JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 18–24

DOI: 10.12737/article_5d11009f713799.54342353

A.A. Tsishnatti1,2, M.V. Pustovalova1, A.K. Grekhova1, Yu.A. Bushmanov1, T.A. Astrelina1, I.V. Kobzeva1, V.A. Nikitina1, V.A. Brunchukov1, D.Yu. Usupzhanova1, I.M. Barabash1, T.M. Blokhina1, Yu.A. Fedotov1, N.Yu. Vorobyova1, A.S. Samoylov1, A.N. Osipov1

Influence of Ultra-High Dose Radiation on Cryopreserved Mesenchymal Stem Cells:
DNA Double-Strand Breaks and Proliferative Activity

1. A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. National Research Nuclear University MEPhI, Moscow, Russia

A.A. Tsishnatti – Technician;
M.V. Pustovalova – Researcher;
A.K. Grekhova – Junior Researcher;
Yu.A. Bushmanov – Head of Dep.;
T.A. Astrelina – Head of the Center for Biomedical Technologies, Dr. Sci. Med.;
I.V. Kobzeva – Head of the Center for Biomedical Technologies Cryobank, PhD Med.;
V.A. Nikitina – Leading Researcher, PhD Med., ISCT member;
V.A. Brunchukov – Junior Researcher;
D.Yu. Usupzhanova – Junior Researcher;
I.M. Barabash – Head of Dep.;
T.M. Blokhina – Researcher;
Yu.A. Fedotov – Researcher;
N.Yu. Vorobyova – Head of Lab., PhD Biol.;
A.S. Samoylov – Director General, Dr. Sci. Med., Prof. RAS;
A.N. Osipov – Head of Dep., Dr. Sci. Biol., Prof. RAS;

Abstract

Purpose: To conduct a comparative assessment of human mesenchymal stem cells (MSCs) exposed to ultrahigh doses of bremsstrahlung photon radiation at liquid nitrogen temperature (–196 °C) and room temperature (+22 °С) on the yield of residual DNA double-strand breaks (DSBs) and proliferative activity of thawed MSCs.

Material and methods: Isolation and cultivation of MSCs was carried out according to standard methods. Dimethyl sulfoxide (DMSO) at a final concentration of 10 % was used for cells cryopreservation. The cells were irradiated with bremsstrahlung photon radiation with photon nominal energy 5 MeV, using the UELR-10-100-T-100 accelerator (Russia). Cells were irradiated at the doses of 50 and 500 Gy at a temperature of +22 °С and –196 °C. The immunocytochemical analysis of γH2AX foci (marker of DNA DSBs) was used for the assessment of the yield of residual DNA DSBs. The number of Ki67-positive cells (protein marker of cell proliferation) was analyzed for assessment of the cell proliferative activity.

Results: The results showed that48 hours after irradiation of MSCs at a dose of 50 Gy the number of residual γH2AX foci in the nuclei of MSCs irradiated at +22 °С was about 3.2 times (p = 0.0002) higher than in those irradiated at –196 °C. The analysis of the cell proliferative activity using Ki67 protein showed that cells irradiated at a dose of 50 Gy at a temperature of +22 °С completely lost their ability to proliferate. The proliferative activity of cells irradiated at the same dose, but at a temperature of –196 °C, was significantly reduced, but some of the cells (3.5 ± 1.1 %) still retained the ability to proliferate. After irradiation with a dose of 500 Gy at –196 °C, the cells completely lost their ability to proliferate, but partially retained the ability to adhere. The integral fluorescence of conjugated with the flurochrome γH2AX foci in MSCs irradiated at a dose of 500 Gy at a temperature of –196 °C was 1.8 times lower than that in MSCs irradiated at a temperature of +22 °С.

Conclusion: The results of the study indicate that MSCs cryopreserved in a medium containing 10 % DMSO irradiated at liquid nitrogen temperature (–196 °C) can tolerate the effects of exposure to high doses (up to 50 Gy) of ionizing radiation. However, there is a rather high yield of residual DNA DSBs and a very low proliferative activity, which makes cells unsuitable for use in clinical practice. It seems promising to use a quantitative analysis of γH2AX foci to assess genome damage and the functional state of cells irradiated in a cryopreserved state.

Key words: mesenchymal stem cells, cryopreservation, DNA double-strand breaks, cell proliferation, bremstrahlung, ultrahigh doses

