Mohan R., Gondi V., Shih H.A., Mahajan A., Brown P.D. The Role of Image-Guided Intensity Modulated Proton Therapy in Glioma. Neuro Oncol. 2017;19(suppl_2):ii30-ii37. doi:10.1093/neuonc/nox002.
35. Dennis E.R., Bussiere M.R., Niemierko A., et al. A Comparison of Critical Structure Dose and Toxicity Risks in Patients with Low Grade Gliomas Treated with IMRT Versus Proton Radiation Therapy. Technol. Cancer Res. Treat. 2013;12;1:1-9. doi:10.7785/tcrt.2012.500276.
36. Mizumoto M., Okumura T., Ishikawa E., et.al. Reirradiation for Recurrent Malignant Brain Tumor with Radiotherapy or Proton Beam Therapy. Technical Considerations Based on Experience at a Single Institution. Strahlenther Onkol. 2013;189;8:656-663. doi: 10.1007/s00066-013-0390-6. PMID: 23824106.
37. Desai B.M., Rockne R.C., et.al. Toxicity Outcomes Following Large-Volume Re-irradiation Using Proton Therapy (PT) for Recurrent Glioma.
38. Galle J.O., McDonald M.W., Simoneaux V., Buchsbaum J.C. Reirradiation with Proton Therapy for Recurrent Gliomas. Int. J. Particle Ther. 2015;2:11–18.
39. Saeed A.M., Khairnar R., Sharma A.M., et al. Clinical Outcomes in Patients with Recurrent Glioblastoma Treated with Proton Beam Therapy Reirradiation: Analysis of the Multi-Institutional Proton Collaborative Group Registry. Adv. Radiat. Oncol. 2020;5;5:978-983. doi:10.1016/j.adro.2020.03.022.
40. Мedvedeva К.Е., Gulidov I.A., Mardynskiy Yu.S., Gogolin D.V., Semenov А.V., Lepilina О.G., Kaprin А.D., Коstin А.А., Ivanov S.А. Proton Therapy for Re-Irradiation of Recurrent Gliomas. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost - Medical radiology and radiation safety. 2019;2:70-74 (In Russ.). [Медведева К.Е., Гулидов И.А., Мардынский Ю.С., Гоголин Д.В., Семенов А.В., Лепилина О.Г. Каприн А.Д., Костин А.А., Иванов С.А. Возможности протонной терапии при повторном облучении рецидивных глиом // Медицинская радиология и радиационная безопасность. 2019. № 2. С. 70-74].
41. Scartoni D, Amelio D., Palumbo P., Giacomelli I., Amichetti M. Proton Therapy Re-Irradiation Preserves Health-Related Quality of Life in Large Recurrent Glioblastoma. J. Cancer Res. Clin. Oncol. 2020;146;6:1615-1622. doi:10.1007/s00432-020-03187-w.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 17.07.2021.
Accepted for publication: 05.09.2021
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Investigation of the Microelement Content of Intervertebral Disc
in Osteochondrosis of the Lumbar Spine
S.S. Kochkartaev1, E.A. Danilova2, Sh.Sh. Shatursunov1,
N.S. Osinskaya2
1Republican Scientific and Practical Medical Center of Traumatology and Orthopedics, Tashkent, Uzbekistan
2Institute of Nuclear Physics, Tashkent, Uzbekistan
Contact person: Danilova Elena Artovazdovna: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
The progressive prevalence, significant economic losses, the cost of compulsory health insurance and high-tech medical care have turned the problem of lumbar osteochondrosis into a socially significant issue. The relevance of this problem is dictated by the need to study the etiopathogenesis of the course of degenerative changes for an integrated approach when choosing an adequate treatment.
The progression of the pathological process in the spine significantly contributes to changes in the metabolism of connective tissue, which is closely associated with the violation of microelements.
Purpose: Evaluation of changes in the homeostasis of the intervertebral disc, in particular the study of the microelement composition of the intervertebral disc at various stages of development of hernias of the lumbar spine using instrumental neutron activation analysis.
Material and methods: The studied biomaterial was obtained intraoperatively, with traditional microdiscectomy in herniations of the spine at the level of VL3-4, VL4-5, VL5-S1. By the method of instrumental neutron activation analysis, a study of biomaterials, represented by tissue fragments of the remote part of the hernia of the intervertebral disc, located at different stages of the degenerative process, was carried out.
Results: The quantitative content of 22 macro- and microelements in the removed fragments was determined. As a result of the data obtained, it was found that in the tissues of the intervertebral discs, a gradual change in the content of a number of essential elements occurs, depending on the stage of development of the degeneration process.
Conclusion: Changes in the microelement composition indicate metabolic processes occurring in the intervertebral discs, and the relationship of the microelement composition of the disc tissue and the course of the degenerative process can be used to predict the condition of the patient and choose an adequate treatment.
Keywords: osteochondrosis, disc herniation, intervertebral discs, neutron activation analysis, microelements
For citation: Kochkartaev SS, Danilova EA, Shatursunov ShSh, Osinskaya NS. Investigation of the Microelement Content of Intervertebral Disc in Osteochondrosis of the Lumbar Spine. Medical Radiology and Radiation Safety. 2022;67(1):83-86.
DOI: 10.12737/1024-6177-2022-67-1-83-86
References
1. Drivotinov B.V., Ban D.S. The Role of the Reactive-Inflammatory and Scar-Adhesive Process in the Pathogenesis, Clinic and Treatment of Neurological Manifestations of lumbar osteochondrosis. Meditsinskiy zhurnal. Minsk. 2006;2:21˗23 (In Russ.).
2. Zhuravlev Yu.I., Nazarenko G.I., Cherkashov A.M., et all. Prediction of the Outcome of Surgical Treatment of Degenerative Disease of the Intervertebral Discs of the Lumbosacral Spine. Voprosy neyrokhirurgii im. N.N. Burdenko. 2009;1:42˗47 (In Russ.).
3. Korzh N.A., Prodan A.I., Barysh A.E. Degenerative Diseases of the Spine and Their Structural and Functional Classification. Ukrainian Neurosurgical Journal. 2004;3:27-30 (In Ukr.).
4. Jiil P.G., Urban and Sally Roberts. Degeneration of the Intervertebral Disc. Arthritis Research Therapy. 2003;5;3:120-130.
5. Vasilyeva I.G., KHizhnyak M.V., et al. Degeneration of Intervertebral Discs and Methods for its Biological Correction. Ukrainian Neurosurgical Journal. 2010;1:16˗23 (In Ukr.).
6. Zaydman A.M., Filippova G.N. Strukturno-Metabolicheskiye Osobennosti Mezhpozvonkovogo Diska pri Osteokhondroze i Vozmozhnosti Yego Korrektsii = Structural and Metabolic Features of the Intervertebral Disc in Osteochondrosis and the Possibility of its Correction. Patologiya Pozvonochnika. Leningrad Publ., 1980. P. 88-94 (In Russ.).
7. Tsivyan YA.L., Raykhinshteyn V.YE. Mezhpozvonkovyye Diski: Nekotoryye Aspekty Fiziologii i Biomekhaniki = Intervertebral Discs: Some Aspects of Physiology and Biomechanics. Novosibirsk, Nauka. Sib. Otdeleniye Publ., 1977. 165 p. (In Russ.).
