JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

A.V. Ozerskaya1, 2, S.Y. Lipaikin2, K.V. Belugin2,
N.A. Tokarev2, N.G. Chanchikova2, M.S. Larkina3, 4,
E.V. Podrezova3, M.V. Belousov3, 4, M.S. Yusubov1, 3, 4

Radiofluorination Methods: Historical Overview and Current State

1Tomsk Polytechnic University, Tomsk, Russia

2Siberian Research Clinical center, Krasnoyarsk, Russia

3Research Centrum for Oncotheranostics, Tomsk Polytechnic University, Tomsk, Russia

4Siberian State Medical University, Tomsk, Russia

Contact person: A.V. Ozerskaya, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

CONTENTS

1. Introduction

2. Radiofluorination methods for obtaining fluorine-18 radiopharmaceuticals

3. Electrophilic radiofluorination

4. Nucleophilic radiofluorination

5. Alternative radiofluorination methods

6. Conclusion

7. References

Keywords: radiopharmaceuticals, radiofluorination, fluorine-18, electrophilic reactions, nucleophilic reactions, chelation

For citation: Ozerskaya AV, Belugin KV, Lipaikin SY, Tokarev NA, Chanchikova NG, Larkina MS, Podrezova EV, Belousov MV, Yusubov MS. Radiofluorination Methods: Historical Overview and Current State. Medical Radiology and Radiation Safety. 2022;67(3):59–66. (In Russian). DOI:10.33266/1024-6177-2022-67-3-59-66

References

1. Theodoropoulos A.S., Gkiozos I., Kontopyrgias G., Charpidou A., Kotteas E., Kyrgias G., et al. Modern Radiopharmaceuticals for Lung Cancer Imaging with Positron Emission Tomography/Computed Tomography Scan: A Systematic Review. SAGE Open Med. 2020;8.

2. Mattos D.M., Gomes M.L., Freitas R.S., Moreno S., Lima-Filho G.L., Paula E.F., et al. Which Are the most Used Radionuclides in the Pet and in the Spect Techniques in the World? J. Label Compd Radiopharm. 2012;44;S1:S841-843.

3. Giammarile F., Castellucci P., Dierckx R., Lobato E.E., Farsad M., Hustinx R., et al. Non-FDG PET/CT in Diagnostic Oncology: a Pictorial Review. European J. Hybrid Imaging. 2019;3;20.

4. Vallabhajosula S. (18)F-Labeled Positron Emission Tomographic Radiopharmaceuticals in Oncology: an Overview of Radiochemistry and Mechanisms of Tumor Localization. Semin Nucl Med. 2007;37;6:400-419.

5. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zeltchan R.V., Bragina O.D. Development of Radiopharmaceuticals for Radionuclide Diagnostics in Oncology. Meditsinskaya vizualizatsiya = Medical Visualization. 2016;2:63-66. (In Russ.). [Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии // Медицинская визуализация. 2016. № 2. С. 63-66].

6. Coenen H.H. Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions. Ernst Schering Res Found Workshop. 2007;62:15-50.

7. Krzyczmonik A., Keller T., Kirjavainen A.K., Lahdenpohja S. Use of SF6 for the Production of Electrophilic 18f-Fluorination Reagents. J. Fluor Chem. 2017;204:90-97.

8. Blessing G., Coenen H.H., Franken K., Qaim S.M. Production of [18F]F2, H18F and 18Faq− Using the 20Ne(d, α)18F Process. Int. J. Radiat Appl Instrum Appl Radiat Isot. 1986;37;11:1135-1139.

9. Forsback S., Solin O. Post-Target Produced [18F]F2 in the Production of PET Radiopharmaceuticals. Radiochim Acta. 2014;103;3:219-226.

10. Bergman J., Solin O. Fluorine-18-Labeled Fluorine Gas for Synthesis of Tracer Molecules. Nucl Med. Biol. 1997;24;7:677-683.

11. Ido T., Wan C.N., Casella V., Fowler J.S., Wolf A.P., Reivich M., et al. Labeled 2-Deoxy-D-Glucose Analogs. 18F-Labeled 2-Deoxy-2-Fluoro-D-Glucose, 2-Deoxy-2-Fluoro-D-Mannose and 14C-2-Deoxy-2-Fluoro-D-Glucose. J. Label Compd Radiopharm. 1978;14:175-183.

12. Luxen A., Perlmutter M., Bida G.T., Van Moffaert G., Cook J.S., Satyamurthy N., et al. Remote, Semiautomated Production of 6-[18F]Fluoro-L-Dopa for Human Studies with PET. Int. J. Rad. Appl. Instrum A. 1990;41;3:275-281.

13. Beuthien-Baumann B., Bredow J., Burchert W., Fuchtner F., Bergmann R., Alheit H.D., et al. 3-O-Methyl-6-[18F]Fluoro-L-DOPA and Its Evaluation in Brain Tumour Imaging. Eur. J. Nucl. Med. Mol. Imaging. 2003;30;7:1004-1008.

14. Füchtner F., Steinbach J. Efficient Synthesis of the 18F-labelled 3-O-methyl-6-[18F]Fluoro-L-DOPA. Appl Radiat Isot. 2003;58;5:575-578.

15. Nurmi E., Ruottinen H.M., Kaasinen V., Bergman J., Haaparanta M., Solin O., et al. Progression in Parkinson’s Disease: a Positron Emission Tomography Study with a Dopamine Transporter Ligand [18F]CFT. Ann. Neurol. 2000;47;6:804-806.

16. Laakso A., Bergman J., Haaparanta M., Vilkman H., Solin O., Syvälahti E., et al. Decreased Striatal Dopamine Transporter Binding in Vivo in Chronic Schizophrenia. Schizophr Res. 2001;52;1-2:115-120.

17. Lerman O., Tor Y., Rozen S. Acetyl Hypofluorite as a Taming Carrier of Elemental Fluorine for Novel Electrophilic Fluorination of Activated Aromatic Rings. J. Org. Chem. 1981;46;22:4629-4631.

18. Shiue C.Y., Salvadori P.A., Wolf A.P., Fowler J.S., MacGregor R.R. A New Improved Synthesis of 2-Deoxy-2-[18F]Fluoro-d-Glucose from 18F-Labeled Acetyl Hypofluorite. J. Nucl. Med. 1982;23;10:899-903.

19. Jewett D.M., Potoki J.F., Ehrenkaufer R.E. A Gassolid-Phase Microchemical Method for the Synthesis of Acetyl Hypofluorite. J. Fluorine Chem. 1984;24:477-484.

20. Bida G.T., Satyamurthy N., Barrio J.R. The Synthesis of 2-[F-18]Fluoro-2-Deoxy-D-Glucose Using Glycals: a Reexamination. J. Nucl. Med. 1984;25;12:1327-1334.

21. Oberdorfer F., Hofmann E., Maier-Borst W. Preparation of 18 F-Labelled N-Fluoropyridinium Triflate. J. Label Compd Radiopharm. 1988;25;9:999-1005.

22. Teare H., Robins E.G., Arstad E., Luthra S.K., Gouverneur V. Synthesis and Reactivity of [18F]-N-Fluorobenzenesulfonimide. Chem Commun (Camb). 2007;23:2330-2332.

