JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2013. Vol. 58. No. 3. P. 39–44

NUCLEAR MEDICINE

Yu. B. Lishmanov, K.V. Zavadovskiy, V.V. Saushkin, S.V. Popov

Scintigraphic Semiotics of Arrhythmogenic Cardiac Dysfunction in Children and Teenagers with Ventricular Extrasystoles

Research Institute for Cardiology of SB RAMS, Tomsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To develop the radionuclide semiotics of arrhythmogenic heart dysfunction in children and teenagers with ventricular extra systoles.

Material and methods: The study included 79 children and teenagers (mean age 12.9 ± 3.2 years) with ventricular extra systoles. Intracardiac electrophysiological study followed by radio frequency ablation foci of arrhythmogenic activity was carried out 24 patients. The comparison group included 15 patients of similar age and sex, with the exclusion of cardiac arrhythmias. All patients underwent gated blood pool SPECT. We have calculated the sensitivity, specificity, diagnostic accuracy, positive and negative predictive value. As a reference method we used intracardiac electrophysiological study of the heart. Results: In all patients with ventricular extra systoles we observed the areas of asynchronous contraction – the sign of myocardium mechanical heterogeneity. The most common site of these areas is the right ventricle. When the source of arrhythmia located in the right ventricular outflow tract – preliminary contraction areas are located in the anterior wall of the right ventricle. And when source of arrhythmia located in the left sinus of Valsalva, the asynchrony appears in the interventricular septum. In the group of children and teenagers with ventricular arrhythmia observed a moderate dilatation of the chambers and reduced contractile function of the heart, while this phenomenon is most pronounced for ectopic from the left sinus of Valsalva.

Conclusion: The existence of a zones of asynchronous contraction on the phase-polarity maps in children with ventricular arrhythmia can be considered pathognomonic symptom of the existence of scintigraphic ectopia.

Key words: right ventricle, left ventricle, quantitative blood pool SPECT, dyssynchrony, ventricular extrasystoles

Medical Radiology and Radiation Safety. 2013. Vol. 58. No. 3. P. 34–38

RADIATION THERAPY

N.V. Belozor, T.V. Segeda, V.P. Starenkiy, N.A. Mitryaeva

Sfingomyelinasa for Monitoring of Chemoradioterapy Effectiveness in Cancer Treatment (Clinical and Experimental Investigation)

S.P. Grigoriev Medical Radiology Institute, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To substantiate experimentally and investigate the possibility to use Zn2+-dependent acid sphingomyelinase (ASMase) in monitoring of efficacy of treatment for non-small-cell lung cancer (NSCLC).

Material and methods: The results of radiation therapy (RT) with two modes of accelerated fractionation and radiosensitizing with Etoposide in 45 patient with inoperable IIIA-IIIB NSCLC against a background of determining blood serum ASMase activity in the course of the treatment. ASMase activity, ceramide (CM) amount and sphingomyelin were investigated in the blood serum of rats with transplanted Guerin’s carcinoma at combined action of high-energy photon (HEP) radiation and Etoposide. The irradiation was delivered in two fractions up to 10 Gy with linear accelerator Clinac 600 Ϯ

Results: It was determined that blood serum ASMase activity in patients with NSCLC after chemoradiation treatment increased significantly in 2.9 times and was accompanied by the tumor regression (>50 %) in 73.3 % of cases. It was shown that increased activity of ASNase in 1.9 times, 4.7 time increase of and 2.5-time reduction of SPM were observed in the blood serum of the rat’s carriers of the tumor at combined action of HEP radiation and Etoposide.

Conclusion: ASMase activity level in the course of chemoradiation therapy against a background of determining the tumor regression can be used for monitoring of efficacy of chemoradiation treatment for NSCLC. This was substantiated by the findings of clinical investigations which allowed to suggest that a mechanism associated with ASMase activation is involved in induction of accumulation of pro-apoptotic lipid CM at combined action of irradiation and Etoposide. Therefore, the possibility to use determining ASMase activity as a serous marker of apoptosis ceramide pathway to assess the efficacy of chemoradiation therapy is obvious.