8. Avtsyn A.P., ZHavoronkov A.A. Mikroelementozy Cheloveka = Microelements of a Person. Moscow, Meditsina Publ., 1991. 496 p. (In Russ.).
9. Vernadskiy V.I. Khimicheskiy Sostav Zhivogo Veshchestva = The Chemical Composition of Living Matter. Moscow Publ., 1922. (In Russ.).
10. Byvaltsev V., Belykh E., Panasenkov S., et al. Nanostructural Changes of Intervertebral Disc after Diode Laser Ablation. World Neurosurgery. 2012;77;1:6–7.
11. Skalnyy A.V., Rudakov I.A. Bioelementy v Meditsine = Bioelements in Medicine. Moscow, Oniks 21 vek, Mir Publ., 2004. 272 p. (In Russ.).
12. Babenko G.A., Reshetkina A.P. Primeneniye Mikroelementov v Meditsine = The Use of Trace Elements in Medicine. Kiev Publ., 1971. 311 р. (In Russ.).
13. Mednis I.V. Gamma-Izlucheniye Radionuklidov, Primenyayemykh v Neytronno-Aktivatsionnom Analize = Gamma Radiation of Radionuclides Used in Neutron Activation Analysis. Directory. Riga, Zinatne Publ., 1987. 212 р. (In Russ.).
14. Podkolzin A.A., Dontsov V.I. Immunitet i Mikroelementy = Immunity and Microelements. Moscow Publ., 1994. 144 р. (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 17.07.2021.
Accepted for publication: 05.09.2021
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Case of a Patient with Cervical Cancer after Wertheim Surgery
who Underwent Minimally Invasive Treatment of Giant Lymphocele
and Related Secondary Complications
N.S. Skreptsova, S.O. Stepanov, A.D. Kaprin, A. A. Kostin,
A.V. Boyko, L.V. Demidova, E.G. Novikova, L.A. Mitina,
D.V. Dolgacheva, N.V. Zelich, L.G. Serova
National Medical Research Radiological Center, Moscow, Russia
Contact person: Skreptsova Natalia Sergeevna: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABCTRACT
An experience of successful treatment of giant lymphocele and related secondary complications, such as signs of hydronephrosis of both kidneys of a patient after Wertheim surgery in case of cervical disease before radiotherapy is described. A complex of ultrasound studies using 3 types of echographic picture of the lymphocele was applied, which made it possible to determine the rational management of the patient using the technique of invasive sonography. Ultrasound examination, on the 17th day after the operation, revealed lymphocele in the iliac regions (1450 ml on the right, 1290 ml on the left) and signs of hydronephrosis of both kidneys. Drains under the control of sonography in both the lymphatic cavity were set up. Signs of hydronephrosis of both kidneys ceased to be located on the 2nd day after the installation of drains. Drains were removed after 13 days. During further ultrasound examinations of the patient, the lymphocele and signs of hydronephrosis were not rendered. Ultrasound examinations were performed on the 3rd, 7th, 12th, 21st, 35th, 62nd, 145th day after drains were removed.
Keywords: cervical cancer, pelvic lymphadenectomy, radiation therapy, ultrasound, invasive sonography, lymphocele, lymphatic cyst
For citation: Skreptsova NS, Stepanov SO, Kaprin AD, Kostin AA, Boyko AV, Demidova LV, Novikova EG, Mitina LA, Dolgacheva DV, Zelich NV, Serova LG. Case of a Patient with Cervical Cancer after Wertheim Surgery who Underwent Minimally Invasive Treatment of Giant Lymphocele and Related Secondary Complications. Medical Radiology and Radiation Safety. 2022;67(1):99-102.
DOI: 10.12737/1024-6177-2022-67-1-99-102
References
1. Ed. Kaprin A.D., Starinskiy V.V., Petrova G.V. The State of Cancer Care in the Population of Russia in 2018. Moscow, MNIOI im. P.A. Gertsena Publ., 2019. P. 5 (In Russ.).
2. Ed. Chissov V.I, Davydov M.I., Aleksandrova L.M. Oncology. National Guidelines. Short Version. Мoscow, GEOTAR-Media Publ., 2017. P. 113-117 (In Russ.).
3. Boyko A.V., Dunayeva E.A., Demidova L.V., Dubovetskaya O.B., Serova L.G., Alekseyev B.Ya. Implemenation of Radiation Therapy for Locally Advanced and Recurrent Cervical Cancer Complicated by Ureterohydronephrosis. Meditsinskaya radiologiya i radiatsionnaya bezopasnost = Medical Radiology and Radiation Safety. 2019;64;4:41–47. DOI: 10.12737/article_5d1108af5d48d3.68800561. (In Russ.).
4. Makatsariya N.A. Ernst Wertheim. Akusherstvo, Ginekologiya i Reproduktsiya = Obstetrics, Gynecology and Reproduction. 2014;8;2:149-150 (In Russ.).
5. Ballester M., Bendifallah S., Daraï E. European guidelines (ESMO-ESGO- ESTRO consensus conference) for the Management of Endometrial Cancer. Bull. Cancer 2017;104;12:1032–1038. PMID: 29173977. DOI: 10.1016/j.bulcan.2017.10.006.
6. Cibula D., Pötter R., Planchamp F., et al. The European Society of Gynaecological Oncology. European Society for Radiotherapy and Oncology. European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer. Radiother. Oncol. 2018;127;3:404–416. PMID: 29728273. DOI: 10.1016/j.radonc.2018.03.003.
7. Skreptsova N.S., Stepanov S.O., Guts O.V., Prozorova E.V. Invasive Sonography in Diagnostics and Treatment of Lymphocele of Patients after Pelvic Lymphadenectomy. Luchevaya Diagnostika i Terapiya = Diagnostic Radiology and Radiotherapy. 2013;3;4:83-88 (In Russ.).
8. Akhmetzyanov F.SH., Mardanova S.M. Ultrasound in Early Postoperative Period in Patients after Cancer Surgery on the Pelvic Organs. Sovremennaya Meditsina: Aktualnyye Voprosy = Modern Medicine. Actual Issues. 2016;7;49:21-33 (In Russ.).
9. Rogovskaya T.T., Berlev I.V. Lymphatic Cysts after Gynecological Cancer Surgery: Risk Factors, Diagnosis and Treatment. Opukholi Zhenskoy Reproduktivnoy Sistemy = Tumors of Female Reproductive System. 2018;14;4:72-79. DOI: 10.17650/1994-4098-2018-14-4-72-79. (In Russ.).
10. Ghezzi F., Uccella S., Cromi A. et al. Lymphoceles, Lymphorrhea, and Lymphedema after Laparoscopic and Open Endometrial Cancer Staging. Ann. Surg. Oncol. 2012;19;1:259–267. PMID: 21695563. DOI: 10.1245/s10434-011-1854-5.
11. Kim Y.H., Shin H.J., Ju W., Kim S.C. Prevention of Lymphocele by Using Gelatinthrombin Matrix as a Tissue Sealant after Pelvic Lymphadenectomy in Patients with Gynecologic Cancers: a Prospective Randomized Controlled Study. J. Gynecol. Oncol. 2017;28;3:37. PMID: 28382800. DOI: 10.3802/jgo.2017.28.e37.