23. Teare H., Robins E.G., Kirjavainen A.K., Forsback S., Sandford G., Solin O., et al. Radiosynthesis and Evaluation of [18F]Selectfluor Bis(Triflate). Angew Chem Int. Ed. Engl. 2010;49;38:6821-6824.

24. Satyamurthy N., Bida G.T., Phelps M.E., Barrio J.R. N-[18F]Fluoro-N-Alkylsulfonamides: Novel Reagents for Mild and Regioselective Radiofluorination. Int. J. Rad. Appl. Instrum A. 1990;41;8:733-738.

25. Keller T., Krzyczmonik A., Forsback S., Picon F.R.L., Kirjavainen A.K., Takkinen J., et al. Radiosynthesis and Preclinical Evaluation of [(18)F]F-DPA, A Novel Pyrazolo[1,5a]Pyrimidine Acetamide TSPO Radioligand, in Healthy Sprague Dawley Rats. Mol. Imaging Biol. 2017;19;5:736-745.

26. Liang T., Neumann C.N., Ritter T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew Chem Int. Ed. Engl. 2013;52;32:8214-8264.

27. Keller T., Lopez-Picon F.R., Krzyczmonik A., Forsback S., Kirjavainen A.K., Takkinen J.S., et al. [(18)F]F-DPA for the Detection of Activated Microglia in a Mouse Model of Alzheimer’s Disease. Nucl Med. Biol. 2018;67:1-9.

28. Orlovskaya V., Fedorova O., Nadporojskii M., Krasikova R. A Fully Automated Azeotropic Drying Free Synthesis of O-(2-[18F]Fluoroethyl)-L-Tyrosine ([18F]FET) Using Tetrabutylammonium Tosylate. Appl. Radiat. Isot. 2019;152:135-139.

29. Yu S. Review of F-FDG Synthesis and Quality Control. Biomed Imaging Interv J. 2006;2;4:e57.

30. Yusubov M.S., Larkina M.S., Drygunova L.A. The Use of Polyvalent Iodine Compouds in the Production of [18F]Fluorine-Containing Tracers for Positron Emission Tomography. Vestnik Nauki Sibiri = Siberian Journal of Science. 2011;1;1:648-655 (In Russ.). [Юсубов М.С., Ларькина М.С., Дрыгунова Л.А. Использование соединений поливалентного иода в получении [18F]фторсодержащих трейсеров для позитронной эмиссионной томографии // Вестник науки Сибири. 2011. Т.1, № 1. С. 648-655].

31. Mu L., Fischer C., Holland J., Becaud J., Schubiger P.A., Schibli R., et al. 18F-Radiolabeling of Aromatic Compounds Using Triarylsulfonium Salts. Eur. J. Org. Chem. 2012;2012;5:889-892.

32. Rotstein B.H., Stephenson N.A., Vasdev N., Liang S.H. Spirocyclic Hypervalent Iodine(III)-Mediated Radiofluorination Of Non-Activated and Hindered Aromatics. Nat. Commun. 2014;5:4365.

33. Preshlock S., Calderwood S., Verhoog S., Tredwell M., Huiban M., Hienzsch A., et al. Enhanced Copper-Mediated (18)F-Fluorination of Aryl Boronic Esters Provides Eight Radiotracers for PET Applications. Chem Commun (Camb). 2016;52;54:8361-8364.

34. Gamache R.F., Waldmann C., Murphy J.M. Copper-Mediated Oxidative Fluorination of Aryl Stannanes with Fluoride. Org. Lett. 2016;18;18:4522-4525.

35. Fowler J.S., Ido T. Initial and Subsequent Approach for the Synthesis of 18FDG. Semin Nucl Med. 2002;32;1:6-12.

36. Peck M., Pollack H.A., Friesen A., Muzi M., Shoner S.C., Shankland E.G., et al. Applications of PET Imaging with the Proliferation Marker [18F]-FLT. Q J. Nucl. Med. Mol. Imaging. 2015;59;1:95-104.

37. Suehiro M., Vallabhajosula S., Goldsmith S.J., Ballon D.J. Investigation of the Role of the Base in the Synthesis of [18F]FLT. Appl. Radiat. Isot. 2007;65;12:1350-1358.

38. Kim D.W., Ahn D.S., Oh Y.H., Lee S., Kil H.S., Oh S.J., et al. A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules. J. Am. Chem. Soc. 2006;128;50:16394-16397.

39. Chaly T., Dhawan V., Kazumata K., Antonini A., Margouleff C., Dahl J.R., et al. Radiosynthesis of [18F] N-3-Fluoropropyl-2-Beta-Carbomethoxy-3-Beta-(4-Iodophenyl) Nortropane and the First Human Study with Positron Emission Tomography. Nucl. Med. Biol. 1996;23;8:999-1004.

40. Krasikova R.N. Robotic Synthesis of Radiopharmaceuticals for positron emission tomography. Radiokhimiya = Radiochemistry. 1998;40;1:352-360 (In Russ.). [Красикова Р.Н. Роботизированный синтез радиофармпрепаратов для позитронной эмиссионной томографии // Радиохимия. 1998. Т.40, № 1. С. 352-360].

41. Pauwelyn G., Vlerick L., Dockx R., Verhoeven J., Dobbeleir A., Bosmans T., et al. Kinetic Analysis of [(18)F] Altanserin Bolus Injection in the Canine Brain Using PET Imaging. BMC Vet. Res. 2019;15;1:415.

42. Lemaire C., Cantineau R., Guillaume M., Plenevaux A., Christiaens L. Fluorine-18-Altanserin: a Radioligand for the Study of Serotonin Receptors with PET: Radiolabeling and in Vivo Biologic Behavior in Rats. J. Nucl. Med. 1991;32;12:2266-2272.

43. Ding Y.S., Liang F., Fowler J.S., Kuhar M.J., Carroll F.I. Synthesis of [18F]Norchlorofluoroepibatidine and its N-Methyl Derivative: New PET Ligands for Mapping Nicotinic Acetylcholine Receptors. J. Label Compd Radiopharm. 1997;39;10:827-832.

44. Yusubov M.S., Yoshimura A., Zhdankin V.V. Iodonium Ylides in Organic Synthesis. Arkivoc. 2016;342-374.

45. Zhang M.R., Kumata K., Suzuki K. A Practical Route for Synthesizing a PET Ligand Containing [18F]Fluorobenzene Using Reaction of Diphenyliodonium Salt with [18F]F-. Tetrahedron Lett. 2007;48;49:8632-8635.

46. Hodolic M., Topakian R., Pichler R. (18)F-Fluorodeoxyglucose and (18)F-Flumazenil Positron Emission Tomography in Patients with Refractory Epilepsy. Radiol Oncol. 2016;50;3:247-253.

47. Moon B.S., Kil H.S., Park J.H., Kim J.S., Park J., Chi D.Y., et al. Facile Aromatic Radiofluorination of [18F]Flumazenil from Diaryliodonium Salts with Evaluation of their Stability and Selectivity. Org. Biomol Chem. 2011;9;24:8346-8355.

48. McBride W.J., Sharkey R.M., Karacay H., D’Souza C.A., Rossi E.A., Laverman P., et al. A Novel Method of 18F Radiolabeling for PET. J. Nucl. Med. 2009;50;6:991-998.

49. McBride W.J., D’Souza C.A., Sharkey R.M., Karacay H., Rossi E.A., Chang C.H., et al. Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex. Bioconjug Chem. 2010;21;7:1331-1340.