Key words: nonsmall lung cancer, chemoradiotherapy, Zn2+-dependent sphingomyelinase, ceramide, apoptosis

Medical Radiology and Radiation Safety. 2013. Vol. 58. No. 3. P. 5-23

RADIATION SAFETY

J.A. Jones1, M. Epperly2, J. Law3, R. Scheuring3, C. Montesinos4, D. Popov5, V. Maliev6, K. Prasad7, J. Greenberg2

SPACE RADIATION HAZARDS AND STRATEGIES FOR ASTRONAUT/COSMONAUT PROTECTION

1. Center for space medicine / Baylor College of Medicine, Houston, TX, USA, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Dept. Radiation Oncology, University of Pittsburgh, PIttsburgh, PA, USA; 3. NASA/Johnson Space Center, Houston, TX, USA; 4. Amerisciences, inc., Houston, TX USA; 5. Advanced Medical Technologies and Systems, Richmond Hills, Ontario, CA, USA; 6. Russian Academy of Sciences, Vladicaucas, Russia; 7. Premier Micronutrient Corporation, Palo Alto, CA, USA

Abstract

Purpose: 1. Discuss the sources of radiation injury and roles of oxidative stress and radiation toxicity. 2. Define the exposure environment of astronauts and cosmonauts working in space and on future exploration-class missions. 3. Review the development of countermeasures for oxidative stress, radiation toxicity and radiation exposure for workers in extreme environments.

Methods: Multiple placebo-controlled, randomized prospective studies have been conducted which have studied the therapeutic and radioprotection effects of various oral, parenteral and combination countermeasures on the biological consequences and survival rates after acute and chronic radiation exposure.

Results: Discussion: Employing oral chemoprevention formulas, parenterally administered MnSOD-plasmid liposomes, and hyperimmune serum and vaccines directed on radiation-induced toxins, have resulted in reduced lipid peroxidation and DNA damage, as well as increased survival in cell cultures and whole animals receiving acute high-dose radiation exposures. Each of these strategies, alone and in combination, deserve further investigation in the pursuit of effective countermeasures and treatment for occupational exposures which induce oxidative damage.

Key words: Radiation, Space Medicine, Space Environmental Hazards, Oxidative Damage, Countermeasures