12. Kondo E., Tabata T., Shiozaki T. et al. Large or Persistent Lymphocyst Increases the Risk of Lymphedema, Lymphangitis, and Deep Vein Thrombosis after Retroperitoneal Lymphadenectomy for Gynecologic Malignancy. Arch. Gynecol. Obstet. 2013;288;3:587–593. PMID: 23455541. DOI: 10.1007/s00404-013-2769-0.
13. Tinelli A., Mynbaev O.A., Tsin D.A., et al. Lymphocele Prevention after Pelvic Laparoscopic Lymphadenectomy by a Collagen Patch Coated with Human Coagulation Factors: a Matched Case-Control Study. Int. J. Gynecol. Cancer. 2013;23;5:956–963. PMID: 23574881. DOI: 10.1097/ IGC.0b013e31828eeea4.
14. Yin H., Gui T. Comparative Analyses of Postoperative Complications and Prognosis of Different Surgical Procedures in Stage II Endometrial Carcinoma Treatment. Onco. Targets Ther. 2016;9:781–786. PMID: 26937200. DOI: 10.2147/OTT.S95806.
15. Zikan M., Daniela F., Pinkavova I., et al. A Prospective Study Examining the Incidence of Asymptomatic and Symptomatic Lymphoceles Following Lymphadenectomy in Patients with Gynecological Cancer. Gynecol. Oncol. 2015;137;2:291–298. PMID: 25720294. DOI: 10.1016/j.ygyno.2015.02.016.
16. Vaskovskaya O.V., Asabayeva R.I., Digay L.K., Kokoshko A.I. Complications after Gynecological Cancer Expanded Operations. Nauchnoye Obozreniye. Meditsinskiye Nauki = Science-Review. 2014;1:58-59. URL: https://science-medicine.ru/ru/article/view?id=63. (In Russ.).
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution: N.S. Skreptsova, S.O. Stepanov: obtaining data for analysis, analysis of the obtained data, writing the text of the manuscript
A.D. Kaprin, A.A. Kostin, A.V. Boyko, L.A. Mitin: development of the theoretical basis of the study
L.V. Demidova, D.V. Dolgacheva: scientific editing of the text of the manuscript
N.V. Evtyagin, L.G. Serov: review of publications on the topic of the article
The patient signed an informed consent to participate in the study.
Article received: 17.09.2021. Accepted for publication: 05.12.2021
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Hyperthermic Methods in Conservative
and Palliative Treatment of Oncological Patients.
Part 1. Loco-Regional Hyperthermia
O.K. Kurpeshev1, J. Van Der Zee2
1 Siberian Scientific Research Institute of Hyperthermia, Novosibirsk, Russia.
2 Erasmus Medical Centre, Cancer Institute, Rotterdam, The Netherlands
Contact person: Orazakhmet Kerimbaevich Kurpeshev, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
CONTENTS
The analysis of the results of conservative and palliative treatment of cancer patients with the use of loco-regional hyperthermia (LRHT) alone or in combination with various methods of anticancer therapy was carried out. The data obtained showed that LRHT significantly increases the immediate results of radiation and / or chemotherapy, has a pronounced palliative effect, and in some cases provides long-term local control. In incurable patients who have exhausted the "limit" of chemotherapy and / or radiation therapy, its use for palliative purposes is also possible in mono-mode.
Keywords: review, loco-regional hyperthermia, conservative therapy, palliative therapy, thermochemotherapy, thermoradiation therapy
For citation: Kurpeshev OK, Van Der Zee J. Hyperthermic Methods in Conservative and Palliative Treatment of Oncological Patients.
Part 1. Loco-Regional Hyperthermia. Medical Radiology and Radiation Safety. 2022;67(1):87–98.
DOI: 10.12737/1024-6177-2022-67-1-87-98
References
1. Состояние онкологической помощи населению России в 2018 году (под редакцией А.Д. Каприна, В.В. Старинского, Г.В. Петровой). М.: МНИОИ им П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2019. 236 стр. http://www.oncology.ru/service/statistics/[The state of oncological assistance to the population of Russia in 2018 (edited by A. Kaprin, VV. Starinsky and GV. Petrova). Moscow: Herzen Moscow Research Institute – a branch of the Federal State Budget Scientific Research Center for Radiology of the Russian Ministry of Health. 2019. 236 pp. (In Russ.)]. http://www.oncology.ru/service/statistics/]
2. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019. E1-E20. September 27. DOI: https://doi.org/10.1001/jamaoncol.2019.2996.
3. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson AB, Mariotto A, Lake AJ, Wilson R, Sherman RL, Anderson RN, Henley SJ, Kohler BA, Penberthy L, Feuer EJ, Weir HK. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. J. of the National Cancer Institute. 2017;109(9):djx030. DOI: 10.1093/jnci/djx030.
4. Cancer Treatment & Survivorship Facts & Figures 2016-2017. Atlanta: American Cancer Society, 2016. Inc. No.865016.
5. Nahum AE. Converting Dose Distributions into Tumour Control Probability Radiation Dose in Radiotherapy from Prescription to Delivery. IAEA, A-1400 Vienna, Austria. 1996: 27-40.
6. Орлова Р.В., Вайзьян Р.И., Иванова А.К., Тихонова Е.К., Зорина Е.Ю. Химиотерапия злокачественных опухолей: проблемы и перспективы // Вопросы онкологии. 2015. № 2(61). С. 244-251. [Orlova RV, Vaizyan RI, Ivanova AK, Tikhonova EK, Zorina EY. Chemotherapy of Malignant Tumors: Problems and Prospects. Problems in Oncology. 2015;61(2):244-51. (In Russ.).]
7. Поддубная И.В., Орел Н.Ф. Побочные реакции и осложнения противоопухолевой лекарственной терапии. Руководство по химиотерапии опухолевых заболеваний (под ред. Н.И. Переводчиковой и В.А.Горбуновой). М.: Практическая медицина, 2011:425-446. [Poddubnaya IV, Oryol NF. Adverse Reactions and Complications of Antitumor Drug Therapy. Guidelines for the Chemotherapy of Tumor Diseases (ed. NI. Perevodchicova and VA. Gorbunova). Moskow. Practical medicine. 201:425-46. (In Russ.)]
8. Чубенко ВА. Осложнения таргетной терапии // Практическая онкология. 2010. № 3(11). С. 192-202. [Chubenko VA. Complications of Targeted Therapy. Practical Oncology. 2010;11(3):192-202. (In Russ.)]
9. De Angelis CD, Fontanarosa PB. Prescription Drugs, Products Liability, and Preemption of Tort Litigation. JAMA. 2008;300(16):1939-41.
10. Ставровская А.А, Генс Г.П. Некоторые новые аспекты исследований множественной лекарственной устойчивости опухолевых клеток // Успехи молекулярной онкологии. 2014. № 1(1). С. 5-11. doi:10.17650/2313-805X.2014.1.1.5-11.[Stavrovskaya AA, Gens GP. Some New Aspects of Studies of Multidrug Resistance of Tumor Cells. Advances in Molecular Oncology. 2014;1(1):5-11. (In Russ.)]. DOI: 10.17650 / 2313-805X.2014.1.1.5-11.