50. Fersing C., Bouhlel A., Cantelli C., Garrigue P., Lisowski V., Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [(18)F]Fluoride: Will [(18)F]AlF Replace (68)Ga for Metal Chelate Labeling? Molecules. 2019;24;16.

51. Alonso Martinez L.M., Harel F., Nguyen Q.T., Letourneau M., D’Oliviera-Sousa C., Meloche B., et al. Al[(18)F]F-Complexation of DFH17, a NOTA-Conjugated Adrenomedullin Analog, for PET Imaging of Pulmonary Circulation. Nucl. Med. Biol. 2018;67:36-42.

52. Wan W., Guo N., Pan D., Yu C., Weng Y., Luo S., et al. First Experience of 18F-Alfatide in Lung Cancer Patients Using a New Lyophilized Kit for Rapid Radiofluorination. J. Nucl. Med. 2013;54;5:691-698.

53. Lee E., Kamlet A.S., Powers D.C., Neumann C.N., Boursalian G.B., Furuya T., et al. A Fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science. 2011;334(6056):639-42.

54. Scroggie K.R., Perkins M.V., Chalker J.M. Reaction of [18F]Fluoride at Heteroatoms and Metals for Imaging of Peptides and Proteins by Positron Emission Tomography. Front Chem. 2021;9:472.

55. Vedejs E., Chapman R.W., Fields S.C., Lin S., Schrimpf M.R. Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids. J. Org. Chem. 1995;60;10:3020-3027.

56. Pourghiasian M., Liu Z., Pan J., Zhang Z., Colpo N., Lin K.S., et al. (18)F-AmBF3-MJ9: a Novel Radiofluorinated Bombesin Derivative for Prostate Cancer Imaging. Bioorg Med. Chem. 2015;23;7:1500-1506.

57. Lau J., Pan J., Rousseau E., Uribe C.F., Seelam S.R., Sutherland B.W., et al. Pharmacokinetics, Radiation Dosimetry, Acute Toxicity and Automated Synthesis of [(18)F]AmBF3-TATE. EJNMMI Res. 2020;10.1:25.

58. Ting R., Harwig C.W., Lo J., Li Y., Adam M.J., Ruth T.J., et al. Substituent Effects on Aryltrifluoroborate Solvolysis in Water: Implications for Suzuki-Miyaura Coupling and the Design of Stable (18)F-Labeled Aryltrifluoroborates for Use in PET Imaging. J. Org. Chem. 2008;73;12:4662-4670.

59. Marans N.S., Sommer F.C., Whitmore J. Preparation of Organofluorosilanes Using Aqueous Hydrofluoric Acid.
J. Am. Chem. Soc. 1951;73:5127-5130.

60. Mu L., Hohne A., Schubiger P.A., Ametamey S.M., Graham K., Cyr J.E., et al. Silicon-Based Building Blocks for One-Step 18F-Radiolabeling of Peptides for PET Imaging. Angew Chem Int. Ed. Engl. 2008;47;26:4922-4925.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study was funded by the Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1925).

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

P.D. Remizov

Novel Immuno-PET Medical Radionuclides

M.V. Lomonosov Moscow State University, Moscow, Russia

Contact person: P.D. Remizov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

CONTENTS

Introduction

Modern imaging targets and vectors

Immuno-PET

Radionuclides for immuno-PET

Immuno-PET with 89Zr

Production of positron-emitting nuclides for immuno-PET

Conclusion

Keywords: positron emission tomography, medical radionuclides, 124I, 89Zr, immuno-PET, monoclonal antibodies

For citation: Remizov PD. Novel Immuno-PET Medical Radionuclides. Medical Radiology and Radiation Safety. 2022;67(3):67–74.
(In Russian). DOI:10.33266/1024-6177-2022-67-3-67-74

References

1. Cherry S., Jones T., Karp J., Qi J., Moses W., Badawi R. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. Journal of Nuclear Medicine. 2017;59;1:3-12. doi:10.2967/jnumed.116.184028

2. Delbeke D., Segall G. Status of and Trends in Nuclear Medicine in the United States. Journal of Nuclear Medicine. 2011;52;Suppl.2:24S-28S. doi:10.2967/jnumed.110.085688. 

3. Human Health Campus – Database & Statistics. Humanhealth.iaea.org. https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINEMaps.html. Published 2021. Accessed July 13, 2021.

4. Lee S., Burvenich I., Scott A. Novel Target Selection for Nuclear Medicine Studies. Semin Nucl. Med. 2019;49;5:357-368. doi:10.1053/j.semnuclmed.2019.06.004.

5. Lee S., Xie J., Chen X. Peptides and Peptide Hormones for Molecular Imaging and Disease Diagnosis. Chem Rev. 2010;110;5:3087-3111. doi:10.1021/cr900361p.

6. Van Dongen G., Visser G., Lub‐de Hooge M., de Vries E., Perk L. Immuno‐PET: A Navigator in Monoclonal Antibody Development and Applications. Oncologist. 2007;12;12:1379-1389. doi:10.1634/theoncologist.12-12-1379.

7. Köhler G., Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature. 1975;256;5517:495-497. doi:10.1038/256495a0.

8. Teillaud J. Engineering of Monoclonal Antibodies and Antibody-Based Fusion Proteins: Successes and Challenges. Expert Opin. Biol. Ther. 2005;5;sup1:S15-S27. doi:10.1517/14712598.5.1.s15.

9. Reddy S., Robinson M. ImmunoPET in Cancer Models. Semin. Nucl. Med. 2010;40;3:182–189. doi:10.1053/j.semnuclmed.2009.12.004.

10. Adams G., Schier R., McCall A., Simmons H., Horak E., Alpaugh R., et al. High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer Res. 2001;61;12:4750-4755.

11. Adams G., Tai M., McCartney J., Marks J., Stafford W., Houstonet L., et al. Avidity-Mediated Enhancement of in Vivo Tumor Targeting by Single-Chain Fv Dimers. Clin. Cancer Res. 2006;12;5:1599–1605. DOI: 10.1158/1078-0432.CCR-05-2217.

12. Williams L., Wu A., Yazaki P., Raubitschek A., Shively J., Wong J. Numerical Selection of Optimal Tumor Imaging Agents with Application to Engineered Antibodies. Cancer Biother Radiopharm. 2001;16;1:25–35. doi: 10.1089/108497801750095989.

13. McKnight B., Viola-Villegas N. 89Zr-ImmunoPET Companion Diagnostics and Their Impact in Clinical Drug Development. Journal of Labelled Compounds and Radiopharmaceuticals. 2018;61;9:727-738. doi:10.1002/jlcr.3605.

14. Chernyaev A., Borshchegovskaya P., Nikolaeva A., Varzar’ S., Samosadnyi V., Krusanov G. Radiation Technology in Medicine: Part 2. Using Isotopes in Nuclear Medicine. Moscow University Physics Bulletin. 2016;71;4:339-348. doi:10.3103/s0027134916040044.

15. Kraeber-Bodéré F., Rousseau C., Bodet-Milin C., Mathieu C., Guérard F., Frampas E., et al. Tumor Immunotargeting Using Innovative Radionuclides. Int. J. Mol. Sci. 2015;16;2:3932-3954. doi:10.3390/ijms16023932.

