JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 66-78
REVIEW
DOI: 10.12737/article_59b10b5ea417a6.00174966
The Drugs and Natural Antioxidants as the Components of Anti-Radiation Countermeasures During Space Flights
I.B. Ushakov1, M.V. Vasin2
1. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Russian Medical Academy of Continuous Professional Education of the Ministry of Health Care of the Russian Federation, Moscow
I.B. Ushakov – Chief Scientific Researcher, Member of RAS, Dr. Sc. Med., Prof., M.V. Vasin – Honoured Science Worker of the Russian Federation, Dr. Sc. Med., Prof.
Abstract
Radiation situation for cosmonauts over long-term space flights is caused by low-rate radiation of galactic cosmic rays and solar cosmic rays consisting of high-energy proton as well as heavy particles (Z>10) within 1–2 % that is exclusively a threat of stochastic radiation effects (small increase of cancer risk and decrease of mean life span) for men. During interplanetary expedition periods the small probability of raised solar activity occurring approximately every 11 years there is a threat of exposure to astronauts at doses that cause deterministic radiation effects leading to the development of the disease as a clinical manifestation of radiation injuries. In a similar scenario it is necessary to have available to spaceship anti-radiation countermeasures for astronaut protection. Among personal radioprotective equipment can be provided with radiation protective agents and partial shielding of body separate section providing the best condition for post-radiation repair of radiosensitive body tissues. Preparation B-190 (indralin) is the most perspective from a small number of other radioprotectors permitting for men administration. Besides high radioprotective efficacy and large broadness of radioprotective action B-190 is well tolerated including the impact of extreme flight factors. Antiemetic agent latran (ondansetron) is most interesting among preparation for prophylaxis and reduction of prodromal radiation reaction. To accelerate post-radiation hematopoietic recovery after raised solar activity an administration of radiomitigators (riboxin et al.) is substantiated. Neupomax (neupogen) is recommended as a preparation for pathogenesis therapy of acute radiation syndrome. Possible consequences of long-term space voyages for oxidative stress development are taken into consideration. On their basis of natural antioxidants, preparations and nutrients as radiomodulators, fully qualitative nutrition including vegetable food enriched flavonoids, vitamins C, E and carotene potentially prevent a shorten of cosmonaut biological age induced by solar cosmic rays and galactic cosmic rays and stress factors of long-term cosmic voyages. Radiomodulators are low and non-toxic and have not side effects in recommended doses. Their radioprotective effect is directly induced by adaption reaction on cellular and organismic levels through gene expression modulation and in that way the increase of non-specific body tolerance. The implementation of radiomodulator action is possible through hormesis mechanism.
Key words: space radiation, manned space flights, radiation protective agents, indralin, latran (ondansetron), neupomax (filgrastim), natural antioxidants
REFERENCE
- Comstock G.M., Fan C.Y., Simpson J.A. Energy spectra and abundances of the cosmic-ray nuclei helium to iron from the OGO-1 satellite experiment. Astrophys. J. 1969. Vol. 155. P. 609–617.
- Maalouf M., Durante M., Foray N. Biological effects of space radiation on human cells: history, advances and outcomes. A general review. J. Radiat. Res. 2011. Vol. 52. P. 126–246.
- Durante M. Physical and biomedical countermeasures for space radiation risk. Z. Med. Phys. 2008. Vol. 18. P. 244–252.
- Durante M., Cucinotta F. A. Heavy ion carcionegensis and human space exploration. Nature Rev. Cancer. 2008. Vol. 8. P. 465–472.
- Shafirkin A.V. [Biological effectiveness of fission spectrum neutrons and protons with energies 60–126 MeV during acute and prolonged irradiation]. Aviakosm. Ekolog. Med. 2015. Vol. 49. No. 6. P. 5–13. (In Russ.).
- Shafirkin A.V., Kolomenskii A.V., Mitrikas V.G., Petrov V.M. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development]. Aviacosm. Ecolog. Med. 2010. Vol. 44. No. 1. P. 5–14. (In Russ.).
- Petrov V.M. Problems and conception of ensuring radiation safety during Mars missions. Adv. Space Res. 2004. Vol. 34. No. 6. P. 1451–1454. (In Russ.).
- Ushakov I.B., Petrov V.M., Shafirkin A.V., Shtemberg A.S. [Problems of ensuring human radiation safety during interplanetary flights] . Radiats. Biol. Radioecol. 2011. Vol. 51. No. 5. P. 595–610. (In Russ.).