REFERENCES

1. Pezeshk A. The effects of ionizing radiation on DNA: the role of thiols as radioprotectors. Life sciences. 2004 Mar 26;74(19):2423-9. PubMed PMID: 14998719.
2. Ashwood-Smith MJ, Friedmann GB. Lethal and chromosomal effects of freezing, thawing, storage time, and x-irradiation on mammalian cells preserved at –196 degrees in dimethyl sulfoxide. Cryobiology. 1979 Apr;16(2):132-40. PubMed PMID: 573193.
3. Pustovalova M, Astrelina T, Grekhova A, Vorobyeva N, Tsvetkova A, Blokhina T, et al. Residual gammaH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells. Aging. 2017 Nov 21;9(11):2397-410. PubMed PMID: 29165316. Pubmed Central PMCID: 5723693.
4. Pustovalova M, Grekhova A, Astrelina T, Nikitina V, Dobrovolskaya E, Suchkova Y, et al. Accumulation of spontaneous gammaH2AX foci in long-term cultured mesenchymal stromal cells. Aging. 2016 Dec 11; 8(12):3498-506. PubMed PMID: 27959319. Pubmed Central PMCID: 5270682.
5. Wang F, Yu M, Yan X, Wen Y, Zeng Q, Yue W, et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells and Development. 2011 Dec; 20(12):2093-102. PubMed PMID: 21361847.
6. Haack-Sorensen M, Kastrup J. Cryopreservation and revival of mesenchymal stromal cells. Meth. Mol. Biol. 2011;698:161-74. PubMed PMID: 21431518.
7. Ozerov IV. Mathematical modeling of the double-strand DNA breaks induction and repair processes in mammalian cells under the rarely ionizing radiation action with different dose rates: PhD thesis of physics. Moscow. SRC – FMBC. 2015. (Russian).
8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. PubMed PMID: 16923606.
9. Kotenko KV, Bushmanov AY, Ozerov IV, Guryev DV, Anchishkina NA, Smetanina NM, et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates. Int J Mol Sci. 2013. Jul 01; 14 (7):13719-26. PubMed PMID: 23880845. Pubmed Central PMCID: 3742213.
10. Harper JW, Elledge SJ. The DNA damage response: ten years after. Molecular Cell. 2007. Dec 14; 28 (5):739-45. PubMed PMID: 18082599. Epub 2007/12/18. eng.
11. Osipov AN, Lizunova EY, Gur’ev DV, Vorob’eva NY. Genome damage and reactive oxygen species production in the progenies of irradiated CHO-K1 cells. Biophysics. 2011; 56 (5):931-5.
12. Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, et al. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep. 2018 Nov 1;8(1):16202. PubMed PMID: 30385845. Pubmed Central PMCID: 6212584.
13. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016 Jan; 26(1):52-64. PubMed PMID: 26437586. Pubmed Central PMCID: 4862604.
14. Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol. 2016 Jun; 37-38:51-64. PubMed PMID: 27016036.
15. Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutation Res. 2017 Oct; 803-805:51-5. PubMed PMID: 28781144.
16. Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol. 2014 May; 26(5):243-9. PubMed PMID: 24630811.
17. Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer. 2010 Jan 5; 10: 4. PubMed PMID: 20051134. Pubmed Central PMCID: 2819996.
18. Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget. 2015 Sep 29; 6 (29):26876-85. PubMed PMID: 26337087. Pubmed Central PMCID: 4694959.
19. Lucas CC, Melo LR, de Sousa M, de Morais GB, Martins MF, Xavier FAF, et al. Cryoprotectant agents and cooling effect on embryos of Macrobrachium amazonicum. Zygote. 2018 Apr; 26(2):111-8. PubMed PMID: 29655380.
20. Smetanina NM, Pustovalova MV, Osipov AN. Effect of dimethyl sulfoxide on the extent of DNA single-strand breaks and alkali-labile sites induced by 365 nm UV-radiation in human blood lymphocyte nucleoids. Radiation Biology. Radioecology. 2014 Mar-Apr; 54(2):169-73. PubMed PMID: 25764818. (Russian).
21. Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radical Biology & Medicine. 2014 Aug; 73:34-40. PubMed PMID: 24816295.

For citation: Tsishnatti AA, Pustovalova MV, Grekhova AK, Bushmanov YuA, Astrelina TA, Kobzeva IV, Nikitina VA, Brunchukov VA, Usupzhanova DYu, Barabash IM, Blokhina TM, Fedotov YuA, Vorobyova NYu, Samoylov AS, Osipov AN. Influence of Ultra-High Dose Radiation on Cryopreserved Mesenchymal Stem Cells: DNA Double-Strand Breaks and Proliferative Activity. Medical Radiology and Radiation Safety. 2019;64(4):18–24. (Russian).

DOI: 10.12737/article_5d11009f713799.54342353

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 25–31

DOI: 10.12737/article_5d1102809c5ac3.32613968

V.K. Kuznetsov, N.I. Sanzharova, A.V. Panov, N.N. Isamov

Radioecological Monitoring of Agroecosystems in the NPP Vicinity:
Methodology and Results of Investigations

Russian Institute of Radiology and Agroecology, Obninsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

V.K. Kuznetsov – Leading Researcher, Dr. Sci. Biol.;
N.I. Sanzharova – Director, Dr. Sci. Biol., Prof., Corr. Member RAS;
A.V. Panov – Deputy Director, Dr. Sci. Biol., Prof. RAS;
N.N. Isamov – Leading Researcher, PhD Biol.

Abstract

Purpose: Justification of the necessity to establish and maintain a system of radioecological monitoring of agricultural ecosystems in the vicinity of nuclear power plants at all stages of the life cycle of a radiation-hazardous facility.