16. Boswell C., Brechbiel M.. Development of Radioimmunotherapeutic and Diagnostic Antibodies: an Inside-Out View. Nucl. Med. Biol. 2007;34;7:757-778. doi:10.1016/j.nucmedbio.2007.04.001.

17. Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58;10:1553-1559. doi:10.2967/jnumed.117.189944.

18. Stéen E.J.L., Edem P.E., Nørregaard K., Jørgensen J., Shalgunov V., Kjaer A., et al. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials. 2018;179:209-245. doi:10.1016/j.biomaterials.2018.06.021.

19. Wu A.M., Yazaki P.J., Tsai Sw., Nguyen K., Anderson A., McCarthy D., et al. High-Resolution MicroPET Imaging of Carcinoembryonic Antigen-Positive Xenografts by Using a Copper-64-Labeled Engineered Antibody Fragment. Proc. Natl. Acad. Sci USA. 2000;97;15:8495-8500. doi:10.1073/pnas.150228297.

20. Nayak T., Brechbiel M. 86Y Based PET Radiopharmaceuticals: Radiochemistry and Biological Applications. Med. Chem. 2011;7;5:380-388. doi:10.2174/157340611796799249.

21. Vandenberghe S. Three-Dimensional Positron Emission Tomography Imaging with 124I and 86Y. Nucl. Med. Commun. 2006;27;3:237-245. doi:10.1097/01.mnm.0000199476.46525.2c.

22. Pentlow K. Quantitative Imaging of Yttrium-86 with PET The Occurrence and Correction of Anomalous Apparent Activity in High Density Regions. Clinical Positron Imaging. 2000;3;3:85-90. doi:10.1016/s1095-0397(00)00046-7.

23. Fraker P., Speck J.Jr. Protein and Cell Membrane Iodinations with a Sparingly Soluble Chloroamide, 1,3,4,6-Tetrachloro-3a,6a-Diphrenylglycoluril. Biochem Biophys Res. Commun. 1978;80;4:849-857. doi:10.1016/0006-291x(78)91322-0.

24. Cyclotron Produced Radionuclides: Emerging Positron Emitters For Medical Applications: 64Cu And 124I. Radioisotopes and Radiopharmaceuticals Reports No. 1. Vienna, International Atomic Energy Agency, 2016.

25. Abou D., Ku T., Smith-Jones P. In Vivo Biodistribution and Accumulation of 89Zr in Mice. Nucl. Med. Biol. 2011;38;5:675-681. doi:10.1016/j.nucmedbio.2010.12.011.

26. Heskamp S., Raavé R., Boerman O., Rijpkema M., Goncalves V., Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem. 2017;28;9:2211-2223. doi:10.1021/acs.bioconjchem.7b00325.

27. Chomet M., van Dongen GAMS, Vugts D.J. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem. 2021;32;7:1315-1330. doi:10.1021/acs.bioconjchem.1c00136.

28. Cascini G., Niccoli Asabella A., Notaristefano A., Restuccia A., Ferrari C., Rubini D., et al. 124 Iodine: a Longer-Life Positron Emitter Isotope-New Opportunities in Molecular Imaging. Biomed Res. Int. 2014;2014:672094. doi:10.1155/2014/672094.

29. Bensch F., Brouwers A., Lub-de Hooge M., de Jong J., van der Vegt B., Sleijfer S., et al. 89Zr-Trastuzumab PET Supports Clinical Decision Making in Breast Cancer Patients, when HER2 Status Cannot be Determined by Standard Work Up. Eur. J. Nucl. Med. Mol. Imaging. 2018;45;13:2300-2306. doi:10.1007/s00259-018-4099-8.

30. Dehdashti F., Wu N., Bose R., Naughton M., Ma C., Marquez-Nostra B., et al. Evaluation of [89Zr]trastuzumab-PET/CT in Differentiating HER2-Positive from HER2-Negative Breast Cancer. Breast Cancer Res. Treat. 2018;169;3:523-530. doi:10.1007/s10549-018-4696-z.

31. Dijkers E., Kosterink J., Rademaker A., Perk L., van Dongen G., Bart J., de Jong J., et al. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging. J. Nucl. Med. 2009;50;6:974-981. doi:10.2967/jnumed.108.060392.

32. Gaykema S., Brouwers A., Lub-de Hooge M., Pleijhuis R., Timmer-Bosscha H., Pot L., et al. 89Zr-Bevacizumab PET Imaging in Primary Breast Cancer. J. Nucl. Med. 2013;54;7:1014-1018. doi:10.2967/jnumed.112.117218.

33. Ulaner G., Lyashchenko S., Riedl C., Ruan S., Zanzonico P., Lake D., et al. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. J. Nucl. Med. 2018;59;6:900-906. doi:10.2967/jnumed.117.202010.

34. O’Donoghue J., Lewis J., Pandit-Taskar N., Fleming S., Schöder H., Larson S., et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer. J, Nucl, Med. 2018;59;1:161-166. doi:10.2967/jnumed.117.194555.

35. Pandit-Taskar N., O’Donoghue J., Beylergil V., Lyashchenko S., Ruan S., Solomonet S., et al. ⁸⁹Zr-huJ591 Immuno-PET Imaging in Patients with Advanced Metastatic Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;11:2093-2105. doi:10.1007/s00259-014-2830-7.

36. McCarthy W., Shefer R., Klinkowstein R., Bass L., Margeneau W., Cutler C., et al. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997;24;1:35-43. doi:10.1016/s0969-8051(96)00157-6.

37. Retracted: The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu [retraction of: Biomed Res Int. 2014;2014:786463]. BioMed Res. Int. 2018;2018:3860745. doi:10.1155/2018/3860745.

38. Ikotun O., Lapi S. The Rise of Metal Radionuclides in Medical Imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem. 2011;3;5:599-621. doi:10.4155/fmc.11.14.

39. Alves F., Alves V., Do Carmo S., Neves A., Silva M., Abrunhosa A. Production of Copper-64 and Gallium-68 with a Medical Cyclotron Using Liquid Targets. Mod. Phys. Lett A. 2017;32;17:1740013. doi:10.1142/s0217732317400132.

40. Rajec P., Csiba V., Leporis M., Štefečka M., Pataky E., Reich M., et al. Preparation and Characterization of Nickel Targets for Cyclotron Production of 64Cu. J. Radioanal Nucl. Chem. 2010;286;3:665-670. doi:10.1007/s10967-010-0736-9.

41. Reischl G., Rösch F., Machulla H. Electrochemical Separation and Purification of Yttrium-86. Radiochimica Acta. 2002;90;4:225-228. doi:10.1524/ract.2002.90.4_2002.225.

42. Yoo J., Tang L., Perkins T., Rowland D., Laforest R., Lewis J., et al. Preparation of High Specific Activity 86Y Using A Small Biomedical Cyclotron. Nucl. Med. Biol. 2005;32;8:891-897. doi:10.1016/j.nucmedbio.2005.06.007.

43. Avila-Rodriguez M., Nye J., Nickles R. Production and Separation of Non-Carrier-Added 86Y from Enriched 86Sr Targets. Appl. Radiat. Isot. 2008;66;1:9-13. doi:10.1016/j.apradiso.2007.07.027.

44. Koehler L., Gagnon K., McQuarrie S., Wuest F. Iodine-124: a Promising Positron Emitter for Organic PET Chemistry. Molecules. 2010;15;4:2686-2718. doi:10.3390/molecules15042686.