11. Трякин А.А., Федянин М.Ю., Покатаев И.А. 20 лет таргетной терапии солидных опухолей. Успехи и неудачи // Практическая онкология. 2018. № 3(19). С. 183-199. [Tryakin AA, Fedyanin MYu, Pokataev IA. 20 Years of Targeted Therapy of Solid Tumors. Success and Failure. Practical Oncology. 2018;19(3):183-99. (In Russ.)]
12. Zafar SY, Abernethy AP. Financial Toxicity, Part I: A New Name For A Growing Problem. Oncology (Williston Park). 2013;27(2):80-1.
13. Cheng Y, Weng S, Yu L, Zhu N, Yang M, Yuan Y. The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integrative Cancer Therapies. 2019;18:1-11. DOI 10.1177/1534735419876345.
14. Курпешев О.К., Цыб А.Ф., Мардынский Ю.С., Бердов Б.А. Механизмы развития и пути преодоления химиорезистентности опухолей. Часть 4. Экспериментальные основы и практические результаты применения общей гипертермии в лечении химиорезистентных опухолей // Российский онкологический журнал. 2003. № 3. С. 50-53. [Kurpeshev OK, Tsyb AF, Mardynsky YS, Berdov BA. Mechanisms of development and ways of overcoming the chemoresistance of tumors. Part 4. Experimental foundations and practical results of the use of general hyperthermia in the treatment of chemoresistant tumors. Russian Journal of Oncology. 2003;3:50-3. (In Russ.).]
15. Курпешев О.К, Ван дер Зее Я., Кавагнаро М. Гипертермия опухолей глубокой локализации: возможности ёмкостного метода // Медицинская радиология и радиационная безопасность. 2019;64(4):64–75. DOI: 10.12737/1024-6177-2019-64-4-64-75. DOI: 10.12737 / 1024-6177-2019-64-4-64-75. [Kurpeshev OK, Van der Zee J, Kavagnaro M. Hyperthermia of Tumors of Deep Localization: Possibilities of the Capacitive Method. Medical Radiology and Radiation Safety. 2019;64(4):64-75. (In Russ.). DOI: 10.12737 / 1024-6177-2019-64-4-64-75]
16. Van der Heijden AG, Dewhirst MW. Effects of Hyperthermia in Neutralizing Mechanisms of Drug Resistance in Non-Muscleinvasive Bladder Cancer. Int J Hyperthermia. 2016;32(4):434-45. http://dx.doi.org/10.3109/ 02656736.2016.1155761
17. Курпешев ОК. Закономерности радиосенсибилизирующего и повреждающего эффектов гипертермии на нормальные и опухолевые ткани. Автореф. дисс. докт. мед. наук. Обнинск, 1989. 35 с. [Kurpeshev OK. Patterns of the radiosensitizing and damaging effects of hyperthermia on normal and tumor tissues. Author’s abstract. diss. PhD, MD. Obninsk, 1989. 35 pp. (In Russ.)]
18. Панкратов В.А., Андреев В.Г., Рожнов В.А., Гулидов И.А., Барышев В.В., Буякова М..Е, Вдовина С.Н., Курпешев О.К., Подлесных Н.И. Одновременное применение химио- и лучевой терапии при самостоятельном консервативном и комбинированном лечении больных местно-распространенным раком гортани и гортаноглотки // Сибирский онкологический журнал. 2007. № 1. С. 18-22. [Pankratov VA, Andreev VG, Rozhnov VA. Gulidov IA, Baryshev VV, Buyakova ME. Vdovina SN, Kurpeshev OK, Podlesnykh NI. Simultaneous Use of Chemotherapy and Radiation Therapy in Independent Conservative and Combined Treatment of Patients with Locally Advanced Cancer of the Larynx and Laryngopharynx. Siberian J. Oncology. 2007;1:18-22. (In Russ.).]
19. Van der Zee J, Vujaskovic Z, Kondo M, Sugahara T. Part I. Clinical Hyperthermia. The Kadota Fund International Forum 2004 − Clinical Group Consensus. Int J Hyperthermia. 2008;24(2):111-22.
20. Курпешев О.К., van der Zee J. Локорегионарная гипертермия злокачественных опухолей − методики, термометрия, аппаратура // Медицинская радиология и радиационная безопасность. 2017. 5(62). С. 52-63. DOI: 10.12737/article_59f30321207ef4.88932385. [Кurpeshev ОК, van der Zee J. Locoregional Hyperthermia of Malignant Tumors: Methods, Thermometry, Machines. Medical Radiology and Radiation Safety. 2017;62(5):52-63. (In Russ.). DOI: 10.12737/article_59f303 21207ef4.88932385]
21. Kouloulias V, Triantopoulou S, Vrouvas J, Gennatas K, Ouzounoglou N, Kouvaris J, Karaiskos P, Aggelakis P, Antypas C, Zygogianni A, Papavasiliou K, Platoni K, Kelekis N. Combined Chemoradiotherapy with Local Microwave Hyperthermia for Treatment of T3N0 Laryngeal Carcinoma: a Retrospective Study with Long-Term Follow-Up. Acta Otorhinolaryngol Ital. 2014;34(3):167-73. PMCID: PMC4035838.
22. Zhu H, Huo X, Chen L. Wang H, Yu H. Clinical Experience with Radio- Chemo- and Hyperthermotherapy Combined Trimodality on Locally Advanced Esophageal Cancer. Molecular and Clinical Oncology. 2013;1:1009-12. DOI: 10.3892/mco.2013.161.
23. Oldenborg S, van Os RM, Van Rij CM, Crezee J, van de Kamer JB, Rutgers E, Geijsen ED, Zum vörde sive vörding PJ, Koning CC, Van tienhoven G. Elective Re-Irradiation and Hyperthermia Following Resection of Persistent Locoregional Recurrent Breast Cancer: A Retrospective Study. Int J Hyperthermia 2010;26(2):136-44.
24. Oldenborg S, Griesdoorn V, van Os R, Kusumanto YH, Oei BS, Venselaar JL, Geijsen ED, Zum vörde sive vörding PJ, Koning CC, Van tienhoven G. Reirradiation and Hyperthermia for Irresectable Locoregional Recurrent Breast Cancer in Previously Irradiated Area: Size Matters. Radiother Oncol. 2015;117:223-28.
25. Oldenborg S, Rasch CRN, van Os R, Kusumanto YH, Oei BS, Venselaar JL, Heymans MW, ZumVörde Sive Vörding PJ, Crezee H, van Tienhoven G. Reirradiation + Hyperthermia for Recurrent Breast Cancer en Cuirasse. Strahlentherapie und Onkologie. 2018;194:206-14. https://doi.org/10.1007/s00066-017-1241-1247.
26. Linthorst M, van Geel AN, Baaijens M, Ameziane A, Ghidey W, van Rhoon GC, van der Zee J. Re-Irradiation and Hyperthermia After Surgery for Breast Cancer. Radiother. Oncol. 2013;109:188-93.