REFERENCES

  1. Locke J. Space environment. In “Fundamentals of Aerospace Med.”, 3rd edition. Ed. by L. Dehart, J.R. Davis. Lippincott Williams & Wilkins. 2002.
  2. Jones J., Karouia F.Radiation disorders. In: “Principles of Clinical Medicine for Spaceflight”. Ed. by Barratt, S.Pool. New York: Springer. 2008.
  3. Jones J.A., Barratt M., Effenhauser R. et al. Medical issues for a human mission to Mars and Martian surface expeditions. J. Brit. Interplanet. Soc. 2004. Vol. 57. No. 3-4. P. 144-160.
  4. Cucinotta F.A., Schimmerling W., Wilson J.W. et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 2001b. Vol. 156. P. 682-688.
  5. Cucinotta F.A., Manuel F.K., Jones J. et al. Space radiation and cataracts in astronauts. Radiat. Res. 2001a. Vol. 156. P. 460-466.
  6. Jones J.A., McCarten M., Manuel K. et al. Cataract formation mechanisms and risk in aviation and space crews. ASEM. 2007. Vol. 78. Suppl. 4. Section II. P. A56-66.
  7. Nelson G.A. Fundamental Space Radiobiology Gravitational & Space Biology Bulletin: Publication of the American Society for Gravitational & Space Biology. 2013. Vol. 16. P. 29-36.
  8. Ward J.F.DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Progress in Nucleic Acid Res. & Molecular Biol. 1988. Vol. 35. P. 95-125.
  9. Pietras R.J., Poen J.C., Gallardo D. et al. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 1999. Vol. 59. P. 1347-1355.
  10. Rosen E.M., Fan S., Goldberg I.D. et al. basis of radiation sensitivity. Part 2: Cellular and molecular determinants of radiosensitivity. Oncology. 2000. Vol. 14. P. 741-757.
  11. Oh C.W., Bump E.A., Kim J.S. et al. Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat. Res. 2001. Vol. 156. P. 232-240.
  12. Wu L.J., Randers-Pehrson G., Xu A.K. et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc. Nat. Acad. of Sci. of USA. 1999. Vol. 96. P. 4959-4964.
  13. Gajdusek C.M., Tian H., London S. et al. Gamma radiation effect on vascular smooth muscle cells in culture. Internat. J. Radiat. Oncol., Biol., Phys. 1996. Vol. 36. P. 821-828.
  14. Lehnert B.E., Iyer R. Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Human & Experim. Toxicol. 2002. Vol. 21. P. 65-69.
  15. Spitz D.R., Azzam E.I., Li J.J. et al. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer & Metastasis Rev. 2004. Vol. 23. P. 311-322.
  16. Prasad K.N. Handbook of Radiobiology. New York City. CRC Press Inc. 1995.
  17. Martinez J.D., Pennington M.E., Craven M.T. et al. Free radicals generated by ionizing radiation signal nuclear translocation of p53. Cell Growth & Differentiation. 1997. Vol. 8. P. 941-949.
  18. Costantini P., Chernyak B.V., Petronilli V. et al. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 1996. Vol. 271. P. 6746-6751.
  19. Haimovitz-Friedman A., Kan C.C., Ehleiter D. et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Experim. Med. 1994. Vol. 180. P. 525-535.
  20. Leach J.K., Van Tuyle G., Lin P.S. et al. Biochemical and hematologic changes after short-term space flight. Cancer Res.,2001. Vol. 61. P. 3894-3901.
  21. Lucero H., Ga D., Tacciol G.E. Novel localization of the DNA-PK complex in lipid rafts. A putative role in the signal transduction pathway of the ionizing radiation response. J. Biol. Chem. 2003. Vol. 278. P. 22136-22143.
  22. Mizutani N., Fujikura Y., Wang Y.H. et al. Inflammatory and anti-inflammatory cytokines regulate the recovery from sublethal X-irradiation in rat thymus. Radiat. Res. 2002. Vol. 157. P. 281-289.
  23. Ivanov V.K., Gorski A.I., Maksioutov M.A. et al. Mortality among the Chernobyl emergency workers: estimation of radiation risks (preliminary analysis). Health Phys. 2001. Vol. 81. P. 514-521.
