JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

X-ray and Radionuclide Imaging in the Diagnosis
of ACTH-Producing Neuroendocrine Tumors

O.O. Golounina1, K.Yu. Slashchuk2, A.V. Khairieva2, N.V. Tarbaeva2,
M.V. Degtyarev2, Zh.E. Belaya2

1I.M. Sechenov First Moscow State Medical University, Moscow, Russia

2The National Medical Research Center for Endocrinology, Moscow, Russia

Contact person: Golounina Olga Olegovna, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Ectopic ACTH syndrome caused by excessive production of adrenocorticotropic hormone (ACTH) by a neuroendocrine tumor (NET) is an extremely rare disease, the main manifestation of which is pronounced hypercortisolism. In order to avoid the development of life-threatening complications and disability of the patient, timely topical diagnosis and rapid decision-making on further management tactics are necessary. The problem of the diagnosis of NET and differential diagnosis with other formations remains relevant and one of the little-studied. Despite the existing wide arsenal of methods of conventional diagnostics, functional and receptor imaging, the source of the disease remains unidentified in about 20% of patients. This article discusses the modern possibilities of NET visualization using conventional and radionuclide imaging methods, demonstrates the diagnostic capabilities of somatostatin-receptor scintigraphy and single-photon emission computed tomography combined with computed tomography (SPECT/CT) and combined positron emission and computed tomography (PET/CT) in the visualization of NET producing ACTH, and analyzes existing radiopharmaceuticals.

Keywords: multislice computed tomography, somatostatin-receptor scintigraphy, SPECT/CT, PET/CT, ectopic ACTH syndrome; neuroendocrine tumor (NET)

For citation: Golounina OO, Slashchuk KYu, Khairieva AV, Tarbaeva NV, Degtyarev MV, Belaya ZhE. X-ray and Radionuclide Imaging in the Diagnosis of ACTH-Producing Neuroendocrine Tumors. Medical Radiology and Radiation Safety. 2022;67(4):80-88. DOI: 10.33266/1024-6177-2022-67-4-80-88

References

1. Ilias I., Torpy D.J., Pacak K., Mullen N., Wesley R.A., Nieman L.K. Cushing’s Syndrome Due to Ectopic Corticotropin Secretion: Twenty Years’ Experience at the National Institutes of Health. J. Clin. Endocrinol Metab. 2005;90;8:4955–4962. doi: 10.1210/jc.2004-2527.

2. Голоунина О.О., Белая Ж.Е., Рожинская Л.Я., Марова Е.И., Пикунов М.Ю., Хандаева П.М. и др. Клинико-лабораторная характеристика и результаты лечения пациентов с АКТГ-продуцирующими нейроэндокринными опухолями различной локализации // Терапевтический архив. 2021. Т.93, № 10. С. 1171–1178. [Golounina O.O., Belaya Zh.Ye., Rozhinskaya L.Ya., Marova Ye.I., Pikunov M.Yu., Khandayeva P.M., et al. Clinical and Laboratory Characteristics and Results of Treatment of Patients with ACTH-Producing Neuroendocrine Tumors of Various Localization. Terapevticheskiy Arkhiv = Therapeutic Archive. 2021;93;10:1171–1178 (In Russ.)]. doi: 10.26442/00403660.2021.10.201102.

3. Isidori A.M., Sbardella E., Zatelli M.C., Boschetti M., Vitale G., Colao A., et al. Conventional and Nuclear Medicine Imaging in Ectopic Cushing’s Syndrome: A Systematic Review. The Journal of Clinical Endocrinology & Metabolism. 2015;100;9:3231–3244. doi: 10.1210/JC.2015-1589.

4. Zemskova M.S., Gundabolu B., Sinaii N., Chen C.C., Carrasquillo J.A., Whatley M., et al. Utility of Various Functional and Anatomic Imaging Modalities for Detection of Ectopic Adrenocorticotropin-Secreting Tumors. J. Clin. Endocrinol Metab. 2010;95;3:1207–1219. doi: 10.1210/jc.2009-2282.

5. Kwekkeboom D.J., Kam B.L., van Essen M., Teunissen J.J.M., van Eijck C.H.J., Valkema R., et al. Somatostatin Receptor-Based Imaging and Therapy of Gastroenteropancreatic Neuroendocrine Tumors. Endocrine-Related Cancer. 2010;17;1:53–73. doi: 10.1677/ERC-09-0078.

6. Bhanat E., Koch C.A., Parmar R., Garla V., Vijayakumar V. Somatostatin Receptor Expression in Non-Classical Locations – Clinical Relevance? Rev. Endocr. Metab. Disord. 2018;19;2:123–132. doi: 10.1007/s11154-018-9470-3.

7. Koopmans K.P., Neels O.N., Kema I.P., Elsinga P.H., Links T.P., de Vries E.G.E., Jager P.L. Molecular Imaging in Neuroendocrine Tumors: Molecular Uptake Mechanisms and Clinical Results. Crit. Rev. Oncol. Hematol. 2009;71;3:199–213. doi: 10.1016/j.critrevonc.2009.02.009.

8. Krenning E.P., Kwekkeboom D.J., Bakker W.H., Breeman W.A., Kooij P.P., Oei H.Y., et al. Somatostatin Receptor Scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-Octreotide: the Rotterdam experience with more than 1000 Patients. Eur. J. Nucl. Med. 1993;20;8:716–731. doi: 10.1007/BF00181765.

9. Jamar F., Fiasse R., Leners N., Pauwels S. Somatostatin Receptor Imaging with Indium-111-Pentetreotide in Gastroenteropancreatic Neuroendocrine Tumors: Safety, Efficacy and Impact on Patient Management. J. Nucl. Med. 1995;36;4:542–549.

10. Raderer M., Kurtaran A., Leimer M., Angelberger P., Niederle B., Vierhapper H., et al. Value of Peptide Receptor Scintigraphy Using 123I-Vasoactive Intestinal Peptide and 111In-DTPA-D-Phe1-Octreotide in 194 Carcinoid Patients: Vienna University Experience, 1993 to 1998. J. Clin. Oncol. 2000;18;6:1331–1336. doi: 10.1200/JCO.2000.18.6.1331.

11. Binderup T., Knigge U., Loft A., Mortensen J., Pfeifer A., Federspiel B., et al. Functional Imaging of Neuroendocrine Tumors: A Head-to-Head Comparison of Somatostatin Receptor Scintigraphy, 123 I-MIBG Scintigraphy, and 18 F-FDG PET. J. Nucl. Med. 2010;51;5:704–712. doi: 10.2967/jnumed.109.069765.

12. Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокринных опухолей // Сибирский онкологический журнал. 2013. № 6. С. 56–63. [Ryzhkova D.V., Tikhonova D.N., Grineva Ye.N. Nuclear Medicine Technology for Diagnosis of Neuroendocrine Tumors. Siberian Journal of Oncology. 2013;6:56–63 (In Russ.)].

13. Sundin A. Novel Functional Imaging of Neuroendocrine Tumors. Endocrinology and Metabolism Clinics of North America. 2018;47;3:505–523. doi: 10.1016/j.ecl.2018.04.003.

14. Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) с 99mTc-Тектроитидом. Медицинская радиология и радиационная безопасность // 2020. Т.65, № 2. С. 44–49. [Slashchuk K.Yu., Rumyantsev P.O., Degtyarev M.V., Serzhenko S.S., Baranova O.D., Trukhin A.A., Sirota Ya.I. Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2020;65;2:44–49 (In Russ)]. doi: 10.12737/1024-6177-2020-65-2-44-49.