45. Synowiecki M., Perk L., Nijsen J. Production of Novel Diagnostic Radionuclides in Small Medical Cyclotrons. EJNMMI Radiopharm Chem. 2018;3;1:3. doi:10.1186/s41181-018-0038-z.

46. Wang F., Liu T., Li L., Guo X., Duan D., Liu Z., et al. Production, Quality Control of Next-Generation PET Radioisotope Iodine-124 and Its Thyroid Imaging. J. Radioanal Nucl. Chem. 2018;318;3:1999-2006. doi:10.1007/s10967-018-6277-3.

47. Soppera N., Dupont E., Flemming M. JANIS Book of Deuteron Induced Cross Sections: Comparison of Evaluated and Experimental Data from ENDF/B-VIII.0, TENDL-2019 and EXFOR. 2020.

48. Dabkowski A., Paisey S., Talboys M., Marshall C. Optimization of Cyclotron Production for Radiometal of Zirconium 89. Acta. Physica Polonica A. 2015;127;5:1479-1482. doi:10.12693/aphyspola.127.1479.

49. Verel I., Visser G., Boellaard R., Stigter-van W., Snow G., van Dongen G. 89Zr Immuno-PET: Comprehensive Procedures for the Production of 89Zr-Labeled Monoclonal Antibodies. J. Nucl. Med. 2003;44;8:1271-1281.

50. Siikanen J., Tran T., Olsson T., Strand S., Sandell A. A Solid Target System with Remote Handling of Irradiated Targets for PET Cyclotrons. Appl. Radiat. Isot. 2014;94:294-301. doi:10.1016/j.apradiso.2014.09.001.

51. Ellison P., Valdovinos H., Graves S., Barnhart T., Nickles R. Spot-Welding Solid Targets for High Current Cyclotron Irradiation. Appl. Radiat. Isot. 2016;118:350-353. doi:10.1016/j.apradiso.2016.10.010.

52. Pandey M., Bansal A., Engelbrecht H., Byrne J., Packard A., DeGrado T. Improved Production and Processing of 89Zr Using a Solution Target. Nucl. Med. Biol. 2016;43;1:97-100. doi:10.1016/j.nucmedbio.2015.09.007.

53. DeGrado T., Pandey M., Byrne J. Solution Target for Cyclotron Production of Radiometals. Google Patents. 2017.

54. Oehlke E., Hoehr C., Hou X., Hanemaayer V., Zeisler S., Adam M., et al. Production of Y-86 and Other Radiometals for Research Purposes Using a Solution Target System. Nucl. Med. Biol. 2015;42;11:842-849. doi:10.1016/j.nucmedbio.2015.06.005.

55. Zheltonozhsky V., Zheltonozhskaya M., Savrasov A., Belyshev S., Chernyaev A., Yatsenko V. Studying the Activation of 177Lu in (γ, рxn) Reactions. Bulletin of the Russian Academy of Sciences: Physics. 2020;84:923-928. doi:10.3103/s1062873820080328.

56. Hovhannisyan G., Bakhshiyan T., Dallakyan R. Photonuclear Production of the Medical Isotope 67Cu. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2021;498:48-51. doi:10.1016/j.nimb.2021.04.016.

57. Belousov A.I., Zheltonozhskaya M.V., Lykova Ye.N., Rem-
izov P.D., CHernyayev A.P., Yatsenko V.N. Research of 131Cs Radionuclide Production for Brachytherapy with Photonuclear Method. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2019;64;
1:53-57. doi:10.12737/article_5c55fb4d218e20.76419134.
(In Russ.). [Белоусов А.И., Желтоножская М.В., Лыкова Е.Н., Ремизов П.Д., Черняев А.П., Яценко В.Н. Исследование возможности получения радионуклида 131Cs для брахитерапии фотоядерным способом // Медицинская радиология и радиационная безопасность. 2019. Т.64, № 1. С. 53-57].

58. Loveless C., Radford L., Ferran S., Queern S., Shepherd M., Lapi S. Photonuclear Production, Chemistry, and in Vitro Evaluation of the Theranostic Radionuclide 47Sc. EJNMMI Res. 2019;9;42. doi:10.1186/s13550-019-0515-8.

59. Chernyaev A., Kolyvanova M., Borshchegovskaya P. Radiation Technology in Medicine: Part 1. Medical Accelerators. Moscow University Physics Bulletin. 2015;70;6:457-465. doi:10.3103/s0027134915060090.

60. Zheltonozhskaya M., Zheltonozhsky V., Lykova E., Chernyaev A., Iatsenko V. Production of Zirconium-89 by Photonuclear Reactions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;470:38-41. doi:10.1016/j.nimb.2020.03.002.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The reported study was funded by RFBR, project number 20-315-90124. This research has been supported by the Moscow State University Interdisciplinary Scientific and Educational School “Photonic and Quantum technologies. Digital medicine”.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

V.A. Klimanov1,2, M.A. Kolyvanova2, A.N. Moiseev3

Spatial Distributions of the Dose Created Phantom Pencil Beam of Mono-Energy
and Bremsstrahlung Photons in a Water with Energies from 0.25 to 20 MeV

1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2National Research Nuclear University MEPhI, Moscow, Russia

3 LLC “Medskan”

Contact person: Vladimir Aleksandrovich Klimanov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: Critical analysis of existing and obtaining more accurate data on the spatial dose distributions created in the water phantom by pencil beams (PB) of monoenergetic and bremsstrahlung photons with energies from 0.25 to 20.0 MeV, and approximation of these distributions for the purpose of calculating doses in radiation therapy. 

Material and Methods: Using the Monte Carlo method, the EGSnrc program and the MATLAB mathematical package, these distributions were calculated for monoenergetic photons in the energy range from 0.25 to 19.75 MeV in increments of 0.5 MeV, for bremsstrahlung photons with a maximum energy of 4.0, 6.0, 10.0, 15.0, 18.0 MeV and for the gamma-radiation spectrum of the therapeutic apparatus ROCUS. The calculation results are converted into the so-called dose kernel of photon pencil beam. The obtained dose kernel values are compared with previously published data and the observed discrepancies are discussed. Depths in water were studied from 1.0 to 40 cm in increments of 0,5 cm and along the radius from 0.02 to 46.0 cm with an uneven grid. For bremsstrahlung and photons with the spectrum of the Rocus apparatus, the possibility of approximating dose kernel values using approximation formulas convenient for calculating doses in radiation therapy has been investigated.

Results: On the basis of the results obtained, a new version of the library of dose kernels of a pencil photon beam for water was created, which differs from previous versions by the use for calculating a better description and modeling of the physical processes of the interaction of photons and charged particles with matter, more adequate data on the interaction cross sections and significantly lower values of statistical uncertainties of the results. For bremsstrahlung and photons with the spectrum of the Rocus apparatus, a mathematical model of dose kernels of a pencil beam is proposed, which includes decomposition of the dose kernels into components of the primary and scattered doses, approximation formulas and empirical coefficients convenient for integration. The values of empirical coefficients are determined by fitting to the results of the calculation of dose kernels using a combination of the random search method and the nonlinear regression method. 

Conclusion: The results obtained in this work will improve the algorithms and increase the accuracy of dose calculation when planning remote therapy with photon beams.