  24. Otake M., Neriishi K., Schull W.J. Cataract in atomic bomb survivors based on threshold model and the occurrence of severe epilation. Radiat. Res. 1996. Vol. 146. P. 339-348.
  25. Preston D.L., Shimizu Y., Pierce D.A. et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997. Radiat. Res. 2003. Vol. 160. P. 381-407.
  26. Law J., Scheuring R., Jones J. Space Radiat. Considerations for Exploration-Class Planetary Surface Operations. NASA/TP 2011-0000 March 2011.
  27. Hoffman R., Nelson L., Howland M. et al. Goldfrank’s Manual of Toxicologic Emergencies. New York: McGraw-Hill. 2007.
  28. Clement G. Fundamentals of Space Med. Dordrecht, Netherlands: Springer. 2005.
  29. Catlett C., Piggott P. Injuries. Radiat. Injuries. In: “Emergency Medicine: A Comprehensive Study Guide”. 6th edition. Tintinalli J., Kelen G., Stapcznski J., eds. New York: McGraw-Hill. 2004. Vol. 20. P. 50-59.
  30. Jones J., Karouia F., Casey R. Ionizing Radiation as a Carcinogen. In: “Comprehensive Toxicology, Vol. 14: Carcinogenesis”. IN: McQueen C., ed. Oxford EN: Elsevier. 2010.
  31. Committee on the Evaluation of Radiat. Shielding for Space Exploration, Aeronautics and Space Engineering Board. Managing Space Radiat. Risk in the New Era of Space Exploration. Washington DC: Nat. Res. Counci. 2008.
  32. Kane A., Kumar V. Environmental and nutritional pathology. In: “Robbins and Cotran Pathologic Basis of Disease.” Kumar V., Abbas A., Fausto N. eds. 7th edition. Philadelphia: Elsevier Saunders. 2005. P. 436-441.
  33. Shukitt-Hale B., Casadesus G., Cantuti-Castelvetri I. et al. Cognitive deficits induced by 56Fe radiation exposure. Adv. Space Res. 2003. Vol. 31. No. 1. P. 119-126.
  34. Hu S., Kim M.H., McClellan G.E., Cucinotta F.A. Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Phys. 2009. Vol. 96. No. 4. P. 465-476.
  35. Grigoriev A.I., Potapov A.N., Jones J.A. et al. Medical support for interplanetary space flights. In: “Space Biology and Medicine”. 2009.
  36. Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996. Vol. 273. No. 5271. P. 59-63.
  37. Campbell K. Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach. Med. J. Australia. 1951. Vol. 2. P. 48-50.
  38. Kinsey V.E. Retrolental fibroplasia: cooperative study of retrolental fibroplasia and the use of oxygen. Arch. Ophthalmol. 1956. Vol. 56. P. 481-543.
  39. Patz A., Hoeck L., De La Cruz E. Studies on the effect of high oxygen administration in retrolental fibroplasia. Amer. J. Ophthalmol. 1952. Vol. 35. P. 1248-1253.
  40. Smith S.M., Davis-Street J.E., Fesperman J.V. et al. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project. J. Nutr. 2004. Vol. 134. P. 1765-1771.
  41. Stein T.P., Leskiw M.J. Oxidant damage during and after spaceflight. Amer. J. Physiol., Endocrinol. and Metabolism. 2000. Vol. 278. No. 3. P. 375-382.
  42. Smith S.M., Davis-Street J.E., Rice B.L. et al. Nutritional status assessment in semiclosed environments: groundbased and space flight studies in humans. J. Nutr. 2001. Vol. 131. No. 7. P. 2053-2061.
  43. Pross H.D., Casares A., Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat. Res. 2000. Vol. 153. No. 5. Pt 1. P. 521-525.
  44. Kiefer J., Pross H.D. Space radiation effects and microgravity. Mutation Res. 1999. Vol. 430. No. 2. P. 299-305.
  45. Hollander J., Gore M., Fiebig R. et al. Spaceflight downregulates antioxidant defense systems in rat liver. Free Radical Biol. and Med. 1998. Vol. 24. No. 2. P. 385-390.
  46. McKenzie R.C., Beckett G.J., Arthur J.R. Effects of selenium on immunity and aging. In: “Selenium: Its Molecular Biology and Role in Human Health.” Hatfield D.L., Berry M.J., Gladyshev V.N., eds. 2nd New York: Springer. 2006. P. 311-323.
  47. Roy M., Kiremidjian-Schumacher L., Wishe H.I. et al. Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol. Trace Elem. Res. 1994. Vol. 41. No. 1-2. P. 103-114.