Material and methods: The paper presents methodological approaches (sanitary-hygienic and environmental) to radioecological monitoring of agricultural ecosystems in the region of the NPP location. The tasks of the radioecological monitoring of agricultural ecosystems are defined, and its organisation and management stages are highlighted. The article displays the features of the development of programs and regulations of radioecological monitoring of agricultural ecosystems. The main objects of radioecological monitoring, parameters to be monitored, and also the frequency of monitoring observations are determined. The principles of locating the control points on the monitoring network are substantiated.

Results: The results of radioecological monitoring of agricultural ecosystems in the impact zones of the Kursk and Rostov NPPs are presented. The approaches to the creation of a monitoring network, taking into account the peculiarities of the regions of the NPPs’ location (landscape, soil, economic), are demonstrated. It is shown that the contamination density of agricultural lands by 90Sr varies in the range of 0.47–1.74 kBq/m2, and by 137Cs – 2.7–9.7 kBq/m2 for Kursk NPP and, for Rostov NPP it is 0.36–2.57 kBq/m2 by 90Sr and 2.25–4.55 kBq/m2 by 137Cs. Over the entire period of monitoring observations, none of the samples of agricultural products appeared to have an excess of sanitary and hygienic standards for the content of radionuclides. Due to the consumption of food produced in 30-km observation zones, about 63 Bq/a of 90Sr and 195 Bq/a of 137Cs in the Kursk NPP observation zone and, respectively, 133 and 184 Bq/a in the vicinity of Rostov NPP enter the diet of the local population, which is almost 400 times for 137Cs and 10–20 times for 90Sr below the annual ingestion limits respectively. Differences in the accumulation of radionuclides for the same crop in different years of observation come up to 1.5 times, due to the influence of soil and weather conditions, as well as different doses of ameliorants application.

Conclusion: The results of the radioecological monitoring of agricultural ecosystems confirm that the operation of the Kursk and Rostov NPPs in normal mode does not lead to a deterioration of the radiation situation in the regions where they are located. Radiation doses on the local population do not exceed the established standard values. The system of radioecological monitoring of agricultural ecosystems should be an integral component in the general system of radiation safety in the vicinities of NPPs and other radiation-hazardous facilities.

Key words: Nuclear Power Plants, agroecosystems, radionuclides, radioecological monitoring, foodstuffs, exposure doses of population

REFERENCES

  1. Conceptual provisions of the strategy for the development of nuclear energy in Russia in the XXI century. Moscow. NIKIAT; 2012. 62 p. (Russian).
  2. Russia’s energy strategy until 2030 (approved by the decree of the Government of the Russian Federation of November 13. 2009 No. 1715-r). (Russian).
  3. Organization of state radioecological monitoring of agroecosystems in the zone of exposure to radiation-hazardous objects. MU-13.5.13-00. (approved by the Ministry of Agriculture of the Russian Federation on August 7, 2000). Moscow. 2000. 28 p. (Russian).
  4. Methods of organizing and conducting agroecological monitoring of agricultural land in areas of industrial pollution and the assessment of the environmental situation in agriculture in the regions where nuclear power plants are located and the Chernobyl NPP accident. Ed. by N.I. Sanzharova. Obninsk: VNIISHRAE. 2010. 276 p. (Russian).
  5. Engineering surveys for the location, design and construction of nuclear power plants. Part II. Engineering surveys for the development of design and working documentation and maintenance of construction. SP 151.13330.2012. Moscow. 2013. 155 p. (Russian).
  6. Guidelines for conducting local monitoring at reference sites. 1996. Moscow. CINAO. 1996. 16 p. (Russian).
  7. Sanitary rules for the design and operation of nuclear power plants. SanPiN 2.6.1.24–03. 2003 (approved by the decision of the Ministry of Health of the Russian Federation of April 28, 2003 No. 69). (Russian).
  8. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Safety Rep. Ser. N19. Vienna: IAEA, 2001. 216 p.
  9. Data on radioactive contamination of the territory of populated areas of the Russian Federation with cesium-137, strontium-90 and plutonium-239 + 240. 2015. Ed. by S.M. Vakulovsky. Obninsk, “Typhoon”. 2016. 225 p. (Russian).
  10. Report “On the state and protection of the environment in the territory of the Kursk region in 2015”. 2016. Kursk, Administration of the Kursk Region. 2016. 126 p. (Russian).
  11. Report “On the state of sanitary and epidemiological well-being of the population of the Rostov region in 2017”. Rostov-on-Don, Administration of the Rostov Region. 2018. 197 p. (Russian).
  12. Materials of the state report “On the state of sanitary and epidemiological welfare of the population in the Kursk region in 2015”. 2016. Kursk, Administration of the Kursk Region. 2016. 280 p. (Russian).
  13. Radiation situation on the territory of Russia and neighboring countries. 2014. Obninsk, “Typhoon”. 2014. 367 p. (Russian).

For citation: Kuznetsov VK, Sanzharova NI, Panov AV, Isamov NN. Radioecological Monitoring of Agroecosystems in the NPP Vicinity: Methodology and Results of Investigations. Medical Radiology and Radiation Safety. 2019;64(4):25–31. (Russian).