Keywords: photons, pencil beam, dose kernel, bremsstrahlung, radiation therapy, mathematical model, approximation formulas

For citation: Klimanov VA, Kolyvanova MA, Moiseev AN. Spatial Distributions of the Dose Created Phantom Pencil Beam of Mono-Energy and Bremsstrahlung Photons in a Water with Energies from 0,25 to 20 MeV. Medical Radiology and Radiation Safety. 2022;67(3):83–88. (In Russian). DOI:10.33266/1024-6177-2022-67-3-83-88

References

1. Handbook of radiotherapy physics. Theory and practice/ Edited by Mayles F.,A.Nahum, J. Rosenwald // Taylor &Franis Group. 2007.

2. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous medium // Med. Phys. 1989. V. 16. № 3. P. 577–591.

3. Ahnesjo A., Saxner M., Trepp A. A pencil beam model for photon dose calculation // Med. Phys. 1992, V. 19. №2. P.263–273.

4. Nizin P.S. Phenomenological dose model for therapeutic photon beams: basic concepts and definitions // Med. Phys. 1999. V. 26. № 9. P. 1893–1900.

5. Ostapiac O.Z., Zhu Y., Van Duk J. Refinements of finite-size pencil beam model for three-dimensional photon dose calculation // Med. Phys. 1997. V. 24. № 5. P. 743 -750.

6. Ulmer W., Pyyry J.,  Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations // Phys. Med. Biol. 2005. V. 50. № 4. P. 1767–1790.

7. Tillikainen L., Helminen H., Torsti T. et al. A 3D pencil beam based superposition algorithm for photon dose calculation in heterogeneous media // Phys. Med. Biol. 2008. V. 53. № 10. P. 3821–3839.

8. Varian medical systems. Eclipse algorithms reference guide // P/N B 502612R01A.  August 2009.

9. Khazaee V.M., Kanmali A., Geramifar P. Calculation of tissue dose point kernel using GATE Monte Carlo simulation toolkit to compare with water dose point kernel // Med. Phys. 2015. V. 42, № 9. P. 3367.

10. Huang J., Childress N., Kry S. Calculation of high resolution and material specific photon energy deposition kernels // Med. Phys. 2013.
V. 41, № 2. P. 271.

11. Egashira Y., Nishina T., Hotla K. et al. Application of pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy// Phys. Med. Biol. 2013. V. 58. № 5. P.1169.

12. Azcona J.D., Barbes B., Wang L. Experimental pencil beam kernels deriviation for 3D dose calculatin in flattening filter free modulation fields// Phys. Med. Biol. 2016. V. 61. №1. P. 50.

13. Donskoy E.N., Klimanov V.A., Smirnov V.V. et al. Dose energy distributions of differential and integral thin rays of photons in water for planning purposes in radiation therapy// Medical Physics. Technique, Biology, Clinic (Russia), 1997.   No. 4. P. 38–42.

14. Klimanov V.A., Kozlov E.B., Troshin V.S. et al. Library of Integral Dose Kernels for Calculation of Dose Distributions in Radiotherapy// Medical Radiology and Radiation Safety (Russia), 2000. V. 45. № 5.
P. 55 –61.

15. Klimanov V.A. Radiobiological and dosimetry planning of radiotherapy and radionuclide therapy. Part 1. M.: ed. MEPhI. 2011

16. Donskoy E.N. The method and program of ELISA for the Monte-Carlo method of solving problems of joint transfer of gamma radiation, electrons and positrons// Problems of Atomic Science and Technology. Series: Mathematical Modeling of Processes. Issue 1, 1993. P. 3–6.

17. Klimanov V.A., Donskoy E.N., Smirnov V.V., Troshin V.S. Database of energy deposition kernels for radiation therapy purposes// In: Proceedings “Nuclear data for science and technology. Part 2”, Trieste, 1997.
P. 1704–1706.

18. Storm E., Israel H. Photon Cross Sections from 1 KeV to 100 MeV for ElementsZ=l to Z=l00// Atomic Data and Nuclear Data Tables 7, 1970. P. 565. 

19. Akkerman A.F. Simulation of the trajectories of charged particles in a substance // M: Energoatomizdat. 1991.

20. Smirnov V.V. Modeling the process of electron transfer in tasks// Radiation Physics: Study Guide. M.: MEPhI, 2008

21. Nelson W.R., Hyrayama H., Roger D.W.O. The EGS4 code system / SLAC.  Report Slac -265.

22. Bielajew A.F. et al. History, overview and recent improvements of EGS4//National research council of Canada Report PIRS-0436. 1994.

23. Kawrakow I. et al. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport// NRCC Report PIRS-701. 2013.

24. Salvat, F., Fernandez-Varea  J. M. Overview of physical interaction models for photon and electron transport used in Monte Carlo codes // Metrologia. 2009.  V. 46. S112–S138.

25. Rogers DWO, Kawrakow I, Seuntjens JP et al. National Research Council of Canada Report No. PIRS-702 (rev C) NRC Usercodes for EGSnrc (Ottawa: NRCC). 2011.

26. Sawkey D., O’Shea T., Faddegon B.A. Experimental verification of clinically Monte Carlo X-ray simulation // Med. Phys. 2010. V. 37.
№ 9. P. 3272.

27. Ali E.S.M., McEwen M.R., Roger D.W.O. Detailed high-accuracy megavoltage transmission measurements: A sensitive experimental benchmark of EGSnrc // Med. Phys. 2012.  V. 39. № 10. P. 3300-3010.

28. Song T., Zhou L.,Jiang S. Monte Carlo Simulation of a 6MV Varian Truebeam Without Flattening Filter Linac // Med. Phys. 2012. V.39.
№ 11.  P. 3819.

29. Maigne L., Perrot Y., Sсhaart D.R. et al. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV // Phys. Med. Biol. 2011. V. 56. № 3. P. 811–827.

30. Klimanov V.A., Moiseev A.N., Mogilenets N.N. Analytical approximation of the dose kernels of a thin photon beam with the spectrum of the therapeutic device ROKUS // Medical Physics (Russia), 2015. V. 2
№ 66, P. 7–15.

31. Moiseev A.N., Klimanov V.A. Dose distributions of a thin ray of neutrons in water// Almanac of Clinical Medicine, V. XVII, Part 1, 2008.
P. 350–354.

32. Klimanov V.A., Moiseev A.N., Kolyvanova M.A. et al. Dose kernel of thin and differential thin rays of photons with the spectrum of the Raucus therapeutic apparatus with a Co-60 source and their analytical approximation// Vestnik MGU. Physics and astronomy, 2016. V. 71.
№ 4, P. 432– 40.

33. Klimanov V.A., Moiseev A.N., Kolyvanova M.A., Galyautdinova Zh.Zh. Analytical model of the dose kernels of a thin photon beam for dosimetry of non-standard photon beams with a small circular cross-section// Medical equipment, 2018. V. 52 № 2, P. 27–30.

34. Sheikh-Bagheria D., Rogers D.W.O. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.  Med. Physics, 2002. V. 29.  № 3, P. 391–402.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

A.A. Labushkina1, O.E. Klement’eva1, G.E. Kodina1,
N.V. Silaeva2, O.E. Lukina2, P.I. Krzhivitskii3, S.N. Novikov3

Clinical Study of the Drug «Nanotech, 99mTc» for the Detection
of Sentinel Lymph Nodes in Patients with Breast Cancer

1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2LTD «DIAMED», Moscow, Russia

3N.N. Petrov NMRC of Oncology, St. Petersburg, Russia

Contact person: Anna A. Labushkina. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To evaluate the diagnostic efficacy and safety of the use of the radiopharmaceutical drug “Nanotech, 99mTc” in the detection of sentinel lymph nodes (SLN) in malignant breast cancer by indirect radionuclide lymphography and intraoperative radiometry.