27. Linthorst M, Baaijens M, Wiggenraad R. Creutzberg C, Ghidey W, van Rhoon GC, van der Zee J. Local Control Rate after the Combination of Reirradiation and Hyperthermia for Irresectable Recurrent Breast Cancer: Results in 248 Patients. Radiother. Oncol. 2015;117:217-22.
28. Notter M, Thomsen AR, Nitsche M, Hermann RM, Wol HA, Habl G, Münch K, Grosu A-L, Vaupel P. Combined wIRA-Hyperthermia and Hypofractionated Re-Irradiation in the Treatment of Locally Recurrent Breast Cancer: Evaluation of Therapeutic Outcome Based on a Novel Size Classification. Cancers. 2020;12(3):606-20. DOI: 10.3390/cancers12030606.
29. Linthorst M, van Rhoon GC, van Geel AN, Baaijens M, Ghidey W, Broekmeyer-Reurink MP, van der Zee J. The Tolerance of Reirradiation and Hyperthermia in Breast Cancer patients with reconstructions. Int. J. Hyperthermia. 2012;28(3):267-77. DOI: 10.3109/02656736.2012.663951.
30. Roesch M, Mueller-Huebenthal B. Review: The Role of Hyperthermia in Treating Pancreatic Tumors. Indian J Surg Oncol. 2015 March; 6(1):75–81. DOI: 10.1007/s13193-014-0316-5.
31. Yanai Y, Yasoshima T, Fukui R, Shishido T, Ezoe E, Furuta Y, Morosawa H, Miya Y, Sato Y, Kondo M. Retrospective Analysis of Hyperthermia Therapy Y. in 47 case of Unresectable Pancreatic Cancer. The 6th Asian Congress of Hyperthermic Oncology & The 31st Japanese Congress of Thermal Medicine at Fukui City, Japan. September 5 (Fri.) − 6 (Sat.). 2014:146. Абстракт GSJ10.
32. Hetzel FW, Mattiello J. Interactions of Hyperthermia with Other Modalities. Medical Physics Monograph. Biological, Physical and Clinical Aspects of Hyperthermia (editors: Paliwal BR, Hetzel FW, Dewhirst MW). Am. Inst. Phys. 1987;16:30–56 (cit. according to [16]).
33. Franckena M, De Wit R, Ansink AC, Notenboom A, Canters RAM, Fatehi D, Van Rhoon GC, Van Der Zee J. Weekly Systemic Cisplatin Plus Locoregional Hyperthermia: An Effective Treatment for Patients with Recurrent Cervical Carcinoma in a Previously Irradiated Area. Int J Hyperthermia. 2007;23:443-50. DOI: 10.1080/02656730701549359.
34. Franckena M, Fatehi D, de Bruijne M, Canters RAM, van Norden Y, Mens JW, Van Rhoon GC, Van Der Zee J. Hyperthermia Dose-Effect Relationship in 420 Patients with Cervical Cancer Treated with Combined Radiotherapy and Hyperthermia. Eur J Cancer. 2009;45(11):1969-78. DOI: 10.1016/j.ejca.2009.03.009.
35. Jones E, Secord AA, Prosnitz LR, Samulski TV, Oleson JR, Berchuck A, Clarke-Pearson D, Soper J, Dewhirst MW., Vujaskovic Z. Intra-Peritoneal Cisplatin and Whole Abdomen Hyperthermia for Relapsed Ovarian Carcinoma. Int J Hyperthermia. 2006;22(2):161–72. DOI: 10.1080/02656730500515270.
36. Milani V, Pazos M, Issels RD, Rahman S, Tschoep K, Schaffer P, Wilkowski R, Duehmke E, Schaffer M. Radiochemotherapy in Combination with Regional Hyperthermia in Preirradiated Patients with Recurrent Rectal Cancer. Strahlentherapie und Onkologie. 2008;184(3):163-68. DOI: 10.1007/s00066-008-1731-8.
37. Ohguri T, Imada H, Kato F, Yahara K, Morioka T, Nakano K, Korogi Y. Radiotherapy with 8 MHz Radiofrequency-Capacitive Regional Hyperthermia for Pain Relief of Unresectable and Recurrent Colorectal Cancer. Int J Hyperthermia. 2006;22(1):1-14.
38. Курпешев О.К., Мардынский Ю.С., Максимов С.А. Комбинированное лечение больных раком полости рта с использованием "условно-динамического" режима фракционирования лучевой терапии и локо-регионарной гипертермии // Сибирское медицинское обозрение. 2011. 1(67). С. 80-84. DOI: 10.1080/02656730500381152. [Kurpeshev OK, Mardynsky YS, Maksimov SA. Combined Treatment of Patients with Oral Cancer Using the "Conditionally Dynamic" Mode of Fractionation of Radiation Therapy and Loco-Regional Hyperthermia. Siberian Medical Review. 2011;67(1):80-4. (In Russ.). DOI: 10.1080/02656730500381152]
39. Курпешев О.К., Андреев В.Г., Панкратов В.А., Гулидов И.А., Орлова А.В. Сравнительные результаты консервативной химиолучевой и термохимиолучевой терапии местнораспространенного рака гортани // Вопросы онкологии. 2014 № 5(60). С. 602-606. [Kurpeshev OK, Andreev VG, Pankratov VA, Gulidov IA, Orlova AV. Comparative Results of Conservative Chemoradiation and Thermochemoradiotherapy of Locally Advanced Laryngeal Cancer. Problems in Oncology. 2014;60(5):602-6. (In Russ.).]
40. Li Z, Sun Q, Huang X, Zhang J, Hao J, Li Y, Zhang S. The Efficacy of Radiofrequency Hyperthermia Combined with Chemotherapy in the Treatment of Advanced Ovarian Cancer. Open Med. 2018;13:83-9. https://doi.org/10.1515/med-2018-0013.
41. Курпешев О.К., Флоровская Н.Ю., Лебедева Т.В. Результаты паллиативной термохимиотерапии метастазов колоректального рака в печень // Вопросы онкологии. 2016. № 1(62). С. 85-90. [Kurpeshev ОК, Florovskaya NY, Lebedeva ТV. Results of Palliative Thermochemotherapy for Colorectal Cancer Metastases to the Liver. Problems in Oncology. 2016;62(1):85-90. (In Russ.).]
42. Yang W-H, Xie J, Lai Z-Y, Yang M-D, Zhang G-H, Li Y, Mu J-B, Xu J. Radiofrequency Deep Hyperthermia Combined with Chemotherapy in the Treatment of Advanced Non-Small Cell Lung Cancer. Chinese Medical J. 2019;132(8):922-7. DOI: 10.1097/CM9.0000000000000156. PMID: 30958433.
43. Maebayashi T, Ishibashi N, Aizawa T, Sakaguchi M, Sato T, Kawamori J, Tanaka Y. Treatment Outcomes of Concurrent Hyperthermia and Chemoradiotherapy for Pancreatic Cancer: Insights into the Significance of Hyperthermia Treatment. Oncology Letters. 2017;13:4959-64.