DOI: 10.12737/article_5d1102809c5ac3.32613968

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 41–47

DOI: 10.12737/article_5d1108af5d48d3.68800561

A.V. Boyko1, E.A. Dunaeva1, L.V. Demidova1, B.Yа. Alekseev2, A.V. Leont’ev1,
O.B. Dubovetskaya1, L.G. Serova1

Radiotherapy for Patients with Hydronephrosis–Induced Cervical Cancer

1. P.A. Hersen Moscow Oncology Research Center, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. N.A. Lopatkin Research Institute of Urology and Interventional Radiology, Moscow, Russia

A.V. Boyko – Head of Dep., Prof., Dr. Sci. Med., ESTRO Member;
E.A. Dunaeva – Senior Researcher, PhD Med.;
L.V. Demidova – Leading Researcher, Dr. Sci. Med.;
B.Yа. Alekseev – Deputy Director, Dr. Sci. Med., Prof., EAU Member, SIU Member;
A.V. Leont’ev – Head of Dep., PhD Med., EANM Member;
O.B. Dubovetskaya – Research Worker, PhD Med.;
L.G. Serova – Oncologist, PhD Med.

Abstract

Purpose: To justify the expansion of indications for radiation or chemoradiation therapy in patients with primary or recurrent cervical cancer complicated by hydronephrosis by eliminating obstruction of the ureters.

Material and methods: The study included 24 patients who received radiation or chemoradiotherapy from 2012 to 2018. 17 patients among them had primary cervical cancer and the other 7 had a relapse of cervical cancer in small pelvis. In accordance with FIGO and TNM classification (2009), stage IIIB was diagnosed (сT3bN0–1M0) in 16 patients and stage IVB (cT3bN1M1, metastasis in para-aortic lymph nodes) in 1 patient. Prior to the start of special treatment, in all patients was detected one- or two-sided hydronephrosis associated with a neoplastic process and accompanied by varying degrees of impaired parenchymal-excretory function of one of the kidneys.

Results: 11 patients had unilateral stenting, 3 patients had bilateral ureteral stenting, nephrostomy was performed in 9 patients and 1 woman had an ureteral stent installed on one side, nephrostomy was performed on the other side. In 70.8 % (17) patients, the irradiation course was performed without interruption. From 5 to 3 weeks (due to cystitis, endometritis, anemia). In 2 patients, it was not possible to complete the full course of radiotherapy because of the intractable effects of pyelonephritis, they were operated on. In the observation period up to 77 months (average observation time 29 months) 16 patients are alive, 12 of them are without signs of disease recurrence. In 6 patients, the natural passage of urine was restored. In 4 patients, the nephrostomy was replaced with a ureteral stent. In 3 patients with ureteral stents they are replaced. Three patients remain with nephrostomy. Eight women died from the progression of the underlying disease, of these, 6 patients are with recurrent cervical cancer in the pelvis. Note that in all 6 patients, as a result of the irradiation, a pronounced palliative effect was achieved in the form of relief of pain and bleeding.

Conclusion: Performing adequate drainage of the ureter(s) allows to expand the indications for radiotherapy or chemoradiation therapy under the radical program in patients with primary or recurrent cervical cancer.

Key words: radiotherapy, cervical cancer, locally advanced and recurrent, hydronephrosis, urine diversion

REFERENCES

1. Clinical recommendations. Cervical cancer. The association of Russian oncologists. 2017. ID: KP537 [cited 2018 Dec 27] Available from: http://cancerlink.ru/cancer/clinical-guidelines-oncology-2017/clinical-guidelines-aor-2017 . (Russian).
2. NCCN (National Comprehensive Cancer Network, OCT 2017) (version 1.2019) Available at nccn.org. [cited 2018 Nov 05]
3. TNM classification of malignant tumours. Sobin LH, Gospodarowicz MK, Wittekind C, eds. 7th ed. NY: Springer-Verlag, 2010. 256 p.
4. Kaprin AD, Titova VA, Kostin AA, Rerberg AG. Improving the Diagnosis and Treatment of Retention Disorders of the Upper Urinary Tract in Patients with Stages IIB–III cancer of the Cervix Uteri. Cancer Urology. 2012;8(2):98-101. DOI: 10.17650/1726-9776-2012-8-2-98-101. (Russian).
5. Rose PG, Ali S, Whitney CW, Lanciano R, Stehman FB. Impact of hydronephrosis on outcome of stage IIIB cervical cancer patients with disease limited to the pelvis, treated with radiation and concurrent chemotherapy: A Gynecologic Oncology Group study. Gynecol Oncol. 2010; 117(2):270-5. DOI: 10.1016/j.ygyno.2010.01.045.
6. Goklu MR, Seckin KD, Togrul C, Goklu Y, Tahaoglu AE, Oz M, et al. Effect of hydronephrosis on survival in advanced stage cervical cancer. Asian Pac J Cancer Prev. 2015;16(10):4219-22. DOI:10.7314/APJCP.2015.16.10.4219
7. Beckta JM, Carter JS, Wan W, Chafe WE, Abayomi OK, Proper MA, et al. Urinary Diversion in the Management of Locally Advanced Cervical Cancer Facilitates the Use of Aggressive Therapy without Adversely Effecting Overall Treatment Time. EC Gynaecology. 2016;3(1): 225-31.
8. Mankad M, Mishra K, Desai A, Patel S. Role of percutaneous nephrostomy in advanced cervical carcinoma with obstructive uropathy: a case series. Indian J Palliat Care. 2009;15(1):37-40.
9. Chepurov AK, Zenkov SS, Mamaev NE, Pronkin EA. Prolonged drainage by ureteral stents: current state of the issue and prospects. Andrology and Genital Surgery. 2009;(2):44-8. (Russian).
10. Pecorelli S. Revised FIGO staging for carcinoma of vulva, cervix, and endometrium. Int J Gynec Obstet. 2009;(105):103-4.
11. Kaprin AD, Titova VA, Kreynina YuM, Kostin AA. Urological complications in oncologic practice: diagnosis, interventional and conservative correction. Moscow; 2011. 168 p. (Russian).
12. Protein-energy deficiency in cancer. In: Baranovsky AYu, editor. Dietetics: Manual 5th edition. St. Petersburg: Piter; 2017. p. 868-74. (Russian).
13. Kurpeshev OK, Mardynsky YuS. Basic principles and methods of radiomodification in radiotherapy. In: Kaprin AD, Mardynsky YuS, editors. Therapeutic Radiology. National leadership. Moscow: GEOTAR-Media; 2018. P. 89-128. (Russian).
14. Brotherhood H, Lange D, Chew BH. Advances in ureteral stents. Transl Androl Urol 2014;3(3):314-9. DOI: 10.3978/j.issn.2223-4683.2014.06.06.
15. Boyko AV, Korytova LI, Oltarzhevskaya ND, editors. Targeted drug delivery in the treatment of cancer patients. Moscow: Special Medical Book Publisher; 2013. 200 p. (Russian).