  48. Kiremidjian-Schumacher L., Roy M., Wishe H.I. et al. Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol. Trace Elem. Res. 1994. Vol. 41. No. 1-2. P. 115-127.
  49. Kiremidjian-Schumacher L., Roy M., Glickman R. et al. Selenium and immunocompetence in patients with head and neck cancer. Biol. Trace Elem. Res. 2000. Vol. 73. No. 2. P. 97-111.
  50. Baum M.K., Miguez-Burbano M.J., Campa A., Shor- Posner G. Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J. Infect. Dis. 2000. Vol. 182. Suppl. 1. P. 69-73.
  51. Conklin J.J., Walker R.I. Military Radiobiology. Orlando: Academic Press. 1987.
  52. Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996. Vol. 273. No. 5271. P. 59-63.
  53. Morita S., Snider M.T., Inada Y. Increased N-pentane excretion in humans: a consequence of pulmonary oxygen exposure. Anesthesiology. 1986. Vol. 64. No. 6. P. 730-733.
  54. Loiseaux-Meunier M.N., Bedu M., Gentou C. et al. Oxygen toxicity: simultaneous measure of pentane and malondialdehyde in humans exposed to hyperoxia. Biomed. Pharmacotherapy. 2001. Vol. 55. No. 3. P. 163-169.
  55. Turanlahti M., Pesonen E., Lassus P., Andersson S. Nitric oxide and hyperoxia in oxidative lung injury. Acta Paediatrica. 2000. Vol. 89. No. 8. P. 966-970.
  56. Koudelova J., Mourek J. The lipid peroxidation in various parts of the rat brain: effect of age, hypoxia and hyperoxia. Physiol. Res. 1994. Vol. 43. No. 3. P. 169-173.
  57. Cailleux A., Allain P. Is pentane a normal constituent of human breath? Free Radical Biol. Med. 1993. Vol. 18. No. 6. P. 323-327.
  58. Kohlmuller D., Kochen W. Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological re-evaluation. Analyt. Biochem. 1993. Vol. 210. No. 2. P. 268-276.
  59. Mallat Z., Philip I., Lebret M. et al. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation. 1998. Vol. 97. No. 16. P. 1536-1539.
  60. Oury T.D., Schaefer L.M., Fattman C.L. et al. Depletion of pulmonary EC-SOD after exposure to hyperoxia. Amer. J. Physiol. Lung Cellular and Molecular Physiol. 2002. Vol. 283. No. 4. P. 777-784.
  61. Takahashi H., Kosaka N., Nakagawa S. Alpha-Tocopherol protects PC12 cells from hyperoxia-induced apoptosis. J. Neurosci. Res. 1998. Vol. 52. No. 2. P. 184-191.
  62. Jaensch S., Cullen L., Raidal S.R. Normobaric hyperoxic stress in budgerigars: enzymic antioxidants and lipid peroxidation. Comparative Biochem. Physiol., Part C, Toxicol. & Pharmacol. 2001. Vol. 128. No. 2. P. 173-180.
  63. Kelly F.J., Cheeseman K.H. Distribution of vitamin E between tissues during periods of hyperoxic and nutritional stress in the preterm guinea pig. Comparative Biochem. Physiol. Part A. Physiol. 1993. Vol. 105. No. 3. P. 549-554.
  64. Webster N.R., Toothill C., Cowen P.N. Tissue responses to hyperoxia, biochemistry and Pathology. Brit. J. Anaesthesia. 1987. Vol. 59. No. 6. P. 760-771.
  65. Wender D.F., Thulin G.E., Smith G.J., Warshaw J.B. Vitamin E affects lung biochemical and morphologic response to hyperoxia in the newborn rabbit. Pediatric Res. 1981. Vol. 15. No. 3. P. 262-268.
  66. Jones J.A., Riggs P.K., Yang T. et al. Ionizing radiationinduced bioeffects in space and strategies to reduce cellular injury and carcinogenesis. ASEM. 2007. Vol. 78. No. 4. Section II Suppl. P. A67-78.
  67. Cucinotta F., Manuel K., Jones J.A. et al. Space radiation and cataracts in astronauts. Rad. Res. 2001. Vol. 156. No. 5. P. 460-466.
  68. Parker A.R., O’Meally R.N., Oliver D.H. et al. 8-Hydroxyguanosine repair is defective in some microsatellite stable colorectal cancer cells. Cancer Res. 2002. Vol. 62. No. 24. P. 7230-7233.
  69. Farber J.L. Mechanisms of cell injury by activated oxygen species. Environ. Health Perspect. 1994. Vol. 102. Suppl. 10. P. 17-24.