15. Young J., Haissaguerre M., Viera-Pinto O., Chabre O., Baudin E., Tabarin A. Management of Endocrine Disease: Cushing’s Syndrome Due to Ectopic ACTH Secretion: an Expert Operational Opinion. Eur. J.. Endocrinol 2020;182;4:29–58. doi: 10.1530/EJE-19-0877.

16. Kaltsas G., Korbonits M., Heintz E., Mukherjee J.J., Jenkins P.J., Chew S.L., et al. Comparison of Somatostatin Analog and Meta-Iodobenzylguanidine Radionuclides in the Diagnosis and Localization of Advanced Neuroendocrine Tumors. J. Clin. Endocrinol Metab. 2001;86;2:895–902. doi: 10.1210/jcem.86.2.7194.

17. Ezziddin S., Logvinski T., Yong-Hing C., Ahmadzadehfar H., Fischer H.-P., Palmedo H., et al. Factors Predicting Tracer Uptake in Somatostatin Receptor and MIBG Scintigraphy of Metastatic Gastroenteropancreatic Neuroendocrine Tumors. J. Nucl. Med. 2006;47;2:223–233.

18. Virgolini I., Ambrosini V., Bomanji J.B., Baum R.P., Fanti S., Gabriel M., et al. Procedure Guidelines for PET/CT Tumour Imaging with 68Ga-DOTA-Conjugated Peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging. 2010;37;10:2004–2010. doi: 10.1007/s00259-010-1512-3.

19. Bodei L., Ambrosini V., Herrmann K., Modlin I. Current Concepts in 68Ga-DOTATATE Imaging of Neuroendocrine Neoplasms: Interpretation, Biodistribution, Dosimetry, and Molecular Strategies. J. Nucl. Med. 2017;58;11:1718–1726. doi: 10.2967/jnumed.116.186361.

20. Reubi J.C., Schär J.C., Waser B., Wenger S., Heppeler A., Schmitt J.S., Mäcke H.R. Affinity Profiles for Human Somatostatin Receptor Subtypes SST1-SST5 of Somatostatin Radiotracers Selected for Scintigraphic and Radiotherapeutic Use. Eur. J. Nucl. Med. 2000;27;3:273–282. doi: 10.1007/s002590050034.

21. Poeppel T.D., Binse I., Petersenn S., Lahner H., Schott M., Antoch G., et al. 68Ga-DOTATOC Versus 68Ga-DOTATATE PET/CT in Functional Imaging of Neuroendocrine Tumors. J. Nucl. Med. 2011;52;12:1864–1870. doi: 10.2967/jnumed.111.091165.

22. Geijer H., Breimer L.H. Somatostatin Receptor PET/CT in Neuroendocrine Tumours: Update on Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging. 2013;40;11:1770–1780. doi: 10.1007/s00259-013-2482-z.

23. Sadowski S.M., Neychev V., Millo C., Shih J., Nilubol N., Herscovitch P., et al. Prospective Study of 68 Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. JCO. 2016;34;6:588–596. doi: 10.1200/JCO.2015.64.0987.

24. Gabriel S., Garrigue P., Dahan L., Castinetti F., Sebag F., Baumstark K., et al. Prospective Evaluation of 68 Ga-DOTATATE PET/CT in Limited Disease Neuroendocrine Tumours and/or Elevated Serum Neuroendocrine Biomarkers. Clin. Endocrinol. 2018;89;2:155–163. doi: 10.1111/cen.13745.

25. Bergeret S., Charbit J., Ansquer C., Bera G., Chanson P., Lussey-Lepoutre C. Novel PET Tracers: Added Value for Endocrine Disorders. Endocrine. 2019;64;1:14–30. doi: 10.1007/s12020 -019-01895-z.

26. Skoura E., Michopoulou S., Mohmaduvesh M., Panagiotidis E., Al Harbi M., Toumpanakis C., et al. The Impact of 68Ga-DOTATATE PET/CT Imaging on Management of Patients with Neuroendocrine Tumors: Experience from a National Referral Center in the United Kingdom. J. Nucl. Med. 2016;57;1:34–40. doi: 10.2967/jnumed.115.166017.

27. Deppen S.A., Blume J., Bobbey A.J., Shah C., Graham M.M., Lee P., et al. 68Ga-DOTATATE Compared with 111 In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2016;57;6:872–878. doi: 10.2967/jnumed.115.165803.

28. Treglia G., Castaldi P., Rindi G., Giordano A., Rufini V. Diagnostic Performance of Gallium-68 Somatostatin Receptor PET and PET/CT in Patients with Thoracic and Gastroenteropancreatic Neuroendocrine Tumours: a Meta-Analysis. Endocrine. 2012;42;1:80–87. doi: 10.1007/s12020-012-9631-1.

29. Mojtahedi A., Thamake S., Tworowska I., Ranganathan D., Delpassand E.S. The Value of 68Ga-DOTATATE PET/CT in Diagnosis and Management of Neuroendocrine Tumors Compared to Current FDA Approved Imaging Modalities: a Review of Literature. Am. J. Nucl. Med. Mol. Imaging. 2014;4;5:426–434.

30. Johnbeck C.B., Knigge U., Kjær A. PET Tracers for Somatostatin Receptor Imaging of Neuroendocrine Tumors: Current Status and Review of the Literature. Future Oncol. 2014;10;14:2259–2277. doi: 10.2217/fon.14.139.

31. Haug A.R., Cindea-Drimus R., Auernhammer C.J., Reincke M., Beuschlein F., Wängler B., et al. Neuroendocrine Tumor Recurrence: Diagnosis with 68Ga-DOTATATE PET/CT. Radiology. 2014;270;2:517–525. doi: 10.1148/radiol.13122501.

32. Wannachalee T., Turcu A.F., Bancos I., Habra M.A., Avram A.M., Chuang H.H., et al. The Clinical Impact of [68 Ga]-DOTATATE PET/CT for the Diagnosis and Management of Ectopic Adrenocorticotropic Hormone - Secreting Tumours. Clin. Endocrinol (Oxf). 2019;91;2:288–294. doi: 10.1111/cen.14008.

33. Goroshi M.R., Jadhav S.S., Lila A.R., Kasaliwal R., Khare S., Yerawar C.G., et al. Comparison of 68Ga-DOTANOC PET/CT and Contrast-Enhanced CT in Localisation of Tumours in Ectopic ACTH Syndrome. Endocr Connect. 2016;5;2:83–91. doi: 10.1530/EC-16-0010.

34. Karageorgiadis A.S., Papadakis G.Z., Biro J., Keil M.F., Lyssikatos C., Quezado M.M., et al. Ectopic Adrenocorticotropic Hormone and Corticotropin-Releasing Hormone Co-Secreting Tumors in Children and Adolescents Causing Cushing Syndrome: A Diagnostic Dilemma and How to Solve It. The Journal of Clinical Endocrinology & Metabolism. 2015;100;1:141–148. doi: 10.1210/jc.2014-2945.

35. Sathyakumar S., Paul T.V., Asha H.S., Gnanamuthu B.R., Paul M.J., Abraham D.T., et al. Ectopic Cushing Syndrome: A 10-Year Experience from a Tertiary Care Center in Southern India. Endocrine Practice. 2017;23;8:907–914. doi: 10.4158/EP161677.OR.

36. Özkan Z.G., Kuyumcu S., Balköse D., Ozkan B., Aksakal N., Yılmaz E., et al. The Value of Somatostatin Receptor Imaging with In-111 Octreotide and/or Ga-68 DOTATATE in localizing Ectopic ACTH Producing Tumors. Mol. Imaging Radionucl Ther. 2013;22;2:49–55. doi: 10.4274/Mirt.69775.

37. Kakade H.R., Kasaliwal R., Jagtap V.S, Bukan A., Budyal S.R., Khare S., et al. Ectopic ACTH-Secreting Syndrome: A Single-Center Experience. Endocrine Practice. 2013;19;6:1007–1014. doi: 10.4158/EP13171.OR.