For citation: Boyko AV, Dunaeva EA, Demidova LV, Alekseev BYа, Leont’ev AV, Dubovetskaya OB, Serova LG. Radiotherapy for Patients with Hydronephrosis-Induced Cervical Cancer. Medical Radiology and Radiation Safety. 2019;64(4):41–47. (Russian).

DOI: 10.12737/article_5d1108af5d48d3.68800561

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 32–40

DOI: 10.12737/article_5d1103efefe893.65968050

M.V. Khalyuzova1, М.M. Tsyganov2, D.S. Isubakova1,2, E.V. Bronikovskaya1, T.V. Usova1, N.V. Litviakov1,2,4, A.B. Karpov1,3, L.R. Takhauova3, R.M. Takhauov1,3

Genome Wide Association Study of an Association between Gene Polymorphisms and the Increased Frequency of Cytogenetic Abnormalities in the Persons Exposed to Long-Term Irradiation

1. Seversk Biophysical Research Center, Seversk, Russia;
2. Tomsk Cancer Research Institute, Tomsk, Russia;
3. Siberian State Medical University, Tomsk, Russia;
4. National Research Tomsk State University, Tomsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

M.V. Khalyuzova – Researcher;
M.M. Tsyganov – Research Worker, PhD Biol.;
D.S. Isubakova – Junior Researcher;
E.V. Bronikovskaya – Junior Researcher;
T.V. Usova – Junior Researcher;
N.V. Litviakov – Head of Lab., Dr. Sci. Biol.;
A.B. Karpov – Head of Dep., Dr. Sci. Med., Prof.;
L.R. Takhauova – Student;
R.M. Takhauov – Director, Dr. Sci. Med., Prof.

Abstract

Purpose: To conduct genome wide association study of the association of 750,000 SNPs and an increased frequency of different types of chromosomal aberrations, induced by chronic irradiation in the dose range of 100–300 mSv.

Material and methods: The study was conducted among Siberian Group of Chemical Enterprises healthy employees (n = 37) exposed to professional external γ-radiation in a dose range of 100–300 mSv. The de novo induced CNVs were previously detected in these persons. Mean dose – 188.8 ± 8.3 mSv, median – 185 mSv, interquartile range – 147.8–218.7 mSv, min – 103.4 mSv, max – 295.8 mSv. Genotyping of DNA samples from 37 employees was carried out by microarray CytoScan™ HD Array (Affymetrix, USA), containing 750,000 SNP-markers of 36,000 genes. The standard cytogenetic analysis was performed in the entire examined group.

Results: We analyzed the association of these SNPs with the frequencies of aberrant cells and following chromosomal aberrations: single chromatid fragments, chromatid exchanges, paired fragments, dicentrics, rings, and translocations. We have found that 8 SNPs (rs10779468, rs158735, rs158710, rs158712, rs11131536, rs528170, rs9533572, rs10512439) are associated with the frequency of aberrant cells.

Conclusion: We have discovered polymorphic variants that are associated with an increased frequency of aberrant cells in workers of Siberian Group of Chemical Enterprises exposed to irradiation at a dose of 100–300 mSv. This polymorphic variants can be considered as potential markers of individual radiosensitivity. To confirm identified associations, further validation studies on an extended sample of people exposed to radiation are needed.