  70. Ward P.A. Oxygen radicals, cytokines, adhesion molecules, and lung injury. Environ. Health Perspect. 1994. Vol. 102.  Suppl. 10. P. 13-16.
  71. Subramaniam R.P., Asgharian B., Freijer J.I. et al. Analysis of lobar differences in particle deposition in the human lung. Inhal. Toxicol. 2003. Vol. 15. No. 1. P. 1-21.
  72. Oberdorster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal. Toxicol. 2002. Vol. 14. No. 1. P. 29-56.
  73. Lazaridis M., Broday D.M., Hov O., Georgopoulos P.G. Integrated exposure and dose modeling and analysis system-deposition of inhaled particles in the human respiratory tract. Environ. Sci. Technol. 2001. Vol. 35. No. 18. P. 3727-3734.
  74. Harvey R.P., Hamby D.M. Uncertainty in particulate deposition for 1 micrometer AMAD particles in an adult lung model. Radiat. Prot. Dosimetry. 2001. Vol. 95. No. 3. P. 239-247.
  75. Pinkerton K.E., Green F.H., Saiki C. et al. Distribution of particulate matter and tissue remodeling in the human lung. Environ. Health Perspect. 2000. Vol. 108. No. 11. P. 1063-1069.
  76. Porter D.W., Hubbs A.F., Mercer R. et al. Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicol. Sci. 2004. Vol. 79. No. 2. P. 370-380.
  77. Gamble J.F., Hessel P.A., Nicolich M. Relationship between silicosis and lung function. Scand. J. Work Environ. Health. 2004. Vol. 30. No. 1. P. 5-20.
  78. Corsini E., Giani A., Lucchi L. et al. Resistance to acute silicosis in senescent rats: role of alveolar macrophages. Chem. Res. Toxicol. 2003. Vol. 16. No. 12. P. 1520-1527.
  79. Reid M.B. Muscle fatigue: mechanisms and regulation. In: “Handbook of Oxidants and Antioxidants in Exercise”. B.V. 2000. P. 599-630.
  80. Matuszczak Y., Farid M., Jones J. et al. N-Acetylcysteine inhibits muscle fatigue and glutathione oxidation during handgrip. Muscle and Nerve. 2005. Vol. 32. No. 5. P. 633-638. PMID: 16025522.
  81. Maliev V., Popov D., Jones J.A., Casey R.C. Mechanism of action for anti-radiation vaccine in reducing the Biol. impact of high-dose irradiation. Advances in Space Res. 2007. Vol. 40. P. 586-590.
  82. Niki E. Interaction of ascorbate and alpha-tocopherol. Ann. New York Acad. of Sci. 1987. Vol. 498. P. 186-199.
  83. Mak S., Egri Z., Tanna G. et al. Vitamin C prevents hyperoxia- mediated vasoconstriction and impairment of endothelium-dependent vasodilation. Amer. J. Physiol. Heart and Circulatory Physiol. 2002. Vol. 282. No. 6. P. H2414-2421.
  84. Heys A.D., Dormandy T.L. Lipid peroxidation in ironoverloaded spleens. Clin. Sci. (London). 1981. Vol. 60. No. 3. P. 295-301.
  85. Chen W.T., Lin Y.F., Yu F.C. et al. Effect of ascorbic acid administration in hemodialysis patients on in vitro oxidative stress parameters: influence of serum ferritin levels. Amer. J. Kidney Diseases. 2003. Vol. 42. No. 1. P. 158-166.
  86. Husain K., Sugendran K., Pant S.C. et al. Biochemical and pathological changes in response to hyperoxia and protection by antioxidants in rats. Indian J. Physiol. Pharmacol. 1992. Vol. 36. No. 2. P. 97-100.
  87. O’Byrne D.J., Devaraj S., Grundy S.M., Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Amer. J. Clinical Nutrition. 2002. Vol. 76. No. 6. P. 1367-1374.
  88. Kaplan et al. Soy and Atherosclerosis in male monkeys. J. Nutr. 2005. Vol. 135. P. 2852-2856.
  89. Zigler J.S. et al. Tempol-H inhibits opacification of lenses in organ culture. Free Radic. Biol. Med. 2003. Vol. 35. No. 10. P. 1194-1202.
  90. Jiang Qin, Cong Cao, Changlin Zhou, et al. Quercetin Attenuates UV- and H2O2-induced Decrease of Collagen Type I in Cultured Human Lens Epithelial Cells. J. Ocular Pharmacol, Therapeutics. 2008. Vol. 24. No. 2. P. 164-174.