44. Merten R, Ott O, Haderlein M, Bertz S, Hartmann A, Wullich B, Keck B, Kühn R, Rödel CM, Weiss C, Gall C, Uter W, Fietkau R. Long-Term Experience of Chemoradiotherapy Combined with Deep Regional Hyperthermia for Organ Preservation in High-Risk Bladder Cancer (Ta, Tis, T1, T2). The Oncologist. 2019;24:1–10. www.TheOncologist.com.
45. Ott OJ, Schmidt M, Semrau S, Strnad V, Matzel KE, Schneider I, Raptis D, Uter W, Grützmann R, Fietkau R. Chemoradiotherapy with and without Deep Regional Hyperthermia for Squamous Cell Carcinoma of the Anus. Strahlentherapie und Onkologie. 2019;195(7):607-14. DOI: 10.1007/s00066-018-1396-x
46. Cho C, Wust P, Hildebrandt B, Issels RD, Sehouli J, Kerner T, Deja M, Budach V, Gellermann J. Regional Hyperthermia of the Abdomen in Conjunction with Chemotherapy for Peritoneal Carcinomatosis: Evaluation of Two Annular-Phased-Array Applicators. Int J Hyperthermia. 2008;24(5):399-408. DOI: 10.1080/02656730801929915.
47. Shen H, Li X-D, Wu C-P, Yin Y-M, Wang R-S, Shu Y-Q. The Regimen of Gemcitabine and Cisplatin Combined with Radio Frequency Hyperthermia for Advanced Non-Small Cell Lung Cancer: A Phase II Study. Int J Hyperthermia, February 2011;27(1):27-32. DOI: 10.3109/02656736.2010.500645.
48. Kурпешев O.K., van der Zee J. Анализ результатов рандомизированных исследований по гипертермии в онкологии // Медицинская радиология и радиационная безопасность. 2018. № 3(63). С. 52-67. DOI: 10.12737/article_5b179d60437d54.24079640. [Kurpeshev OK, van der Zee J. Analysis of the Results of Randomized Trials of Hyperthermia in Oncology. Medical Radiology and Radiation Safety. 2018;63(3):52-67. (In Russ.). DOI: 10.12737/article_5b179d60437d54.24079640]
49. Chi MS, Yang KL, Chang YC, Ko H-L, Lin Y-H, Huang S-C, Huang Y-Y, Liao K-W, Kondo M, Chi K-H. Comparing the Effectiveness of Combined External Beam Radiation and Hyperthermia Versus External Beam Radiation Alone in Treating Patients With Painful Bony Metastases: A Phase 3 Prospective, Randomized, Controlled Trial. Int J Rad Oncol Biol Phys. 2018;100:78-87. DOI: 10.1016/j.ijrobp.2017.09.030.
50. Li G-X, Lu Z, Sun X-M, Ma C-G., Liu K., Liu J, Guo L, Li P-X. Clinical Effect of Radiofrequency Hyperthermia Combined with Chemotherapy on Stage IV Gastric Cancer. Chinese J. of Cancer Prevention and Treatment. 2010;17:526-28.
51. Fang H, Zhang Y, Wu Z, Wang X, Wang H, Wang Y, Chai F, Jiang Y, Jin Z, Wan Y, Zhu L, Ma S. Regional Hyperthermia Combined with Chemotherapy in Advanced Gastric Cancer. Open Med. 2019;14:85-90. https://doi.org/10.1515/med-2019-0012.
52. Wang Y, Hong W, Che S, Zhang Y, Meng D, Shi F, Su J, Yang Y, Ma H, Liu R, Gao Y, Wang J, Hui B, Wang J, Lu J, Wang T, Liu Z, Chen H. Outcomes for Hyperthermia Combined with Concurrent Radiochemotherapy for Patients with Cervical Cancer. Int J Rad Oncol Biol Phys. Published: March 13, 2020. DOI: 10.1016/j.ijrobp.2020.03.006
53. Datta NR, Pestalozzi B, Clavien P-A, Siebenhüner A, Puric E, Khan S, Mamot C, Riesterer O, Knuchel J, Reiner CS, Bodis S and members of the HEATPAC Trial Group. “HEATPAC J.” – A Phase II Randomized Study of Concurrent Thermochemoradiotherapy Versus Chemoradiotherapy Alone in Locally Advanced Pancreatic Cancer. Radiation Oncology. 2017;12:183. DOI: 10.1186/s13014-017-0923-8.
54. Datta NR, Rogers S, Ordóñez SG, Puric E, Bodis S. Hyperthermia and Radiotherapy in the Management of Head and Neck Cancers: A Systematic Review and Meta-Analysis. Int J Hyperthermia. 2016;32(1):31-40. DOI: 10.3109/02656736.2015.1099746.
55. Datta NR, Puric E, Klingbiel D, Gomez S, Bodis S. Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A SystematicReview and Meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016; 94:1073-87. DOI: https://doi.org/10.1016/j.ijrobp.2015.12.361.
56. Datta NR, Rogers S, Klingbiel D, Gómez S, Puric E, Bodis S. Hyperthermia and Radiotherapy with or without Chemotherapy in Locally Advanced Cervical Cancer: A Systematic Review with Conventional and Network Meta-Analyses. Int J Hyperthermia. 2016;32(7):809-21. DOI: 10.1080/02656736.2016.1195924.
57. Baoning Q, Chuandao S, Na S, Xinan W, Yuanping H. Efficacy and Safety of Radio-Chemotherapy Combined with Thermotherapy for Advanced Cervical Cancer in Chinese Women: A Meta-Analysis. Arch. Med. Sci. Civil. Dis. 2017;2:e182–e90. DOI: https://doi.org/10.5114/amscd.2017.72542.
58. Hu Y, Li Z, Mi D.-H, Cao N, Zu S-W, Wen Z.-Z, Yu X-L, Qu Y. Chemoradiation Combined with Regional Hyperthermia for Advanced Oesophageal Cancer: A Systematic Review and Meta-Analysis. Journal of Clinical Pharmacy and Therapeutics. 2017;42:155-64. DOI: 10.1111/jcpt.12498.
59. Курпешев О.К., Цыб А.Ф., Мардынский Ю.С., Бердов Б.А. Механизмы развития и пути преодоления химиорезистентности опухолей. Часть 3. Возможные пути преодоления химиорезистентности опухолей // Российский онкологический журнал. 2003. № 2. С. 50-52. [Kurpeshev OK, Tsyb AF, Mardynsky YS, Berdov B.A. Mechanisms of development and ways of overcoming the chemoresistance of tumors. Part 3. Possible ways to overcome tumor chemoresistance. Russian Journal of Oncology. 2003;2:50-2. (In Russ).]
60. Курпешев ОК, Van der Zee J. Экспериментальные основы применения гипертермии в онкологии // Медицинская радиология и радиационная безопасность. 2018. № 1(63). С. 57-77. DOI: 10.12737/article_5a8556b4be3e24.36808227. [Kurpeshev OK, Van der Zee J. The Experimental Basis for the Use of Hyperthermia in Oncology. Medical Radiology and Radiation Safety. 2018;63(1):57-77. (In Russ.). DOI: 10.12737/article_5a8556b4be3e24.36808227. (In Russ)]
61. Oei AL, Vriend LEM, Krawczyk PM, Horsman MR, Franken NAP, Crezee J. Targeting Therapy–Resistant Cancer Stem Cells by Hyperthermia. Int J Hyperthermia. 2017;33(4):419-27. DOI: 10.1080/02656736.2017.1279757.