- Shafirkin A.V., Grigoriev Yu. G. Radiobiological foundation of crew radiation risk for Mars mission to the problem of the space flight safety. Amer. J. Life Sci. Special issue: Space flight factors: from cell to body. 2015. Vol. 3. No. 1–2. P. 32–42. doi: 10.11648/j.ajls.s. 2015030102.16.
- Carnell L., Blatting S., Hu S. et al. Evidence Report: Risk of Acute Radiation Syndromes due to Solar Particle Events.. NASA Technical Report JSC-CN-35747. 2016. 66 p.
- Haskin F.E., Harper F.T., Gooseens L.H et al. Probabilistic accident consequence uncertainty analysis: Early health effects uncertainty assessment. Main Report. NUREG/CR-6545, EUR 15855 Vol. 1. Washington: US Nuclear Regulatory Commission, DC. 1997.
- Kim M.Y., De Angelis G., Cucinotta F.A. Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronautica. 2011. Vol. 68. P. 747–759.
- Romero-Weaver A.L., Wan X.S., Diffenderfer E.S. et al. Effect of SPE-like proton and photon radiation on the kinetics of mouse peripheral blood cells and radiation biological effectiveness determinations. Astrobiology. 2013. Vol. 13. P. 570–577.
- Ushakov I.B., Vasin M.V. [Radiation protectors within the radiation safety system for extended duration exploration missions]. Aviakosm. Ekolog. Med. 2011. Vol. 45. No. 3. P. 3–12. (In Russ.).
- Frank G.M., Saksonov P.P., Antipov V.V., Dobrov N.N. Radiobiological problems in space flights.. In: Proc. First Internat. Symposium on “Basic environmental problems of man in space”. Paris. 19.10–2.11 1962. Ed. By H. Bjurstadt. New York: Springer-Verlag. 1965. P. 240–264.
- Saksonov P.P., Antipov V.V., Shashkov V.S. et al. On the biological effects high-energy protons. 14th Int. Astronautical Congress. Paris. 25.09–1.10 1963. Washington: NASA Report CR 15202. 1963.
- Saksonov P.P., Antipov V.V., Davydov B.I. [Essay of space radiobiology. Problems of space biology]. Vol. 9. Moscow: Nauka. 1968. 532 p. (In Russ.).
- Saksonov P.P., Antipov V.V., Davydov B.I., Dobrov N.N. [Protection of cosmonauts from cosmic radiation by radioprotectors]. Kosm. Biol. Med. 1970. Vol. 4. No. 5. P. 17–19. (In Russ.).
- Saksonov P.P. Protection against radiation (biological, pharmacological, chemical, physical).. In: Foundation of Space Biology and Medicine. Vol. 3. Ed. by M. Calvin, O.G. Gazenko. Washington: NASA. 1975. P. 316–347.
- Saksonov P.P., Shashkov V.S., Sergeev P.V. [Radiation pharmacology]. Moscow: Medistina. 1976. 255 p. (In Russ.).
- Kuznestov V.I., Tank L.I. [Pharmacology and clinic application of aminothiols] / Moscow: Medistina. 1966. 169 p. (In Russ.).
- Shashkov V.S., Vasin M.V. Saksonov P.P., Kozlov V.A. [Pharmacological properties of radioprotective agents ]. Farmakol. Toksikol. 1967. Vol. 30. No. 1. P. 109–117. (In Russ.).
- Torrisi A.T., Kligerman P., Glover DJ. et al. I phase of clinical investigation of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F.Nygaard. New York: Acad. Press. 1983. P. 681–694.
- Glick J.H., Glover D.J., Torrisi A.T. Phase I trials of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F. Nygaard. New York: Acad. Press. 1983. P. 719–734.
- Antipov V. cystamine V., Vasin M.V., Davydov B.I., Saksonov P.P. [The influence of overloads to cystamine sensitivity]. Izvestiia AN SSSR Ser. Biol. 1969. No. 3. P. 434–437. (In Russ.).
- Antipov V.V., Vasin M.V., Davydov B.I. et al. Study of reactivity of the organism exposed to transverse accelerations and radioprotectants. Aerosp. Med. 1971. Vol. 42. No. P. 837–839.
- Vasin M.V., Antipov V.V., Davydov B.I., Saksonov P.P. [Mouse sensitivity to radioprotectors from family of indolylalkylamines and aminothiols during afteraction of tranverse accelerations] . In. “Problems of space biology”. Eds. P.P. Saksonov, B.I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 53–57. (In Russ.).