Material and methods: The results of clinical studies of the drug «Nanotech, 99mTc», conducted in two research centers: N.N.Petrov National Medical Research Center of Oncology (128 patients) and N.N. Blokhin National Medical Research Center of Oncology
(20 patients), were analyzed in 148 patients with breast cancer, aimed at sectoral breast resection, radical or subcutaneous mastectomy. The patients included in the clinical trials met all the requirements of the inclusion/non-inclusion criteria assessed at the screening stage. Radiopharmaceutical drug “Nanotech, 99mTc” was injected into the affected mammary gland at 4 mutually perpendicular points intradermally periareolar. The administered activity was 20.0–40.0 MBq for each injection site, the volume of administered drug «Nanotech, 99mTc» was 0.1–0.3 ml for each injection site. The total single administered dose was 80–160 MBq in a volume of 0.4–
1.2 ml. 1–2 hours after administration of the drug, 4–24 hours before surgery, the patients underwent planar polypositional scintigraphy in three standard projections with a marker mark applied to the patient’s skin surface corresponding to the projection of each SLN. The procedure of intraoperative radiometry was performed using a specialized portable gamma detector in the operating room during the main surgical intervention. The main efficiency parameter was the frequency of identification of SLN during intraoperative radiometry, safety indicators were considered adverse events. When evaluating the results, all adverse events that occurred during the study were considered, and their relationship with the drug under study was also evaluated. For statistical analysis, the patients were divided into the following populations: FAS – all patients who received a dose of the finished drug; ITT population – all patients who received a dose of the finished drug and who underwent intraoperative radiometry; PP population – all patients who completed the study in accordance with the protocol. The main efficiency analysis was carried out in the ITT population. The safety analysis was carried out in the FAS population.

Results: The frequency of detection of SLN during intraoperative radiometry in 148 patients, in the main efficacy population (ITT), was 142/148 (95.95 %) with a one-sided 95 % confidence interval of 92.24 %, while the width of the lower part of the confidence interval was 3.71 %. Based on the analysis of primary efficacy, a conclusion was made about diagnostic efficacy, since the boundary of the one-sided
95 % confidence interval for the frequency of detection of SLN during intraoperative radiometry exceeds 84 %, while the width of the lower part of the 95 % one-sided interval does not exceed 5 %. When analyzing secondary endpoints in the ITT population, the frequency of detection of hyperfixation foci during diagnostic lymphoscintigraphy was 97.30 % with a one-sided 95 % confidence interval
of 93.97 %, while the width of the lower part of the confidence interval was 3.33 %. The results of the analysis of primary and secondary endpoints of diagnostic effectiveness in the PP population were similar to those obtained in the main population of the effectiveness assessment (ITT). The analysis of diagnostic effectiveness, carried out depending on the method of statistical analysis of the primary variable of effectiveness, led to consistent conclusions. No adverse events were registered during the study. The assessment of safety and tolerability based on the results of statistical assessments of vital signs and the condition of the skin at the injection site showed a high degree of safety and tolerability of drug “Nanotech, 99mTc”.

Conclusions: This study obtained data confirming the diagnostic efficacy and high degree of safety and tolerability of radiopharmaceutical drug “Nanotech, 99mTc”, which justifies the possibility of its medical use and registration.

Keywords: breast cancer, clinical trials, “Nanotech, 99mTc”, scintigraphy, intraoperative radiometry, sentinel lymph nodes

For citation: Labushkina AA, Klementyeva OE, Kodina GE, Silaeva NV, Lukina OE, Krzhivitskii PI, Novikov SN. Clinical study of the radiopharmaceutical drug “Nanotech, 99mTc” to identify sentinel lymph nodes in patients with breast cancer. Medical Radiology and Radiation Safety. 2022;67(3):75–82. (In Russian). DOI:10.33266/1024-6177-2022-67-3-75-82

References

1. Feggi L., Querzoli P., Prandini N., et al. Sentinel Node Study in Early Breast Cancer. Tumori Journal. 2000;86;4:314-316. doi:10.1177/030089160008600414.

2. Nieweg O., Rijk M., Olmos R., Hoefnagel C. Sentinel Node Biopsy and Selective Lymph Node Clearance – Impact on Regional Control and Survival in Breast Cancer and Melanoma. Eur. J. Nucl. Med. Mol. Imaging. 2005;32;6:631-634. doi:10.1007/s00259-005-1801-4.

3. Kanaev S.V., Novikov S.N., Semiglazov V.F., Krivorotko P.V., Zhukova L.A., Krizhevitsky P.I. The Possibility of Early Detection of Breast Cancer Neoplasms Using Ultrasound and Radionuclide Diagnostic Methods. Voprosy onkologii = Problems in Oncology. 2011;57;5:622-626 (In Russian).

4. Bourez R., Rutgers E., Van deVelde C. Will we Need Lymph Node Dissection at all in the Future? Clinical Breast Cancer. 2002;3;5:315-322. 

5. Krag D.N., Anderson S.J., Julian T.B. et al. Technical Outcomes of Sentinel-Lymph-Node Resection and Conventional Axillary-Lymph-Node Dissection in Patients with Clinically Node-Negative Breast Cancer: Results from the NSABP B-32 Randomised Phase III Trial. Lancet Oncol. 2007;8:881-888.

6. Krzhivitskiy P.I., Kanayev S.V., Novikov S.N., Ilin N.D., Novikov R.V. The Use of SPECT-CT for Visualization of Signaling Lymph Nodes and Lymph Outflow Pathways in Patients with Prostate Cancer. Voprosy onkologii = Problems in Oncology. 2016;62;2:272-276 (In Russian).

7. Diaz J.P., Gemignani M.L., Pandit-Taskar N., Park K.J., Murray M.P., Chi D.S., Sonoda Y., Barakat R.R., Abu-Rustum N.R. Sentinel Lymph Node Biopsy in the Management of Early-Stage Cervical Carcinoma. Gynecol Oncol 2011;120:347-52.

8. Recht A., Pierce S.M., Abner A., et al. Regional Nodal Failure after Conservative Surgery and Radiotherapy for Early-Stage Breast Carcinoma. J. Clin. Oncol. 1991;9:988-996.

9. Krivorotko P.V., Tabagua T.T., Komyakhov A.V., et al. Biopsy of Signaling Lymph Nodes in Early Breast Cancer: the Experience of the N.N. Petrov Research Institute of Oncology. Voprosy onkologii = Problems in Oncology. 2017;63;2:267-273 (In Russian).

10. Wong J.H., Steinemann S., Jehoon K.P., Wong D.L. Lymphoscintigraphy in Breast Cancer: the Value of Breast Lymphoscintigraphy in Breast Sentinel Node Staging. Clinical Nuclear Medicine. 2001;26;6:502-505.

11. Krivorotko P.V., Kanayev S.V., Semiglazov V.F., Novikov S.N., Krzhivitskiy P.I., Semenov I.I., et al. Methodological Problems of Signal Lymph Node Biopsy in Breast Cancer Patients. Voprosy onkologii = Problems in Oncology. 2015;61;3:418-442 (In Russian).