Key words: individual radiosensitivity, external γ-radiation, long-term radiation exposure, chromosomal aberrations, single nucleotide polymorphism

REFERENCES

  1. Bush WS, Moore JH. Genome-wide association studies. PLoS Computational Biology. 2012;8(12):e1002822. DOI: 10.1371/journal.pcbi.1002822.
  2. Freidin MB, Vasilyeva YeO, Skobelskaya YeV, Goncharova IA, Karpov AB, Takhauov RM. The prevalence and spectrum of chromosomal aberrations in workers of the Siberian Group of Chemical Enterprises. Bulletin of Siberian Medicine. 2005;(2):75-81. (Russian).
  3. Sal’nikova LE, Chumachenko AG, Vesnina IN, Lapteva NSh, Kuznetsova GI, Abilev SK, Rubanovich AV. Polymorphism of Repair Genes and Cytogenetic Radiation Effects. Radiat Biol Radioecol. 2010;50(6):29-38. (Russian).
  4. Abilev SK, Sal’nikova LE, Rubanovich AV Candidate gene association study of the radiosensitivity of human chromosomes with candidate gene polymorphisms upon exposure to gamma-irradiation in vitro and in vitro. Gig Sanit. 2011;(5):14-8. (Russian).
  5. Salnikova L, Chumachenko A, Belopolskaya O, Rubanovich A. Correlations between DNA polymorphism and frequencies of gamma-radiation induced and spontaneous cytogenetic damage. Health Phys. 2012;103(1):37-41. DOI: 10.1097/HP.0b013e3182231a9d.
  6. Minina VI. Genetic Polymorphism and Chromosome Aberrations Induced by Radiation. Siberian Medical Journal. 2012;(3):5-7. (Russian).
  7. Zhang X, Zhang X, Zhang L, Chen Q, Yang Z, Yu J, et al. XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure. BMC Research Notes. 2012;5(1):263. DOI: 10.1186/1756-0500-5-263.
  8. Hornhardt S, Rößler U, Sauter W, Rosenberger A, Illig T, Bickeböller H, et al. Genetic factors in individual radiation sensitivity. DNA Repair. 2014;16:54-65. DOI: 10.1016/j.dnarep.2014.02.001.
  9. Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D, et al. Zenhausern F. Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys. 2014;89(4):709-13. DOI: 10.1016/j.ijrobp.2014.03.009.
  10. Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 2012.13(1):65-77. DOI:  10.1016/S1470-2045(11)70302-3.
  11. Andreassen CN, Rosenstein BS, Kerns SL, Ostrer H, De Ruysscher D, Cesaretti JA, et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol. 2016;121(3):431-9. DOI: 10.1016/j.radonc.2016.06.017.
  12. Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A, et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010;78(5):1292-300. DOI: 10.1016/j.ijrobp.2010.07.036.
  13. Kerns SL, Stock R, Stone N, Buckstein M, Shao Y, Campbell C, et al. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2013;85(1):e21-28. DOI: 10.1016/j.ijrobp.2012.08.003.
  14. Kerns SL, Stone NN, Stock RG, Rath L, Ostrer H, Rosenstein BS. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms following radiotherapy for prostate cancer. J Urol. 2013;190(1):102-8. DOI: 10.1016/j.juro.2013.01.096.
  15. Kerns SL, Stock RG, Stone NN, Blacksburg SR, Rath L, Vega A, et al. Genome-wide association study identifies a region on chromosome 11q14.3 associated with rectal bleeding following radiation therapy for prostate cancer. Radiother Oncol. 2013;107(1):372-76. DOI: 10.1016/j.radonc.2013.05.001.
  16. Fachal L, Gómez-Caamaño A, Barnett GC, Peleteiro P, Carballo AM, Calvo-Crespo P, et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat Genet. 2014;46(8):891-4. DOI: 10.1038/ng.3020.
  17. Barnett GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother Oncol. 2014;111(2):178-85. DOI: 10.1016/j.radonc.2014.02.012.
  18. Litviakov NV, Freidin MB, Khalyuzova MV, Sazonov AJ, Vasilyeva EO, Albakh EN, et al. The frequency and spectrum of cytogenetic anomalies in employees of Siberian Group of Chemical Enterprises. Radiat Biol Radioecol. 2014;54(3):283-96. DOI: 10.7868/S0869803114030084. (Russian).
  19. Litviakov NV, Goncharik OO, Freidin MB, Sazonov AE, Vasil’eva EO, Mezheritskiĭ SA, et al. The Estimate of Association Between Gene Polymorphisms and the Frequency and Spectrum of Cytogenetic Abnormalities in the Cohort of Siberian Group of Chemical Enterprises Employees Exposed to Professional Irradiation (Microarray Studies). Radiat Biol Radioecol. 2013;53(23):137-50. DOI: 10.7868/S0869803113020069. (Russian).
  20. Khalyuzova MV, Litviakov NV, Isubakova DS, Bronikovskaya EV, Usova TV, Al’bakh EN, et al. Validation of Association between Gene Polymorphisms and the Frequency of Cytogenetic Abnormalities in the Cohort of Employees of Radiation Facilities. Radiat Biol Radioecol. 2017;57(4):365-83. DOI: 10.7868/S0869803117040038. (Russian).
  21. Takhauov RM, Karpov AB, Albach EN, Khalyuzova MV, Freidin MB, Litviakov NV, et al. The bank of biological samples representing individuals exposed to long-term ionizing radiation at various doses. Biopreserv Biobank. 2015;13(2):72-8. DOI: 10.1089/bio.2014.0035.
  22. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 2003;22:5784-91.
  23. West AB, Lockhart PJ, O’Farell C, Farrer MJ. Identification of a novel gene linked to parkin via a bi-directional promoter. J Mol Biol. 2003;326(1):11-9.
  24. Taylor JM, Song YJ, Huang Y, Farrer MJ, Delatycki MB, Halliday GM, Lockhart PJ. Parkin Co-regulated Gene (PACRG) is regulated by the ubiquitin-proteasomal system and is present in the pathological features of parkinsonian diseases. Neurobiol Dis. 2007;27(2):238-47.
  25. Schurr E, Alcaïs A, de Léséleuc L, Abel L. Genetic predisposition to leprosy: a major gene reveals novel pathways of immunity to Mycobacterium leprae. Semin Immunol. 2006;18(6):404-10.
  26. Imai Y, Soda M, Murakami T, Shoji M, Abe K, Takahashi R. A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death. J Biol Chem. 2003;278(51):51901-10.
  27. Wilson GR, Sim ML, Brody KM, Taylor JM, McLachlan RI, O’Bryan MK, et al. Molecular analysis of the parkin co-regulated gene and association with male infertility. Fertil Steril. 2010;93(7):2262-8. DOI: 10.1016/j.fertnstert.2009.01.079.
  28. Entrez Gene: Ecto-NOX disulfide-thiol exchanger 1. Available from: https://www.ncbi.nlm.nih.gov/gene/55068.
  29. Landouré G, Knight MA, Stanescu H, Taye AA, Shi Y, Diallo O, et al. NIH Intramural Sequencing Center. A candidate gene for autoimmune myasthenia gravis. Neurology. 2012;79(4):342-7.
  30. Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ. Expression and localization of myosin-1d in the developing nervous system. Brain Res. 2012;1440:9-22. DOI: 10.1016/j.brainres.2011.12.054.
  31. Stone JL, Merriman B, Cantor RM, Geschwind DH, Nelson SF. High density SNP association study of a major autism linkage region on chromosome 17. Hum Mol Genet. 2007;16(6):704-15.