  91. Nieman D.C., Henson D.A., Gross S.J. et al. Quercetin reduces illness but not immune perturbations after intensive exercise. Med. Sci. Sports. Exerc. 2007. Vol. 39.  No. 9. P. 1561-1569.
  92. Gaziev A.I., Sologub G.R. et al. Effect of vitamin-antioxidant micronutrients on the frequency of spontaneous and in vitro gamma-ray-induced micronuclei in lymphocytes of donors: the age factor. Carcinogenesis. 1996. Vol. 17. No. 3. P. 493-499.
  93. Pu F., Mishima K., Irie K. et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci. 2007. Vol. 104. No. 4. P. 329-334.
  94. Wattel A., Kamel S., Mentaverri R. et al. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 2003. Vol. 65. No. 1. P. 35-42.
  95. Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K. Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol. Cell. Biochem. 2007. Vol. 303. No. 1-2. P. 83-88.
  96. Lupton J., Chapkin R.S. Chemopreventive effects of Omega-3 fatty acids. In “Cancer Chemoprevention: Vol I: Promising Chemoprevention Agents”. Kelloff G.J., Hawk E.T., Sigman C.C., eds. NJ: Humana Press, Totowa. 2004. P. 591-608.
  97. Barter P., Ginsberg H.N. Effectiveness of combined statin plus omega-3 fatty acid therapy for mixed dyslipidemia. Amer. J. Cardiol. 2008. Vol. 102. No. 8. P. 1040.
  98. Das U.N. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008. Vol. 7. No. 37.
  99. Arterburn L.M. et al. A developmental safety study in rats using DHA- and ARA-rich single cell oils. Food. and Chem. Tox. 2008. Vol. 38. P. 763-771.
  100. Arterburn L.M. et al. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of DHA. J. Amer. Dietetic. Assn. 2008. Vol. 108. P. 1204-1209.
  101. Stanford M. and Jones J.A. Space radiation concerns for a manned mission to mars. Acta Astronautica. 1999. Vol. 45. No. 1. P. 39-47.
  102. Fugh-Berman A., Cott J.M. Dietary supplements and natural products as psychotherapeutic agents. Psychosomatic Med. 1999. Vol. 61. P. 712-728.
  103. Hibbeln J.R. Fish Consumption and major depression. Lancet. 1998. Vol. 351. P. 1213.
  104. Edwards R., Peet M., Shay J., Horrobin D. Omega-3 polyunsaturated fatty acids in the diet and in the red blood cell membranes of depressed patients. J. Affective Disorders. 1998. Vol. 48. P. 149-155.
  105. Peet M., Horrobin D. et al. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch. Gen. Psychiatry. 2002. Vol. 59. P. 913-919.
  106. Peet M. et al. Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs. 2005. Vol. 65. No. 8. P. 1051-1059.
  107. Nemets et al. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Amer. J. Psychiatry. 2002. Vol. 159. No. 3. P. 477.
  108. Su et al. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2003. Vol. 13. No. 4. P. 267-271.
  109. Stoll et al. Omega 3 fatty acids in bipolar disorder: a preliminary controlled trial. Arch. Gen. Psychiatry. 1999. Vol. 56. No. 5. P. 507-512.
  110. Shao C., Roberts K.N., Markesbery W.R. et al. Oxidative stress in head trauma in aging. Free Radic. Biol. Med. 2006. Vol. 41.  No. 1. P. 77-85.
  111. Epperly M.W et al. Modulation of total body irradiation induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat. Res. 2008. Vol. 170.  No. 4. P. 437-444.
  112. Epperly M.W., Wang H., Jones J. et al. Antioxidant-chemoprevention diet ameliorates late effects of total body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat. Res. 2011.
  113. Maliev V., Popov D., Casey R., Jones J.A. Mechanisms of action for an anti-radiation vaccine in reducing the biological impact of high-dose and dose-rate low-LET radiation exposure. Radiation biology. Radioecology. 2007. Vol. 47. No. 3. P. 286-291.
  114. Maliev V., Popov D. Immuno-therapy of acute radiation syndromes: extracorporeal immuno-lympho-plasmosorption. 38th Abstract F55-0007-10-1 Annual COSPAR Scientific Assembly.