38. Varlamov E., Hinojosa-Amaya J.M., Stack M., Fleseriu M. Diagnostic Utility of Gallium-68-Somatostatin Receptor PET/CT in Ectopic ACTH-Secreting Tumors: a Systematic Literature Review and Single-Center Clinical Experience. Pituitary. 2019;22;5:445–455. doi: 10.1007/s11102-019-00972-w.

39. Ceccato F., Cecchin D., Gregianin M., Ricci G., Campi C., Crimì F., et al. The Role of 68Ga-DOTA Derivatives PET-CT in Patients with Ectopic ACTH Syndrome. Endocr Connect. 2020:EC-20-0089.R1. doi: 10.1530/EC-20-0089.

40. Liu Q., Zang J., Yang Y., Ling Q., Wu H., Wang P., et al. Head-to-Head Comparison of 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT in Localizing Tumors with Ectopic Adrenocorticotropic Hormone Secretion: a Prospective Study. Eur. J. Nucl. Med. Mol. Imaging. 2021;48;13:4386–4395. doi: 10.1007/s00259-021-05370-8.

41. Davi’ M.V., Salgarello M., Francia G. Positive (68)Ga-DOTATOC-PET/CT after Cortisol Level Control During Ketoconazole Treatment in a Patient with Liver Metastases from a Pancreatic Neuroendocrine Tumor and Ectopic Cushing Syndrome. Endocrine. 2015;49;2:566–567. doi: 10.1007/s12020-014-0391-y.

42. De Bruin C., Hofland L.J., Nieman L.K., van Koetsveld P.M., Waaijers A.M., Sprij-Mooij D.M., et al. Mifepristone Effects on Tumor Somatostatin Receptor Expression in Two Patients with Cushing’s Syndrome Due to Ectopic Adrenocorticotropin Secretion. J. Clin. Endocrinol Metab. 2012;97;2:455–462. doi: 10.1210/jc.2011-1264.

43. Balogova S., Talbot J.-N., Nataf V., Michaud L., Huchet V., Kerrou K., Montravers F. 18F-Fluorodihydroxyphenylalanine vs Other Radiopharmaceuticals for Imaging Neuroendocrine Tumours According to their Type. Eur. J. Nucl. Med. Mol. Imaging. 2013;40;6:943–966. doi: 10.1007/s00259-013-2342-x.

44. Mach R.H., Dehdashti F., Wheeler K.T. PET Radiotracers for Imaging the Proliferative Status of Solid Tumors. PET Clin. 2009;4;1:1–15. doi: 10.1016/j.cpet.2009.04.012.

45. Deng S., Zhang W., Zhang B., Chen Y., Li J., Wu Y. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS ONE. 2015;10;6:e0129028. doi: 10.1371/journal.pone.0129028.

46. Hindié E. The NETPET Score: Combining FDG and Somatostatin Receptor Imaging for Optimal Management of Patients with Metastatic Well-Differentiated Neuroendocrine Tumors. Theranostics. 2017;7;5:1159–1163. doi: 10.7150/thno.19588.

47. Adams S., Baum R., Rink T., Schumm-Dräger P.M., Usadel K.H., Hör G. Limited Value of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography for the Imaging of Neuroendocrine Tumours. Eur. J. Nucl. Med. 1998;25;1:79–83. doi: 10.1007/s002590050197.

48. Treglia G., Giovanella L., Lococo F. Evolving Role of PET/CT with Different Tracers in the Evaluation of Pulmonary Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;5:853–855. doi: 10.1007/s00259-014-2695-9.

49. Santhanam P., Taieb D., Giovanella L., Treglia G. PET Imaging in Ectopic Cushing Syndrome: a Systematic Review. Endocrine. 2015;50;2:297–305. doi: 10.1007/s12020-015-0689-4.

50. Xu H., Zhang M., Zhai G., Zhang M., Ning G., Li B. The Role of Integrated 18F-FDG PET/CT in Identification of Ectopic ACTH Secretion Tumors. Endocr. 2009;36;3:385–391. doi: 10.1007/s12020-009-9247-2.

51. Bahri H., Laurence L., Edeline J., Leghzali H., Devillers A., Raoul J.-L., et al. High Prognostic Value of 18F-FDG PET for Metastatic Gastroenteropancreatic Neuroendocrine Tumors: a Long-Term Evaluation. J. Nucl. Med. 2014;55;11:1786–1790. doi: 10.2967/jnumed.114.144386.

52. Panagiotidis E., Bomanji J. Role of 18F-Fluorodeoxyglucose PET in the Study of Neuroendocrine Tumors. PET Clinics 2014;9;1:43–55. doi: 10.1016/j.cpet.2013.08.008.

53. Hofman M.S., Lau W.F.E., Hicks R.J. Somatostatin Receptor Imaging with 68 Ga DOTATATE PET/CT: Clinical Utility, Normal Patterns, Pearls, and Pitfalls in Interpretation. RadioGraphics. 2015;35;2:500–516. doi: 10.1148/rg.352140164.

54. Ambrosini V., Kunikowska J., Baudin E., Bodei L., Bouvier C., Capdevila J., et al. Consensus on Molecular Imaging and Theranostics in Neuroendocrine Neoplasms. European Journal of Cancer. 2021;146:56–73. doi: 10.1016/j.ejca.2021.01.008.

55. Kunikowska J., Ambrosini V., Herrmann K. EANM Focus 3: The International Conference on Molecular Imaging and Theranostics in Neuroendocrine Tumours-the consensus in a nutshell. Eur. J. Nucl. Med. Mol. Imaging. 2021;48;5:1276–1277. doi: 10.1007/s00259-021-05262-x.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

Financing. Research supported by the Russian Science Foundation (RSF grant 19-15-00398-P)

Contribution. Article was prepared with equal participation of the authors

Article received: 20.04.2022.  Accepted for publication: 24.06.2022

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

Research of Dosimetric Characteristics of Human Hair Depending on the Content of Melanine

D.V. Ivanov1,3, D.R. Baitimirov1, S.F. Konev1, E.K. Vasilenko2,
E.E. Aladova2

1B.N. Yeltsin Urals Federal University, Yekaterinburg, Russia

2Southern Urals Biophysics Institute, Ozersk, Russia

3M.N. Mikheev Institute of Metal Physics, Ural Branch of the RAS, Yekaterinburg, Russia

Contact person: Aladova Е.Е., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: Investigation of paramagnetic properties of radiation-induced centers that occur when hair samples are irradiated with ionizing radiation, depending on the color of the sample.

Material and methods: A Bruker Elexsys E580 electron paramagnetic resonance spectrometer was used. To improve the signal-to-noise ratio, the spectrum was recorded with three accumulations with a constant scan time equal to one minute. Measurements were made using a highly sensitive rectangular Bruker SuperHighQ resonator. For irradiation of samples, the linear electron accelerator UELR-10-10С2 of the innovation and implementation center for radiation sterilization of the Urals Federal University (Institute of Physics and technology) was used.

Results: Research of the EPR signal parameters of the melanin in hair samples of different colors (black, brown, red and gray with different degrees of pigmentation) showed that the intensity of the EPR signal varies depending on the hair color. The higher the radiation sensitivity of the hair, the lighter the color of the hair. The melanin signal, which is the background for the radiation-induced signal, increases with increasing intensity of hair color.