12. NANOCIS. Kit for the Preparation of Technetium [99mTc] Colloidal Rhenium Sulphide Injection (Nanocolloid). Summary of Product Characteristics. CIS Bio International, Member of IBA Group. T1700nE (T1700 – T1711 – T1717 – T1732 – T1716). 08/2008.

13. Summary of Product Characteristics Nanocis CRN009L3G 09 October 2020.

14. Kanayev S.V., Novikov S.N. The Role of Radionuclide Imaging of Lymph Outflow Pathways in Determining Indications for Irradiation of Parasternal Lymph Nodes. Voprosy onkologii = Problems in Oncology. 2015;61;5:737-744 (In Russian).

15. Novikov S.N., Krzhivitskii P.I., Melnik Y.S., Valitova A.A., Bryantseva Z.V., Akulova I.A., Kanaev S.V. Atlas of Sentinel Lymph Nodes in Early Breast Cancer Using Single-Photon Emission Computed Tomography: Implication for Lymphatic Contouring // Radiat Oncol J. 2021;39;1:8-14.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no obvious and potential conflicts of interest related to the publication of this article.

Financing. The study was carried out with the sponsorship of  LTD «Diamed», Moscow.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 2

A.F. Bobrov1, T.M. Novikova2, N.L. Proskuryakova1 , V.I. Sedin1, E.S. Shchelkanova3,
L.I. Fortunatova 1, M.Yu. Kalinina1

Express Diagnostics of the Health Condition of Workers
in Hazardous Industries

1A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia

2Central Medical and Sanitary Unit No. 91, Lesnoy, Russia

3Military Innovative Technopolis “ERA”, Anapa, Russia

Contact person: A.F. Bobrov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To develop criteria for rapid diagnostics of the health status of workers of hazardous industries according to the parameters of vibration imaging.

Material and methods: The object of the study is the personnel of the Moscow Regional Fire and Rescue Service (249 people), employees of the main workshop of the Electrohimpribor plant (EHP) (132 people) and operators of the scientific company of the Military Innovative Technopolis (VIT) “Era” (16 people, comparison group). The research was attended by specialists of VCMC “Protection”. The average age of rescuers was 43,4+3,2 years, ECP workers – 41,9+4,1 years, military personnel 24,4+1,5 years. According to medical examinations, a dispensary observation group/health group was established (in accordance with the Order of the Ministry of Health of the Russian Federation No. 36an). The examined individuals were also tested using the HealthTest program. The testing time was 3 minutes, during which the vibration image parameters were evaluated.

Results: To develop criteria for rapid diagnostics of the health status of workers of hazardous industries, 10 basic parameters of vibration imaging E1–E10 and their coefficients of variation E1_V–E10_V were used as initial ones. The weight load of individual vibration imaging parameters included in the system complex separating groups 1 and 3 of dispensary observation is calculated. For a formalized assessment, a probabilistic nomogram for identifying the functional state according to the parameters of the vibration image has been developed. The average accuracy of their recognition using linear discriminant functions is 96,8 %.

Conclusion: The improvement of medical and psychophysiological support of hazardous workers is associated with the development of methods of express diagnostics of their psychophysiological adaptation. Vibration imaging technology is promising for this, as evidenced by the results of the conducted research. The use of the developed one-dimensional multiparametric integral indicator as a “marker” of psychophysiological adaptation, which is a linear combination of vibration image parameters, allows for operational monitoring of the state of health. The developed integral indicator of rapid diagnostics of the state of health can be used to assess the effectiveness and sufficiency of rehabilitation and wellness measures.

Keywords: dangerous professions, dispensary observation groups, prenosological states, express diagnostics, vibration imaging technology

For citation: Bobrov AF, Novikova TM, Proskuryakova NL, SedinVI, Shchelkanova ES, Fortunatova LI, Kalinina MYu. Express diagnostics of the health condition of workers in hazardous industries. Medical Radiology and Radiation Safety. 2022;67(3):89–93. (In Russian). DOI:10.33266/1024-6177-2022-67-3-89-93

References

1. Bayevskiy R.M. Prognozirovaniye Sostoyaniy na Grani Normy i Patologii = Prediction of Condition on the Brink of Norm and Pathology. Moscow, Meditsina Publ., 1979. 298 p. (In Russian).

2. Bayevskiy R.M. Otsenka Adaptatsionnykh Vozmozhnostey Organizma i Risk Razvitiya Zabolevaniy = Assessment of Adaptive Capacity of the Organism and the Risk of Diseases.
Ed. Bayevskiy R.M., Berseneva A. P. Moscow, Meditsina Publ., 1997. P 104 (In Russian).

3. Kaznacheyev V.P. Donozologicheskaya diagnostika v praktike massovykh obsledovaniy naseleniya = Prenosological diagnostics in practice of mass screening of the population. Ed. Kaznacheev V.P., Baevskiy R.M., Berseneva A.P. Leningrad, Meditsina Publ., 1980. 225 p. (In Russian).

4. Bobrov A.F. System Evaluation of the Results of Psychophysiological Examinations. Ed. Bobrov A.F., Bushmanov A.Yu., Sedin V.I., Shcheblanov V.Yu. Meditsina Ekstremalnykh Situatsiya = Extreme Medicine. 2015;3:13-19 (In Russian).

5. Minkin V. A. Vibroizobrazheniye, Kibernetika i Emotsii = Vibroimage, Cybernetics and Emotions. St. Petersburg, Renome Publ., 2020. 164 p. DOI: 10.25696/ELSYS.B.RU.VCE.2020 (In Russian).

6. Shchelkanova E.S. Beskontaktnaya Ekspress-Diagnostika Psikhofiziologicheskogo Sostoyaniya Rabotnikov Opasnykh Proizvodstv = Contactless Express Diagnostics of the Psychophysiological State of Workers of Hazardous Industries. Extended Abstract of Candidate’s Thesis in Biol. Sciences.
St. Petersburg Publ., 2019. 20 p. (In Russian). 

7. Minkin V.A., Bobrov A.F. Diagnostika Zdorovya po Otsenke Desinkhronizatsii Signalov Fiziologicheskikh Sistem. Pervyye Rezultaty Prakticheskogo Primeneniya Programmy HealthTest = Diagnostics of Health by Evaluation of Desynchronization of Signals of Physiological Systems. The First Results of the Practical Application of the HealthTest Program. Sovremennaya psikhofiziologiya. Tekhnologiya vibroizobrazheniya = Modern Psychophysiology. Vibration Imaging Technology. Proceedings of the 3rd International Scientific and Technical Conference, St. Petersburg, 25-26 June, 2020. St. Petersburg Publ., 2020. P. 121-130. DOI: 10.25696/ELSYS.14.VC3.RU (In Russian).

8. Kim J.-O. Faktornyy, Diskriminantnyy i Klasternyy Analiz = Factorial, Discriminant and Cluster analysis. Ed. Kim J.-O., Muller C.W., Klekka U.R., Enyukov I.S., et al. Moscow, Finansy i Statistika Publ., 1989. 215 p. (In Russian).

 PDF (RUS) Full-text article (in Russian)  

 Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.

 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2767209
Today
Yesterday
This week
Last week
This month
Last month
For all time
2948
4471
25438
18409
74952
75709
2767209

Forecast today
3024


Your IP:216.73.216.51