62. Pelicci PG, Dalton P, Orecchia R. Heating Cancer Stem Cells to Reduce Tumor Relapse. Breast Cancer Research. 2011;13:305. DOI: https://doi.org/10.1186/bcr2847.
63. Sakurai H. Tumor Targeting with Hyperthermia. Jpn J Hyperthermic Oncology. 2006;22(2):61-9.
64. Curley SA, Palalon F, Sanders KE, Koshkina NV. The Effects of Non-Invasive Radiofrequency Treatment and Hyperthermia on Malignant and Nonmalignant Cells. Int. J. Environ Res. Public Health. 2014;11(9):9142–53. DOI: 10.3390/ijerph110909142.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The author declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. The article was prepared with equal participatib of authors.
Article received: 18.01.2020. Accepted for publication: 22.05.2021.
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 1
Human Mesenchymal Stromal Cells: Characteristics, Radiosensitivity and Effects of Low-Dose Radiation
D.Yu. Usupzhanova, T.A. Astrelina, I.V. Kobzeva, V.A. Brunchukov, A.S. Samoilov
A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
Contact person: Usupzhanova Daria Yurievna: This email address is being protected from spambots. You need JavaScript enabled to view it.
Annotation
Throughout life a person is inevitably exposed to low doses of ionizing radiation (LDIR) both background radiation and as part of medical treatment and diagnostics, during professional activities, air travel etc. Today the effects of LDIR and the risks of long-term consequences of this impact are increasingly attracting the researchers attention. On the one hand, scientists point to the development of negative consequences, in particular, the accumulation of double-stranded breaks DNA, on the other hand, some studies demonstrating the development of such events as hormesis and adaptive response. Based on this, there is an assumption that in the range of LDIR may exist a non-linear dependence of the effects on the radiation dose, i.e. the effect isn’t proportional to the received dose and that is consistent with the threshold-concept. Today many scientific papers are devoted to this area of research. Special attention is drawn to the effects LDIR on human mesenchymal stromal cells (MSCs) because they are the regenerative reserve of the body. Due to the them ability to self-sustain MSCs can stay in the body for a long time and undergo several rounds of irradiation, accumulating the changes in themselves and passing ones to the next generations of cells since they have the potential to the differentiation. Thus, changes that have occurred in the MSCs affect the human body as a whole. Based on all of the above, it can be concluded that the study of the effects of LDIR on mesenchymal stromal cells of human is actual area of research currently.
Keywords: adaptive response, bystander effect, genomic instability, mesenchymal stromal cells, radiosensitivity, effects of low radiation doses, radiation hormesis
For citation: Usupzhanova DYu, Astrelina TA, Kobzeva IV, Brunchukov VA, Samoilov AS. Human Mesenchymal Stromal Cells: Characteristics, Radiosensitivity and Effects of Low-Dose Radiation. Medical Radiology and Radiation Safety. 2022;67(1):103-110.
DOI: 10.12737/1024-6177-2022-67-1-103-110
References
1. Squillaro T, Galano G, De Rosa R, Peluso G, Galderisi U. Concise Review: The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk. Stem Cells. 2018;36(8):1146-1153. doi:10.1002/stem.2836
2. Fazel R, Krumholz H, Wang Y. Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures. J Vasc Surg. 2009;50(6):1526-1527. doi:10.1016/j.jvs.2009.10.095
3. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332. doi:10.1016/j.icrp.2007.10.003
4. Thurairajah K, Broadhead M, Balogh Z. Trauma and Stem Cells: Biology and Potential Therapeutic Implications. Int J Mol Sci. 2017;18(3):577. doi:10.3390/ijms18030577
5. Ullah I, Subbarao R, Rho G. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2). doi:10.1042/bsr20150025
6. Aggarwal R, Lu J, J. Pompili V, Das H. Hematopoietic Stem Cells: Transcriptional Regulation, Ex Vivo Expansion and Clinical Application. Curr Mol Med. 2012;12(1):34-49. doi:10.2174/156652412798376125
7. Wang Q, Sun B, Wang D et al. Murine Bone Marrow Mesenchymal Stem Cells Cause Mature Dendritic Cells to Promote T-Cell Tolerance. Scand J Immunol. 2008;68(6):607-615. doi:10.1111/j.1365-3083.2008.02180.x
8. Spaggiari G, Capobianco A, Abdelrazik H, Becchetti F, Mingari M, Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327-1333. doi:10.1182/blood-2007-02-074997
9. Stagg J. Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens. 2007;69(1):1-9. doi:10.1111/j.1399-0039.2006.00739.x
10. Chen L, Tredget E, Wu P, Wu Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS One. 2008;3(4):e1886. doi:10.1371/journal.pone.0001886
11. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. doi:10.1080/14653240600855905
12. Gronthos S, Franklin D, Leddy H, Robey P, Storms R, Gimble J. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54-63. doi:10.1002/jcp.1138
13. Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393-403. doi:10.1111/j.1365-2184.1970.tb00347.x
14. Bonab M, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7(1):14. doi:10.1186/1471-2121-7-14
15. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69(1):5331–5339 doi: 10.1158/0008-5472.CAN-08-4630.
16. Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium. Cell Tissue Bank. 2014; 15(1):513–521 doi: 10.1007/s10561-014-9420-6.
17. Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation- induced DNA damage: relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.). 2013;25(1):578–585. doi: 10.1016/j.clon.2013.06.007.
18. Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of non- homologous end joining and homologous recombination in human cells. DNA Repair (Amst.). 2008;7(1):1765–1771. doi: 10.1016/j.dnarep.2008.06.018.
19. Solokov M., Neumman R. Human embryonic stem cell responses to ionizing radiation exposures: current state of knowledge and future challenges. Stem Cells Int. 2012;2012:579104 doi: 10.1155/2012/579104.
20. Prise KM, Saran A. Concise review: stem cell effects in radiation risk. Stem Cells. 2011;29(1):1315–1321. doi: 10.1002/stem.690.
21. Delacote F, Lopez BS. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle. 2008;7(1):33–38. doi: 10.4161/cc.7.1.5149.
22. Islam MS, Stemig ME., Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J. Radiat. Res. 2015;56(1):269–277. doi: 10.1093/jrr/rru098.
23. Nicolay N et al. Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 2015;6(1):2076–2087. doi: 10.18632/oncotarget.2857.
24. Oliver L et al. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells. 2013;31(1):800–807. doi: 10.1002/stem.1336.
25. Tsvetkova A et al. γH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget. 2017;8(1):64317–64329. doi: 10.18632/oncotarget.19203.
26. Wu P et al. Early passage mesenchymal stem cells display decreased radiosensitivity and increased DNA repair activity. Stem Cells Transl. Med. 2017;6(1):1504–1514. doi: 10.1002/sctm.15-0394. PMID: 28544661.
27. Aypar U, Morgan W, Baulch J. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiat. Biol. 2011;87(1):179–191. doi: 10.3109/09553002.2010.522686.