Key words: dosimetry, electron paramagnetic resonance, melanin, radiation sensitivity, human hairs

For citation: Ivanov DV, Baitimirov DR, Konev SF, Vasilenko EK, Aladova EE. Research of Dosimetric Characteristics of Human Hair Depending on the Content of Melanine. Medical Radiology and Radiation Safety. 2022;67(4):89-95. DOI: 10.33266/1024-6177-2022-67-4-89-95

References

1. Ivanov D.V., Baytimirov D.R., Konev S.F., Aladova Ye.Ye., Vasilenko Ye.K. Possibility of Various Materials to Be Used for EPR Dosimetry in Cases of Emergency Radiation Exposure. Voprosy Radiatsionnoy Bezopasnosti = Journal of Radiation Safety Issues. 2018;3:75-81 (In Russ).

2. Gordy W., Ard W.B., Shieids H. Proc. Nat. Acad. Sci. 1955;41:983-996. DOI: 10.1073/pnas.41.11.983.

3. Chernova O.F., Tselikova T.N. Atlas of Hair of Mammals. Tonkaya Struktura Ostevykh Volos i Igl v Skaniruyushchem Elektronnom Mikroskope = The Fine Structure of Guard Hairs and Needle in a Scanning Electron Microscope. Moscow, Tovarishchestvo Nauchnykh Izdaniy KMK Publ., 2004 (In Russ).

4. Goldstein B., Gibson J., Henderson R., et al. Biological Markers in Environmental Health Research. Environ. Health Persp. 1987;74:3-9. DOI: 10.1289/ehp.87743. 

5. Jaakkola M.S., Samet J.M. Occupational Exposure to Environmental Tobacco Smoke and Health Risk Assessment. Environ. Health Persp. 1999;107;6:829-835. DOI: 10.1289/ehp.99107s6829.

6. Klein J., Koren G. Hair Analysis–a Biological Marker for Passive Smoking in Pregnancy and Childhood. Hum. Exp. Toxicol. 1999;18:279-282. DOI: 10.1191/096032799678840048.

7. Girod C., Staub C. Acetylcodeine as a Marker of Illicit Heroin in Human Hair: Method Validation and Results of a Pilot Study. J. Anal. Toxicol. 2001;25:106-111. DOI: 10.1093/jat/25.2.106.

8. Cizdziel J.V., Gerstenberger S. Determination of Total Mercury in Human Hair and Animal Fur by Combustion Atomic Absorption Spectrometry. Talanta. 2004;64:918-921. DOI: 10.1016/j.talanta.2004.04.013.

9. Revich B.A. Lead in Hair and Urine of Children and Adults from Industrialized Areas. Arch. Environ. Health. 1994;49:59-62. DOI: 10.1080/00039896.1994.9934416.

10. Bustueva K.A., Revich B.A., Bezpalko L.E. Cadmium in the Environment of Three Russian Cities and in Human Hair and Urine. Arch. Environ. Health. 1994;49:284-288. DOI: 10.1080/00039896.1994.9937481.

11. Daniel K.G., Harbach R.H., Guida W.C., Dou Q.P. Copper Storage Diseases: Menkes, Wilsons, and Cancer. Front. Biosci. 2004;9:2652-2662. DOI: 10.2741/1424.

12. Di Donato P., Napolitano A. 1,4-Benzothiazines as Key Intermediates in the Biosynthesis of Red Hair Pigment Pheomelanins. Pigm. Cell Res. 2003;16:532-539. DOI: 10.1034/j.1600-0749.2003.00085.x.

13. Greco G., Panzella L., Verotta L., d’Ischia M., Napolitano A. Uncovering the Structure of Human Red Hair Pheomelanin: Benzothiazolylthiazinodihydroisoquinolines as Key Building Blocks. J. Nat. Prod. 2011;74:675-682. DOI: 10.1021/np100740n.

14. Costin G.-E., Hearing V.J. Human Skin Pigmentation: Melanocytes Modulate Skin Color in Response to Stress. FASEB J. 2007;21:976-994. DOI: 10.1096/fj.06-6649rev.

15. Sealy R.C., Hyde J.S., Felix C.C., Menon I.A., Prota G. Eumelanins and Pheomelanins: Characterization by Electron Spin Resonance Spectroscopy. Science. 1982;217;4559:545-547. DOI: 10.1126/science.6283638.

16. Chikvaidze E., Khachatryan I. ESR Study of Photoinduced Free Radicals by Visible Light in Hair and the Effects of Ascorbic Acid (Vitamin C). Int. J. Cosmet. Sci. 2011;33:322-327. DOI: 10.1111/j.1468-2494.2010.00628.x.

17. Şeyda Çolak, Turan Özbey. An ESR Study on Biological Dosimeters: Human Hair. Rad. Meas. 2011;46;5:465-472. DOI: /10.1016/j.radmeas.2010.12.002.

18. Trevedi A., Greenstock C.L. Use of Sugars and Hair for ESR Emergency Dosimetry. Appl. Radiat. Isot. 1993;44:85-90. DOI: 10.1016/0969-8043(93)90201-k.

19. Tepe Çam S., Polat M., Seyhan N. The Use of Human Hair as a Biodosimeter. Appl. Radiat. Isot. 2014;94:272-281. DOI: 10.1016/j.apradiso.2014.08.021.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

Financing. The work was carried out within the framework of state contract No. 11.310.19.2 on the topic “Improving the provision of emergency preparedness and response of the South Ural Regional Medical and Dosimetric Emergency Center in the event of radiation accidents” (code “Response-19”), funded by the Federal Medical and Biological Agency of Russia. EPR measurements were partly carried out within the framework of the state order of the Ministry of Education and Science of Russia (topic "Spin", No. AAAA-A18-118020290104-2).

Contribution. Article was prepared with equal participation of the authors

Article received: 15.03.2022.  

Accepted for publication: 23.04.2022

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

To the Question About Pharmacological Protection During Irradiation In Non-infecting Doses: Maybe, Necessary? 

Communication 2.
Review of Pathogenetic Aspects and Methods for Assessing the Efficiency of Anti-Radiation Agents in Experiment

A.V. Ivanchenko1, V.A. Basharin2, I.S. Drachev1, A.B. Seleznev1, A.Yu. Bushmanov3

1Scientific Research Testing Institute of Military Medicine, St. Petersburg, Russia.

2S.M. Kirov Military Medical Academy, St. Petersburg, Russia.

3A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia

Contact person: Alexander Viktorovich Ivanchenko, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: Review and systematization of modern ideas about the mechanisms of the development of the effects of ionizing radiation in medium doses on a living organism in order to assess the need and possibility of using pharmaceutical agents suitable for modification purposes, about research methods in experiment; stimulation of discussion on the issue under consideration.

Results: the current understanding of the genesis of radiation effects from irradiation at medium doses in the range of 0.2-1 Gy as a subject of modification with antiradiation agents is considered.

Conclusions: The systematic nature of modern knowledge about the genesis of radiation effects from low-power irradiation in medium doses of the range 0.2-1 Gy, heterogeneity and mixing of mechanisms can be considered as a basis for the use of antiradiation agents with different properties and aimed at target (direct) and non-target (indirect) ) the effect of radiation. One of the problems of using and predicting the radioprotective efficiency of the PLC is the poor development of methods for establishing correlations between the indicators of increased radioresistance (without irradiation) with the actual antiradiation effect.

Keywords: irradiation, average doses, pathogenesis of consequences, methods of assessment in experiment, antiradiation agents, disputability of use

For citation: Ivanchenko AV, Basharin VA, Drachev IS, Seleznev AB, Bushmanov AYu. To the Question About Pharmacological Protection During Irradiation In Non-infecting Doses: Maybe, Necessary? Communication 2. Review of Pathogenetic Aspects and Methods for Assessing the Efficiency of Anti-Radiation Agents in Experiment. Medical Radiology and Radiation Safety. 2022;67(4):101-112. DOI: 10.33266/1024-6177-2022-67-4-101-112

References

1. Ivanchenko A.V., Basharin V.A., Drachev I.S., Seleznev A.B., Bushmanov A.Yu. On the Question of Pharmacological Protection in Exposure to Non-Damaging Doses: Perhaps Necessary? Communication 1. General Overview of Medico-Tactical and Phenomenological Aspects. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2021;66;4:89-100 (In Russ.).