For citation: Jones JA, Epperly M, Law J, Scheuring R, Montesinos C, Popov D, Maliev V, Prasad K, Greenberg J. Space Radiation Hazards and Strategies for Astronaut/Cosmonaut Protection. Medical Radiology and Radiation Safety. 2013;58(3):5-23.

PDF (ENG) Full-text article (in Inglish)

Medical Radiology and Radiation Safety. 2013. Vol. 58. No. 3. P. 24–33

RADIATION MEDICINE

N.G. Vlasova

Methodological Approach to Individualized Dose Reconstruction of People Exposed Due to the Accident at the Chernobyl NPP

The Republican Research & Practical Centre for Radiation Medicine & Human Ecology”, Health Ministry of the Republic of Belarus, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To reveal the stability of relative internal dose in individuals and families of rural society and justify the use of this law for individualized dose reconstruction of people exposed in the result of the Chernobyl accident.

Materials and methods: The material of the study were the data on internal doses estimated according to the results of the WBC-measurements of cesium content in inhabitants of the Kirov settlement, Narovlya district, Gomel region, for the period between 1990 and 1999, been contained in “Database of the WBC-measurements in Belarusian residents for the period between 1987 and 2008”, registration certificate 5870900637 from 20.05.2009.

The following methods of applied statistics have been used: analysis of variance, multivariate statistical analysis. To confirm the assumption about the stability of relative internal dose, the rank test of concordance has been used. The credibility of differences has been estimated according to the Mann–Whitney criteria in order to compare the samples, which do not submit to normal distribution shape. Statistical processing of the materials has been carried out with the use of statistical software package STATISTICA 6.0 and MICROSOFT EXCEL 2010.

Results: The conducted analysis of the internal dose distribution in residents of the Kirov settlement for a 10-year period has confirmed the hypothesis that the dose of each individual and each family has its certain place on the dose distribution curve, which is constant in time, in other words, the individuals, families and its members have the same relative doses. High values of concordance coefficient (0.889 and 0.851) confirm the assumption about a relatively stable rank of relative internal doses of the examined individuals and families.

The spring-summer season: March, April, May, June, July, and autumn-winter season: August, September, October, November, December, January, February, had been shared out according to the method of one-way ANOVA. The average internal doses for these seasons significantly differed. The stability of relative internal dose for individual residents and families had been also revealed for two seasons.

Conclusion: The established law can be used as methodological basis for individual dose reconstruction at any time period of the accident. It is of great practical importance for assessment of the individual dose included in the Belarusian State Register of people exposed in the result of the Chernobyl accident.

Key words: individual, family, internal dose distribution, stability, year seasons

Medical Radiology and Radiation Safety. 2018. Vol. 58. No. 4. P. 72–79

RADIATION PHYSICS, TECHNOLOGY AND DOSIMETRY

L.Ia. Klepper

The Approached Estimation of Radiobiological Model Parameters for Larynx Squamous Cell Carcinoma

Central Economic-Mathematical Institute of RAS, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To determine the radiobiological model parameters of a larynx squamous cell carcinoma by a method of Three schedules (TS) and parameters of LQ-function.

Material and methods: TS method for approximate definition of radiobiological parameters of a tumor, number of tumoral cells and their radiosensitivity are described. Results: With the help of TS method the radiobiological parameters of tumor are approximately determined: number of tumor cells N; their radiobiological characteristics g = a + bd, where d – a single dose; also for the first time the method of definition intervals in which parameters LQ of function should lay is considered.

Conclusions: Received results appear to be in good concord with experimental values of radiobiological parameters determined in vitro.

Key words: radiotherapy, mathematical models, larynx squamous cell carcinoma 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2766835
Today
Yesterday
This week
Last week
This month
Last month
For all time
2729
4471
25219
18409
74578
75709
2766835

Forecast today
2976


Your IP:216.73.216.225