28. Meyer B et al. Histone H3 lysine 9 acetylation obstructs ATM activation and promotes ionizing radiation sensitivity in normal stem cells. Stem Cell Rep. 2016;7(1):1013–1022. doi: 10.1016/j.stemcr.2016.11.004.
29. Armstrong C et al. DNMTs are required for delayed genome instability caused by radiation. Epigenetics. 2012;7(1):892–902. doi: 10.4161/epi.21094.
30. Tang F, Loke W. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol. 2015;91(1):13-27. doi: 10.3109/09553002.201 4.937510.
31. Liu S. On radiation hormesis expressed in the immune system. Critical Reviews in Toxicology. 2003;33(1):431-441. doi: 10.1080/713611045.
32. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, Cai L, Li W. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. Journal of Radiation Research. 2011;52(1):380-386. doi: 10.1269/jrr.10121.
33. Truong K, Bradley S, Baginski B, Wilson J, Medlin D, Zheng L, Wilson R, Rusin M, Takacs E, Dean D. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PLoS One. 2018;13(1):e0190330. doi: 10.1371/journal.pone.0190330
34. Bernal A, Dolinoy D, Huang D, Skaar D, Weinhouse C, Jirtle R. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. Journal of the Federation of American Societies for Experimental Biology. 2013;27(1):665-671. doi: 10.1096/fj.12-220350.
35. Grdina D, Murley J, Miller R, Mauceri H, Sutton H, Thirman M, Li J, Woloschak G, Weichselbaum R. A Manganese Superoxide Dismutase (SOD2)-Mediated Adaptive Response. Radiation Research. 2013;179(1):115-124. doi: 10.1667/RR3126.2.
36. Takahashi A, Ohnishi K, Asakawa I, Kondo N, Nakagawa H, Yonezawa M, Tachibana A, Matsumoto H, Ohnishi T. Radiation response of apoptosis in C57BL/6N mouse spleen after whole-body irradiation. International Journal of Radiation Biology. 2001;77(1): 939-945. doi: 10.1080/09553000110062873.
37. Morgan W, Day J, Kaplan M, McGhee E, Limoli C. Genomic instability induced by ionizing radiation. Radiation Research.1996;146(1):247-258.
38. Pampfer S, Streffer C. Increased chromosome aberration levels in cells from mouse fetuses after zygote X-irradiation. Radiation Biology.1989;55(1):85–92. doi: 10.1080/09553008914550091.
39. Smith L, Nagar S, Kim G, Morgan W. Radiation-induced genomic instability: radiation quality and dose response. Health Physics. 2003;85(1):23-29. doi: 10.1097/00004032-200307000-00006.
40. McIlrath J, Lorimore S, Coates P, Wright E. Radiation induced genomic instability in immortalized haemopoietic stem cells. International Journal of Radiation Biology.2003;79(1):27–34.
41. El-Osta, A. The rise and fall of genomic methylation in cancer. Leukemia. 2004;18(1):233–237 doi: 10.1038/sj.leu.2403218.
42. Matsumoto H, Hamada N, Takahashi A, Kobayashi Y, Ohnishi T. Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses. Journal of Radiation Research. 2007;48(1):97–106. doi: 10.1269/jrr.06090.
43. Klokov D, Criswell T, Leskov K, Araki S, Mayo L, Boothman D. IR- inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutation Research. 2004;568(1):97-110. doi: 10.1016/j.mrfmmm.2004.06.049.
44. Moore S, Marsden S, Macdonald D, Mitchell S, Folkard M, Michael B, Goodhead D, Prise K, Kadhim M. Genomic instability in human lymphocytes irradiated with individual charged particles: involvement of tumor necrosis factor alpha in irradiated cells but not bystander cells. Radiation Research. 2005;163(1):183-190. doi: 10.1667/rr3298.
45. Marchese M, Hall E. Encapsulated iodine-125 in radiation oncology. II. Study of the dose rate effect on potentially lethal damage repair (PLDR) using mammalian cell cultures in plateau phase. American Journal of Clinical Oncology.1984;7(1):613-616.
46. Boreham D, Mitchel R. DNA lesions that signal the induction of radioresistance and DNA repair in yeast. Radiation Research. 1991;128(1):19-28.
47. Piccinini A, Midwood K. DAMPening inflammation by modulating TLR signalling. Mediator inflamm. 2010;2010: 672395 doi: 10.1155/2010/672395.
48. Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ. Mol. Mutagen. 2009;50(2):105-113. doi: 10.1002/em.20440.
49. Yahyapour R, Amini P, Rezapoor S, Rezaeyan A, Farhood B, Cheki M, Fallah H, Najafi M. Targeting of Inflammation for Radiation Protection and Mitigation. Curr. Mol. Pharmacol. 2018;11(3):203-210. doi: 10.2174/1874467210666171108165641.
50. Zhang J, Liu J, Ren J, Sun T, Mitochondrial DNA induces inflammation and increases TLR9/NF-B expression in lung tissue. Int J Mol Med. 2014;33(4):817-824. doi: 10.3892/ijmm.2014.1650.
51. Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Najafi M, Villa V. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Curr Radiopharm. 2018;11(1):34-45. doi: 10.2174/1874471011666171229123130.
52. Kumar Jella K, Rani S, O'Driscoll L, McClean B, Byrne H, Lyng F. Exosomes are involved in mediating radiation induced by- stander signaling in human keratinocyte cells. Radiat. Res. 2014;181(2):138-145. doi: 10.1667/RR13337.1.
53. Xu S, Wang, J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA. Biol. 2015;12(12):1355-1363. doi: 10.1080/15476286.2015.1100795.
54. Ma Y, Zhang L, Rong S, Qu H, Zhang Y, Chang D, Pan H, Wang W. Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxid. Med. Cell Lon-gev. 2013;2013:543760. doi: 10.1155/2013/543760.
55. Chaudhry M. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 2009;24(1):49-56. doi: 10.1089/cbr.2008.0513.
56. Findik D, Song Q, Hidaka H, Lavin M. Protein kinase A inhibitors enhance radiation induced apoptosis. J. Cellular Bio-chem. 1995;57(1):12-21. doi: 10.1002/jcb.240570103.
57. Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, Li W, Shao C. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with gamma-rays or carbon ions. Life Sci. 2015;127(1):19-25. doi: 10.1016/j.lfs.2015.02.017.
58. Moon K, Stukenborg G, Keim J, Theodorescu D. Cancer incidence after localized therapy for prostate cancer. Cancer. 2006;107(5):991-998. doi: 10.1002/cncr.22083.
59. Marozik P, Mothersill C, Seymour C.B, Mosse I, Melnov S. Bystander effects induced by serum from survivors of the Chernobyl accident. Exp. Hematol., 2007;35(4):55-63. doi: 10.1016/j.exphem.2007.01.029.
60. Halimi M, Parsian H, Asghari S, Sariri R, Moslemi D, Yeganeh F, Zabihi E. Clinical translation of human microRNA-21 as a potential biomarker for exposure to ionizing radiation. Transl. Res. 2014;163(6):578-584. doi: 10.1016/j.trsl.2014.01.009.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution: Article was prepared with equal participation of the authors
Article received: 04.05.2021.
Accepted for publication: 15.10.2021