2.Publication 118 of the ICRP. ICRP Report on Tissue Reactions, Early and Long-Term Effects in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in the Context of Radiation Protection. Annals of the ICRP. ICRP, Elsevier Ltd., 2012;41;1-2.

3. Legeza V.I., Zagorodnikov G.G., Reznik V.M., Aksenova N.V. Means and Methods of Bioindication of "Small" Doses of Radiation Exposure to the Human Body: Current State of the Problem (Analytical Review). Biomeditsinskiy Zhurnal MEDLINE.RU. 2020;21;31:377-395 (In Russ.).

4. Dudarev A.L. Komar V.Ye. The Main Problems of Biological Indication of Radiation Effects. Vosstanovitelnyye i Kompensatornyye Protsessy pri luchevykh Porazheniyakh = Rehabilitation and Compensatory Processes in Radiation Injuries. Materials conf. St. Petersburg Publ., 1992. P. 64-66 (In Russ.).

5. 2003 Recommendations of the ECRR. The Health Effects of Ionising Radiation Exposure at Low Doses and Low Dose Rates for Radiation Protection Purposes. Brussels, 2003. 

6. MR 2.6.1.0063-12. Kontrol Doz Oblucheniya Naseleniya, Prozhivayushchego v Zone Nablyudeniya Radiatsionnogo Obyekta, v Usloviyakh Yego Normalnoy Ekspluatatsii i Radiatsionnoy Avarii = Control of Radiation Doses to the Population Living in the Observation Area of a Radiation Object Under Conditions of Its Normal Operation and a Radiation Accident. Methodical Recommendations (In Russ.).

7. Mattson М.Р. Hormesis Defined. Ageing Res. Rev. 2008;7;1:1-7.

8. Pelevina I.I., Aleshchenko A.V., Afanasyev G.G., et al. The Phenomenon of Increased Radiosensitivity after Irradiation of Lymphocytes in Small Adaptive Doses. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2000;40;5: 544-548 (In Russ.).

9. Morgan W.F. Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: II.  Radiation-Induced Genomic Instability and Bystander Effects In Vivo, Clastogenic Factors and Transgenerational Effects. Rad. Res. 2003;159;5:581-596.

10. Meyerson F.Z., Malyshev I.Yu. Fenomen Stabilizatsii Struktur i Zashchita Serdtsa = The Phenomenon of Stabilization of Structures and Protection of the Heart. Moscow, Nauka Publ., 1993.157 p. (In Russ.).

11. Ikushima T., Aritomi H., Morisita J. Mutat. Res. 1996;358:193-198.

12. Koterov A.N., Nikolskiy A.V., et al. Adaptation to Irradiation in Vivo. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 1999;39;6:648-662 (In Russ.).

13. Ahmed K.M., Li J.J. Free Radical Biol. Med. 2008;44:1-13.

14. Smirnova O.A., Yonezawa M. Health Physics. 2004;87;4:366-374.

15. Nogami M., Huang J.Т., James S.J., et al. // Int. J. Radiat. Biol. 1993;63;6:775-783.

16. Kojima S., Ischida Y., Tarahashi M., Yamaoka R. // Radiat. Res. 2002; 3(157): 275-280

17. Shubik V.M. Immunological Changes in the Long Term after Exposure to Low Doses of Ionizing Radiation. III Mezhdunarodnyy Simpozium Mekhanizmy Deystviya Malykh Doz = III International Symposium Mechanisms of Action of Small Doses. Moscow, 3-6 December, 2002. Moscow Publ., 2002. P. 154 (In Russ.).

18. Pelevina I.I., Aleshchenko A.V., Antoshchina M.M., et al. Changes in Radiosensitivity after Exposure to Low Doses, Possible Mechanisms and Patterns. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2015;155;1:57-62 (In Russ.).

19. Butomo N.V., Ivanov V.B. The Effect of Changes in the Stem Section of the Hematopoietic System Observed under the Influence of Hematopoietic Growth Factors on the Development of Radiation Injury in Mice. Activation of Hematopoiesis and Radioresistance of the Body. Materials All-Union Scientific Conference. Research Institute of Medical Radiology, USSR Academy of Medical Sciences. Obninsk Publ., 1990. P. 9 (In Russ.).

20. Publication 103 of the International Commission on Radiation Protection (ICRP). Annals of the ICRP. ICRP, Elsevier Ltd., 2007.

21. Sanitary Rules and Regulations SanPiN 2.6.1.2523-09. Radiation Safety Standards NRB-99/2009 (In Russ.).

22. Rozhdestvenskiy L.M. Analysis of Data from Epidemiological Studies of the Radiocarcinogenic Effect and Approaches to Determining the Limit of Low Doses in Terms of the Threshold of Biologically Harmful Effects of Ionizing Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology.2003;43;2:S.227-236 (In Russ.).

23. Rozhdestvenskiy L.M. The Threshold of Stochastic Effects of Ionizing Radiation: Arguments "PRO" and "CONTRA". Applied Implementation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2011;51;5:576-594 (In Russ.).

24. Rozhdestvenskiy L.M. Pro and Contra Threshold/Non-Threshold of the Damaging Effect of Ionizing Radiation. Materialy IV Syezda po Radiatsionnym Issledovaniyam = Proceedings of the IV Congress on Radiation Research. Moscow, 20-24 November, 2001. V.1. Moscow Publ., 2001. P. 312 (In Russ.).

25. Bond V.P., Feinendegen L.E., Booz J. What Is a «Low Dose» of Radiation? Int. J. Rad. Biol. 1988;53;1:1—12.

26. Tubiana M., Aurcngo A. Dose Effect Relationship and Estimation of the Carcinogenic Effects of Low Doses of Ionizing Radiation: the Joint Report of the Academie Des Sciences (Paris) and of the Academie Nationale De Medicine. Int. J. Low Radiat. 2006;3-4:135-153.

27. Rossi H.H., Kellerer L.М. Radiation Carcinogenesis at Low Doses. Science. 1972;175:200-202.

28. Koterov A.N. From Very Small to Very Large Doses of Radiation: New Data on the Establishment of Ranges and Their Experimental Epidemiological Justification. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2013;58;2:5-21 (In Russ.).

29. Koterov A.N. Genomic Instability at Exposure of Low Dose Radiation with Low LET Mythical Mechanism of Unproved Carcinogenic Effects. Int. J. Low Radiat. 2005;4:376-451.

30. Koterov A.N. Absence of Facts of Genome Instability after Irradiation with Low Doses of Radiation with Low LET Cells Without Obvious Defects and the Organism Outside in Utero. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2006;46;5:585-596 (In Russ.).

31. Koterov A.N. Malyye Dozy Radiatsii: Fakty i Mify. Osnovnyye Ponyatiya i Nestabilnost Genoma = Small Doses of Radiation: Facts and Myths. Basic Concepts and Genome Instability. Monograph. Moscow, SRC-FMBC Publ., 2010. 283 p. (http://fmbcfmba.org/default.asp?id=6000) (In Russ.).

32. Koterov A.N. Prospects for Taking into Account the "Bystander Effect" for the Purposes of Radiation Protection. Actual Problems of Toxicology and Radiobiology. Materialy Rossiyskoy Nauchn. Konf. c Mezhdunarodn. Uchastiyem = Materials of the Russian Scientific. Conf. c intl. Participation. St. Petersburg, 19-20 May, 2011. St. Petersburg, Foliant Publ., 2011. P. 135-136 (In Russ.).