For citation: Khalyuzova MV, Tsyganov МM, Isubakova DS, Bronikovskaya EV, Usova TV, Litviakov NV, Karpov AB, Takhauova LR, Takhauov RM. Genome Wide Association Study of an Association between Gene Polymorphisms and the Increased Frequency of Cytogenetic Abnormalities in the Persons Exposed to Long-Term Irradiation. Medical Radiology and Radiation Safety. 2019;64(4):32–40. (Russian).

DOI: 10.12737/article_5d1103efefe893.65968050

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 48–55

DOI: 10.12737/article_5d110f04375033.57581297

B.Ya. Narkevich1,2, S.V. Shiryaev2, I.V. Lagutina1,2, Yu.V. Buydenok2, T.K. Kharatishvili2, N.S. Petrochenko2

Leakage Radiometric Control of Chemical Drugs with Regional Perfusion of Surgical Isolated Limbs

1. Association of Medical Physicists of Russia, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia

B.Ya. Narkevich – President of the AMPR, Leading Researcher, Dr. Sci. Tech., Prof., Academician of International Academy of Engineering;
S.V. Shiryaev – Head of Lab., Dr. Sci. Med., Prof., Member of the European Association of Nuclear Medicine and Molecular Imaging, Member of the American College of Nuclear Medicine and Molecular Imaging, Member of the Society of Nuclear Medicine and Molecular Imaging;
I.V. Lagutina – Medical Physicist;
Yu.V. Buydenok – Perfusiologist, Leading Researcher, Dr. Sci. Med.;
T.K. Kharatishvili – Surgeon, Leading Researcher, Dr. Sci. Med., Prof.;
N.S. Petrochenko – Surgeon, PhD Med.

Abstract

Purpose: Modernization and evaluation of the clinical effectiveness of the technology of continuous radiometric monitoring carried out during high-dose chemotherapy of a surgically isolated limb with tumor foci.

Material and methods: A modernized radiometric control technology for regional limb perfusion is proposed. It is based on in vivo labeling of erythrocytes with 99mTc eluate followed by continuous monitoring of the activity of labeled erythrocytes as a simulator of a chemotherapy drug over the heart region. Its distinctive features are intravenous injection of a pyrfotech slice after giving inhalation anesthesia to ensure a sufficient level of red blood cell chelation, as well as using 99mTc activity less than its minimum significant level, which allows working with an open source of ionizing radiation without violating the requirements of radiation safety regulations.

Results: The developed technology was successfully used with 106 regional perfusion of the upper and lower extremities in patients with melanoma or sarcoma of soft tissues. In 4 cases, according to the results of radiometric control, the intervention of the surgical team was required to reduce the chemical preparation leakage that was occurring.

Conclusion: The technology upgraded by us is characterized by ease of implementation, the ability to take timely measures to prevent or reduce the leakage of a chemotherapy drug from an isolated limb according to the results of continuous in vivo radiometric monitoring of 99mTc-labeled red blood cells over the heart, as well as low radiation load on the patient and staff.