33. Zhakovko Ye.B., Krasilnikov I.I., Deyev S.P. Cytogenetic Study of the Radioprotective Action of Compounds of Various Chemical Classes. Materialy konferentsii «Prikladnyye Aspekty Radiobiologii» = Proceedings of the Conference "Applied Aspects of Radiobiology". Moscow Publ., 1994. P. 32 (In Russ.).

34. Rozhdestvenskiy L.M. Osnovy Biologicheskogo Deystviya Ioniziruyushchego Izlucheniya (Dualnyy Kharakter Deystviya Radiatsii na Bioobyekty) = Fundamentals of the Biological Effect of Ionizing Radiation (the Dual Nature of the Effect of Radiation on Biological Objects). Lecture 1. FMBC Named A.I. Burnazyan. https://ozlib.com/857156/tehnika/osnovy_biologicheskogo_deystviya_ioniziruyuschego_izlucheniya_dualnyy_harakter_deystviya_radiatsii_bioobekt#293 (In Russ.).

35. Moskalev A.A., Shaposhnikov M.V. Geneticheskiye Mekhanizmy Vozdeystviya Ioniziruyushchikh Izlucheniy v Malykh Dozakh = Genetic Mechanisms of Exposure to Ionizing Radiation in Low Doses. St. Petersburg, Nauka Publ., 2009. 137 p. (In Russ.).

36. Bychkovskaya I.B., Stepanov R. P., Kirik O.V. Some New Aspects of the Problem of Radiosensitivity of Low-Renewing Tissues. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2003;48;6:5-17 (In Russ.). 

37. Yarmonenko S.P. Radiobiologiya Cheloveka i Zhivotnykh = Radiobiology of Humans and Animals. Moscow, Vysshaya Shkola Publ., 1977. 368 p. (In Russ.). 

38. Bychkovskaya I.B., Komarov Ye.I., Fedortseva R.F. A Special Category of Harmful Radiation Consequences: Alternative Changes. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2005;50;5:5-15 (In Russ.).

39. Kirik O.V. Ultrastructural Changes in the Epithelium of the Kidney Tubules in the Long Term after Exposure to Ionizing Radiation. Aktualnyye Problemy Biologii i Ekologii = Actual Problems of Biology and Ecology. Materials of the VII Youth Scientific Conference. Syktyvkar Publ., 2000. P. 99 (In Russ.).

40. Azizova Т. К., Sumina М. К. Abote Role of Ionizing Radiation in Forming Early Cerebral Atherosclerosis of Radiation-Dangeros Manufature`S Professionals. Materials Russian-Norwegian Satellite Symposium on Nuclear Accidents, Radioecology and Health. 27-28 Oct. 1994. 2nd International Conference «Radiobiological Consequence of Nuclear Accidents». 25-26 Oct. 1994. Moscow Publ., 1994. P. 23. 

41. Prilozheniye J. Urovni Oblucheniya i Effekty v Rezultate Chernobylskoy Avarii = Appendix J. Exposure Levels and Effects from the Chernobyl Accident. UNSCEAR 2000 Report. Moscow Publ., RADEKON, 2001 (In Russ.). 

42. Bychkovskaya I.B., Gilyano N.Ya., Fedortseva R.F., et al. About a Special form of Radio-Induced Genome Instability. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2005;45;6:688-693 (In Russ.).

43. Michalowski A. Radiat. Environ. Biophys. 1981;19;3:157-172.

44. Akleyev A.V. Tissue Reactions to Chronic Exposure to Ionizing Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2009;49;1:53-20 (In Russ.).

45. Denham J.W., Hauer-Jensen M., Peters L.J. // Int. J. Radiat. Oncol. Biol. Phys. 2001;50;5:1105-1106.

46. Bychkovskaya I.B., Kirik O.V., Fedortseva R.F. On the Problem of Non-Mutagenic Non-Targeting Effects in Low-Renewable Tissues. Analysis of the Effect of Low-Dose Radiation on the Epithelium of the Rat Renal Tubules. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2014;54;4: 360-366 (In Russ.).

47. Stepanov R.P. Ultrastructural Basis of Vascular Endothelial Pathology. Tr. Leningr. ob-va patologoanatomov = Tr. Leningrad. About-va of Pathologists. Leningrad Publ., 1981. No. 23. P. 275-279 (In Russ.).

48. Vorobyev Ye.I., Stepanov R.P. Ioniziruyushchaya Radiatsiya i Krovenosnyye Sosudy = Ionizing Radiation and Blood Vessels. Moscow, Energoatomizdat Publ., 1985. 124 p. (In Russ.).

49. Strelin G.S. Regeneratsionnyye Protsessy v Razvitii i Likvidatsii Luchevogo Povrezhdeniya = Regeneration Processes in the Development and Elimination of Radiation Damage. Moscow, Meditsina Publ., 1978. 208 p. (In Russ.).

50. Strelin G.S., Yarmonepko S.P. Recovery Processes in an Irradiated Organism. Sovremennyye Problemy Radiobiologii. Postradiatsionnaya Reparatsiya = Modern Problems of Radiobiology. Post-Radiation Repair. Moscow, Atomizdat Publ., 1970. P. 264-318 (In Russ.).

51. Moskalev Yu.I. Otdalennyye Posledstviya Ioniziruyushchikh Izlucheniy = Long-Term Effects of Ionizing Radiation. Moscow, Meditsina Publ., 1991. 462 p. (In Russ.).

52. Darenskaya N.G., Ushakov I.B., Ivanov I.V., Ivanchenko A.V., Nasonova T.A. Ot Eksperimenta na Zhivotnykh – k Cheloveku: Poiski i Resheniya = From an Experiment on Animals to a Person: Searches and Solutions. Monograph. Voronezh, Nauchnaya Kniga Publ., 2010. 237 p. (In Russ.).

53. Stavitskiy R.V., Lebedev L.A., Yermolayev I.V., et al. Multivariate Analysis of Peripheral Blood Parameters to Assess the Effects of Small Doses. Mekhanizmy Deystviya Malykh Doz = Mechanisms of Action of Small Doses. Materials of the III International Symposium. Moscow, 3-6 December, 2002. Moscow Publ., 2002. P. 138 (In Russ.).

54. Yelakov A.L., Osipov A.N., Pomerantseva M.D., et al. Comparative Assessment of the Genetic Effects of Chronic Exposure to Low-Intensity Gamma Radiation by Cytogenetic Motodes and the DNA Comet Method. Mekhanizmy Deystviya Malykh Doz = Mechanisms of Action of Small Doses. Materials of the III International Symposium. Moscow, 3-6 December, 2002. Moscow Publ., 2002. P. 78 (In Russ.).

55. Korobov V.N. Small Doses of X-Ray Irradiation Activate the NO-Synthase Component of the Nitric Oxide Cycle. Mekhanizmy Deystviya Malykh Doz = Mechanisms of Action of Small Doses. Materials of the III International Symposium. Moscow, 3-6 December, 2002. Moscow Publ., 2002. P. 93 (In Russ.).

56. Vorobtsova I.E. The Role of Cytogenetic Studies in Assessing the Long-Term Effects of Ionizing Radiation on Humans. Aktualnyye Problemy Toksikologii i Radiobiologii = Actual problems of toxicology and radiobiology. Materials of the Russian scientific. Conf. from International Participation. St. Petersburg, 19-20 May, 2011. St. Petersburg, Foliant Publ., 2011. P. 59 (In Russ.).

57. Parkhomenko I.M., Grayevskaya Ye.E., Gonsales G.M. Adaptive Response as a Model for Studying the Radioprotective Effect of Low-Dose Irradiation. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Proceedings of the III Congress on Radiation Research. Moscow, 14-17 October, 1997. Moscow Publ., 1997. V.1. P. 159-160 (In Russ.).

58. Zaichkina S.I., Rozanova O.M., Klokov D.Yu., et al. Regularities of the Formation of a Radiation Adaptive Response in Bone Marrow Cells of Mice in Vivo. Materialy IV Syezda po Radiatsionnym Issledovaniyam = Materials of the IV Congress on Radiation Research. Moscow, 20-24 November, 2001. Moscow Publ., 2001. V.1. P. 291 (In Russ.).

59. Otsenka Mutagennoy Aktivnosti Faktorov Okruzhayushchey Sredy v Kletkakh Raznykh Mlekopitayushchikh Mikroyadernym Metodom = Evaluation of the Mutagenic Activity of Environmental Factors in the Cells of Different Mammals by the Micronucleus Method. Guidelines. Moscow Publ., 2001 (In Russ.).

60. Salin Ye.N., Znamenskiy V.V. Irradiation Induced Saccharin Taste Rejection as a Method for Finding Radiation Controls at Non-lethal Exposure Doses. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Proceedings of the III Congress on Radiation Research. Moscow, 14-17 October, 1997. Moscow Publ., 1997, V.2. P. 213-214 (In Russ.). 

61. Rozhdestvenskiy L.M., Mikhaylov V.F., Shlyakova T.G., et al. Search for Antiradiation Agents and Indicators of Their Effectiveness on the Model of Prolonged Irradiation of Mice with a Low Dose Rate. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Proceedings of the VII Congress on Radiation Research. Moscow, 21-24 October, 2014. Moscow Publ., 2014. P. 169 (In Russ.).

62. Rosina Y., Khon Z., Zoyelzer F., et al. New Possibilities of Biodosimetric Determination of Low Doses of Radiation. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Proceedings of the VI Congress on Radiation Research. Moscow, 25-28 October, 2010. Moscow, RUDN Publ., 2010. V. II. P. 79 (In Russ.).

63. Sypin V.D., Osipov A.N., Yelakov A.L., et al. Evaluation of the Genetic Effects of Chronic Exposure to Low-Intensity γ-Radiation by Cytogenetic Methods and the Method of DNA Comets. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2003;43;2:156-169 (In Russ.).

64. Rozhdestvenskiy L.M. Mekhanizmy Radiozashchitnogo Effekta i Indikatsiya Effektivnosti Radioprotektorov = Mechanisms of the Radioprotective Effect and Indication of the Effectiveness of Radioprotectors. Moscow, Energoatomizdat Publ., 1985. 128 p. (In Russ.).

65. Rozhdestvenskiy L.M. Classification of Antiradiation Agents in the Aspect of Their Pharmacological Signal and Conjugation with the Stage of Development of Radiation Injury. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2017;57;2;117-135 (In Russ.).

66. Rozhdestvenskiy L.M. Modifikatsiya Luchevykh Porazheniy: Zashchita i Lecheniye = Modification of Radiation Injuries: Protection and Treatment. Lecture 5. Moscow, FMBC Im. A.I. Burnasyan Publ. https://ozlib.com/857156/tehnika/osnovy_biologicheskogo _deystviya_ioniziruyuschego_izlucheniya_dualnyy_harakter_deystviya_radiatsii_bioobekt#29367 (In Russ.).

67. Rozhdestvenskiy L.M. Topical Issues of Search and Research of Antiradiation Agents. Ostryye Problemy Razrabotki Protivoluchevykh Sredstv: Konservatizm ili Modernizatsiya = Acute Problems in the Development of Antiradiation Agents: Conservatism or Modernization. Collection of Abstracts of the Russian Scientific Conference. Moscow, 13-14 November, 2012. Moscow Publ., 2012. P. 8 (In Russ.).

68. Rozhdestvenskiy L.M., Mikhaylov V.F., Shlyakova T.G., et al. Search for Antiradiation Drugs on the Model of Prolonged Irradiation of Mice with a Low Dose Rate and Assessment of their Effect on the Expression of Genes of Heat Shock Proteins. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2015;55;4:420-430 (In Russ.).

69. Belyayev I.K., Zhorova Ye.S., Zhuravlev V.F., et al. Radioprotective and Antitumor Effects of Domestic Beta-Carotene Substances. Khimiya, Farmakologiya i Mekhanizmy Protivoluchevykh Sredstv = Chemistry, Pharmacology and Mechanisms of Antiradiation Agents. Materials of the IV Conference. Moscow Publ., 1990. P. 8-10 (In Russ.).

70. Shlyakova T.G., Chernov G.A., Pulatova M.K., et al. Biological Indication of Anti-Radiation Action of Radioprotectors at Non-Lethal Doses of Radiation. Radiobiologiya, Radioekologiya, Radiatsionnaya Bezopasnost = Radiobiology, Radioecology, Radiation Safety. Proceedings of the III Congress on Radiation Research. Moscow, 14-17 October, 1997. Moscow Publ., 1997, V.2. P. 218-219 (In Russ.).

71. Ignatov M.A., Blokhina T.M., Sycheva L.P., et al. Evaluation of the Effectiveness of Antiradiation Drugs for Phosphorylation of Histone H2AX and Micronucleus Test. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2019;59;6:585-591 (In Russ.).

72. Grebenkov S.V. Postchernobylskiy Sindrom: Sokhraneniye Zdorovya Voyennosluzhashchikh i Naseleniya v Usloviyakh Radiatsionno Destabilizirovannoy Sredy = Post-Chernobyl Syndrome: Preserving the Health of Servicemen and Population in a Radiation-Destabilized Environment. St. Petersburg, Redaktor Publ., 2004. 160 p. (In Russ.).

73. Sumarukov G.V. Okislitelnoye Ravnovesiye i Radiochuvstvitelnost Organizmov = Oxidative Equilibrium and Radiosensitivity of Organisms. Moscow, Atomizdat Publ., 1970. 104 p. (In Russ.).

74. Burtt J.J., Thompson P.A., Lafrenie R.M. Non-targeted effects and radiation-induced carcinogenesis: a review. J. Radiol. Prot. 2016;36:R23–R35.

75. Bordini L., Taino G. Gli Effetti Stocastici Delle Radiazioni Ionizzanti. G. Ital. Med. Lav. Erg. 2017;39;2:116-123 (In Italian).

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors

Article received: 28.03.2022.  Accepted for publication: 23.05.2022

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

Anti-Glomerular Basement Membrane Antibody Disease
with Mild Kidney Failure and Without Progression of Lung Pathology: Case Report

Sheikh Zh.V. 1,2, Nikolaev E.V.1, Gazaryan Ya.R.1, Safonova T.D.1, Zakharova E.V. 1,2

1Russian Medical Academy of Continued Professional Education, Moscow, Russia.

2S.P. Botkin’s City Clinical Hospital, Moscow, Russia.

Contact person: Zhanna V. Sheikh; E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Anti-GBM antibody disease (Goodpasture syndromee) is a rare immunecomlpex vasculitis, affecting small vessels, and characterized by rapidly progressive glomerulonephritis and alveolitis. Causative mechanism is defined by the hyperproduction of autoantibodies against the α3-chain of type IV collagen (Goodpasture antigen) with immune complex formation on the glomerular and alveolar basement membrane. Typically patients with fnti-GBM antibody disease present with rapidly progressive (crescentic) glomerulonephritis, more than in half of cases associated with alveolar hemorrhage. Cases of Anti-GBM antibody disease with atypical clinical presentation have been reported. 

We report a case of atypical clinical presentation anti-GBM antibody disease with mild renal damage and slow progression of pulmonary involvement. Main CT signs were multiple centrilobular ground glass nodules.