Key words: high-dose chemotherapy, surgically isolated limb, regional perfusion, chemotherapy leaks, radiometric monitoring

REFERENCES

  1. Gargon GI, Pkhakadze NR, Senchik KYu, Gelfold VM. Perspective methods for treating patients with soft-tissue sarcomas of the extremities (isolated regional perfusion, local hyperthermia). Practical Oncology. 2004;5(4):276-84. (Russian).
  2. Zwavelig JH, Maring JK, Mulder AB, et al. Effects of hyperthermic isolated limb perfusion with recombinant tumor necrosis factor α and melphalan on the human fibrinolytic system. Cancer Res. 1996;56: 3948-53.
  3. Goldberg ME, Rosenblum HM, Seltzer JL, Rosato FE. Isolated regional perfusion: anesthetic technique, monitoring and blood replacement. Canad J Anesthesia. 1984. Sep;512-58. DOI: 10.1007 / BF03009542
  4. Kroon HM. Treatment of locally advanced limb infusion with citotoxic drugs. J Skin Cancer. 2011;Article ID 106573. 7 pp.
  5. Tatyanicheva NV. Evaluation of the effectiveness of the method of isolated regional perfusion in the combined treatment of patients with soft tissue sarcomas and skin melanoma of the extremities. Author. PhD Med. S.-Pb. 2012. 24 p. (Russian).
  6. Shiryaev SV, Goncharov MO, Narkevich BYa. Development of radionuclide semiotics of liver hemangiomas using single-photon emission computed tomography with labeled red blood cells in the differential diagnosis of liver tumors. Med Fizika. 2009;3(43): 44-55 (Russian).
  7. Basic Sanitary Rules for Radiation Safety OSPORB-99/2010. SP 2.6.1.2612–10. (as amended by change No. 1, approved by the resolution of the Chief State Sanitary Doctor of the Russian Federation of September 16, 2013 No. 43). (Russian).
  8. Vidal-Sicart S, Rull R, Barriuso C, Nieweg OE. Monitoring for systemic leakage during limb perfusion for melanoma. In: Radioguided Surgery. Ed. by Herrmann K, Nieweg OE, Povoski SP. Springer. 2016;359-69.
  9. Vrouenraets BC, Eggermont .M, Hart AA, et al. Limb perfusion with melphalan and tumor necrosis factor-alpha versus toxicity after melphalan alone. Regional Eur J Surg Oncol. 2001;24(4):390-5.
  10. Di Filippo F, Rossi CR, Santinami M, Di Filippo S. Hyperthermic isolation limb perfusion with TNFα in the treatment of in-transit melanoma metastasis. In vivo. 2006;20:739-42.
  11. National Radionuclide Diagnosis Manual. Lishmanov YuB, Chernov VI (Ed.) Vol. 2. Tomsk: STT. 2010;73-4. (Russian).
  12. Wierts R, Lazarenko SV, de Jong JR, Willemsen AT. Characteristics of the leakage factor during regional hyperthermic isolated limb perfusion. Nucl Med Commun. 2011;32(9):858-62.
  13. Paulsen IF, Chakera AH, Schmidt G, Drjøe J, Klyver H, Oturai PS, et al. Radionuclide leakage monitoring during hyperthermic isolated limb perfusion for local melanoma metastasis in an extremity. Clin Physiol Funct Imaging. 2014;6(6). DOI:  10.1111/cpf.12164
  14. Fiz F, Villa G, Ferrari E, Pomposelli E, Morbelli S, Alloisio A. Prevention of systemic toxicity in hyperthermic isolated lung perfusion using radioisotopic leakage monitoring. Int J Hypertherm. 2007;1-10. DOI: 10.1080/02656736.2017.1355485
  15. Villa G, De Cian F, Pomposelli E, et al. Continuous leakage monitoring with Sn-medronat-99mTc-labeled RBC and hand-held gamma-probe during hyperthermic limb and lung perfusion. Il Giornale di Chirurgia. 2009;30(5 suppl.): 240-1.
  16. Lipanova NN, Narkevich BYa. Evaluation of the patient and staff radiation dose at radiometric monitoring of open sources in diagnostics. Med Fizika. 2011;3(51):81-5. (Russian).
  17. Orero A, Vidal-Sicart S, Roé N. Monitoring system for isolated limb perfusion based on a portable gamma camera. Nuklearmedizine. 2009;48(4): 166-72.
  18. MedicalView >> Product. 3 sense. https: // www. medicalview.ea /? page_id = 31

For citation: Narkevich BYa, Shiryaev SV, Lagutina IV, Buydenok YuV, Kharatishvili TK, Petrochenko NS. Leakage Radiometric Control of Chemical Drugs with Regional Perfusion of Surgical Isolated Limbs. Medical Radiology and Radiation Safety. 2019;64(4):48–55. (Russian).

DOI: 10.12737/article_5d110f04375033.57581297

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2769986
Today
Yesterday
This week
Last week
This month
Last month
For all time
2932
2948
25438
25438
77729
75709
2769986

Forecast today
2712


Your IP:216.73.216.1