This case report demonstrates that CT with disseminated pulmonary process associated with even mild kidney involvement in patients with high anti-GBM antibodies titers gives a clue to the diagnosis of anti-GBM antibody disease.

Keywords: Goodpasture syndrome, anti-GBM antibody disease, glomerulonephritis, computed tomography, case report.

For citation: Sheikh ZhV, Nikolaev EV, Gazaryan YaR, Safonova TD, Zakharova EV. Anti-glomerular basement membrane antibody disease with mild kidney failure and without progression of lung pathology: case report. Medical Radiology and Radiation Safety. 2022;67(4):96-100. DOI: 10.33266/1024-6177-2022-67-4-96-100

References

1. Jennette J.C., Nickeleit V. Anti-Glomerular Basement Membrane Glomerulonephritis and Goodpasture Syndrome. Heptinstall’s Pathology of the Kidney. Eds. Jennette J.C., Silva F.G., Olson J.L., et al. Philadelphia, Wolters Kluwer, 2015. P. 657–684.

2. Pusey C.D. Anti-Glomerular Basement Membrane Disease. Kidney Int. 2003;64:1535–1550.

3. Fischer E.G., Lager D.J. Anti-Glomerular Basement Membrane Glomerulonephritis: a Morphologic Study of 80 Cases. Am. J. Clin. Pathol. 2006;125:445–450.

4. Silvariño R., Noboa O., Cervera R. Anti-Glomerular Basement Membrane Antibodies. Isr. Med. Assoc. J. 2014;16:727–732.

5. Salama A.D., Levy J.B., Lightstone L., Pusey C.D. Goodpasture's Disease. Lancet. 2001;358:917–920.

6. Nagano, et al. Case Report: Anti-Glomerular Basement Membrane Antibody Disease with Normal Renal Function. BMC Nephrology. 2015;16:185.

7. Savage C.O., Pusey C.D., Bowman C., Rees A.J., Lockwood C.M. Antiglomerular Basement Membrane Antibody Mediated Disease in the British Isles 1980-4. Br. Med. J. (Clin. Res. Ed.) 1986;292:301-304.

8. Cui Z., Zhao M.H., Singh A.K., Wang H.Y. Antiglomerular Basement Membrane Disease with Normal Renal Function. Kidney Int. 2007;72:1403–1408.

9. Bowley N.B., Steiner R.E., Chin W.S. The Chest X-Ray in Antiglomerular Basement Membrane Antibody Disease (Goodpasture's Syndrome). Clin. Radiol. 1979;30:419-429.

10. Sheykh Zh.V., Zakharova Ye.V., Dunayev A.P. Sistemnyye Vaskulity: Vozmozhnosti Sovremennoy Meditsinskoy Vizualizatsii = Systemic Vasculitis: the Possibilities of Modern Medical Imaging. Moscow, Kraft+ Publ., 2019. 172 p. (In Russ.) [Шейх Ж.В., Захарова Е.В., Дунаев А.П. Системные васкулиты: возможности современной медицинской визуализации. М: Крафт+, 2019. 170 с.].

11. Brant W.E., Helms C.A. Fundamentals of Diagnostic Radiology. Lippincott Williams & Wilkins, 2007. ISBN:0781765188.

12. Collard H.R., Schwarz M.I. Diffuse Alveolar Hemorrhage. Clin. Chest Med. 2004;25:583–592.

13. Hansell D.M. Small-Vessel Diseases of the Lung: CT-Pathologic Correlates. Radiology. 2002;225;3:639-653. DOI: 10.1148/radiol.2253011490. 

14. Sheikh Zh.W., Safonova T.D Computed Tomography for the Diagnosis of Pulmonary Lesions in Patients with Systemic Vasculitis. Prakticheskaya pulmonologiya. 2019;2:69-74 (In Russ.) [Шейх Ж.В., Сафонова Т.Д. Компьютерная томография в диагностике легочных поражений при системных васкулитах // Практическая пульмонология. 2019. № 2. С. 69-74].

15. Primack S.L., Miller R.R., Müller N.L. Diffuse pulmonary hemorrhage: clinical, pathologic, and imaging features. AJR Am. J. Roentgenol. 1995;164;2:295-300.

16. Foster, Mary H., Basement Membranes and Autoimmune Diseases. Matrix Biology. 2017;57-58:149-168. DOI: 10.1016/j.matbio.2016.07.008.

17. Specks U. Diffuse Alveolar Hemorrhage Syndromes. Curr. Opin. Rheumatol. 2001;13:12–17.

18. Reiser M.F. Multislice CT. Springer Verlag, 2010. ISBN: 3642069681.

19. Levy J.B., Turner A.N., Rees A.J., Pusey C.D. Long-Term Outcome of Anti-Glomerular Basement Membrane Antibody Disease Treated with Plasma Exchange and Immunosuppression. Ann. Intern. Med. 2001;134:1033–1042.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

 Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors

Article received: 28.03.2022.  Accepted for publication: 23.05.2022

 

 

 

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

Igor Borisovich Keirim-Markus
(on the Occasion of His 100th Birthday)

I.L. Efimova

A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia.

Contact person: Efimova Irina Leonidovna, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

The article contains material on the scientific activity and life path of a well-known scientist in the field of radiation safety, the first head of the laboratory of emergency and individual dosimetry, one of the developers of the first neutron dosimeter in the USSR. This publication is a historical review of materials from the collection of the Museum of the FMBTS. A.I.Burnazyan, the archive of the scientist’s family, printed publications, is of scientific interest because it holistically presents the life and scientific path of the famous scientist who gave 58 years of service to science within the walls of the Institute of Biophysics (now part of the A.I.Burnazyan FMBC) .

The scientist made a great contribution to the formation of a new area of ​​science at the intersection of dosimetry, radiobiology and radiation medicine, named equidosimetry at his suggestion. The museum keeps the book of I.B.Keirim-Markus "Equidosimetry", where for the first time in the world scientific literature summarized materials on the main sections of equidosimetry, the history of its occurrence, tasks, criteria for assessing the effect of radiation, in particular in large doses, the values ​​of equidosimetry, methods and instruments for their measurement.

Keywords: Kerim-Markus I.B., biophysics, dosimetry, radiation safety, equidosimetry, radiation sickness, Chernobyl accident

For citation: Efimova IL. Igor Borisovich Keirim-Markus (on the occasion of his 100th birthday). Medical Radiology and Radiation Safety. 2022;67(4):113-116. DOI: 10.33266/1024-6177-2022-67-4-113-116

References

1. Memoirs of I.B. Keirim-Markus. About the militia and beyond. From the archive of the family of I.B. Keirim-Markus. Internet resources. website http://jolaf.jnm.ru/keirim-markus/

2. Order No. 55 of the director of the SSC-RF-Institute of Biophysics L.A. Ilyin on the declaration of gratitude to I.B. Keirim-Markus. 09/05/1997. Fund of the Museum of the FMBC named after. A.I. Burnazyan

3. Memoirs of V.N. Klochkov. Fund of the Museum of the FMBC named after. A.I. Burnazyan

4. L.A. Ilyin. Realities and myths of Chernobyl. M., 1996, p.274

5. In memory of I.B. Keirim-Markus// Equipment and news of radiation measurements, 2006, No. 3(46), p.71

6. Memories of the father of T.I. Yuganova. From the archive of the family of I.B. Keirim-Markus. 2022

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. The article was prepared by one author.

Article received: 19.02.2022.  Accepted for publication: 23.03.2022

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2766822
Today
Yesterday
This week
Last week
This month
Last month
For all time
2716
4471
25206
18409
74565
75709
2766822

Forecast today
2976


Your IP:216.73.216.36