- Davydov B.I., Daidamakin N.A. [The influence of radioprotective agents from the family of mercapthoalkylamines (cystamine S, b-aminoethylisothiuronium) to animal reactiveness transverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 1–29. (In Russ.).
- Davydov B.I., Kozlov V.A. [The influence of mononitrate salt g-amineethylthiophosphoric acid to animal resistance with transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 30–32. (In Russ.).
- Kozlov V.A., Davydov B.I. [The influence of radioprotectors from the family of aminothiols to guinea pig heart function during overloads] . In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 33–39. (In Russ.).
- Davydov B.I. [Reactivity of irradiated animals protected by mercapto-(cystamine, cystafos) and indolylalkylamines (mexamine, serotonin) to transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. Vol. 14. P. 410–421. (In Russ.).
- Kolemeeva L.Ya., Shashkov V.S., Egorov B.B. [Radioprotective effect of mexamine and cystamine in animals during hypokinesia and ionizing irradiation]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 6. P. 78–79. (In Russ.).
- Vorobyev E.I., Efimov V.I., Karsanova S.K. [Radioprotetor effect on body reactiveness during space flight factors]. Kosm. Biol. Aviakosm. Med. 1982. Vol. 16. No. 1. P. 4–12. (In Russ.).
- Vasin M.V., Lebedeva N.N. [Cystamine influence to men-operator capacity]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 5. P. 54–57. (In Russ.).
- Badyugin I.S., Zabrodskii P.F., Polyarush V.P. et al. [Military toxicology, radiology and protection from weapon of mass defeat]. Ed. I.S. Badyugin. Moscow: Military publishers. 1992. 336 p. (In Russ.).
- Belay V.E., Vasilyev P.V., Saksonov P.P. [Material to comparative pharmacological characteristic of various salts of mercamine]. Farmakol. Toksikol. 1960, Vol. 23. P. 450–453. (In Russ.).
- Yarmonenko S.P., Avrunina G,A., Shashkov V.S., Govorun R.D. [Study of biological protection from high energy proton irradiation. Radiobiologiia. 1962. Vol. 2. P. 188–192. (In Russ.).
- Shashkov V.S. Saksonov P.P., Antipov V.S. [Comparative radioprotective effects of mercapto- and indolylalkylamines during gamma-irradiation and proton irradiation of high energy 660 and 120 MeV]. Farmakol. Tiksikol. 1965. Vol. 28. No.3. P. 350–351.
- Shashkov V.S., Morosov V.S. Injurious effect of 660 and 120 MeV protons and the efficacy of pharmacological and chemical protection. NASA Technical Report No. 66-1926609-04. 1966.
- Rogozkin V.D., Sbitneva M.V. [To prophylactic and therapeutic effect of vitamins from family of B during acute radiation disease. In: Question of pathogenesis, experimental therapy and prophylaxis of radiation disease]. Moscow: Medgiz. 1960. P. 182–190. (In Russ.).
- Rogozkin V.D. [The use of vitamin-amino acid complex during proton irradiation in non-lethal doses // In: Biological effect of high energy proton]. Moscow: Atomizdat. 1967. P. 417–433. (In Russ.).
- Rogozkin V.D., Sbitneva M.V., Shapiro G.A. et al. [The experiance of prophylactic agent use during irradiation imitated radiation injury in space flight]. Kosm. Biol. Med. 1970. Vol. 4. No. 2. P. 20–24. (In Russ.).
- Rogozkin V.D., Tikhomirova M.V., Davydova S.A. et al. [The effectiveness of aminotetravit and adenosine triphosphate acid in the condition of prolonged irradiation]. Kosm. Biol. Aviakosm. Med. 1974. Vol. 8. No. 3. P. 11–14. (In Russ.).
- Tikhomirova M.V., Rogozkin V.D. [The effectiveness of use of ATP, antibiotics and vitamins during prolonged monkey irradiation]. Radiobiologiia. 1977. Vol. 17. No. 3. P. 400–403. (In Russ.).
- Tikhomirova M.V., Yashkin P.N. [Comparative radioprotective efficacy of adenylates during short-term and prolonged irradiation]. Radiobiologiia. 1983. Vil. 23. No. 1. P. 100–104. (In Russ.).
- Tikhomirova M.V., Yashkin P.N., Fedorenko B.S., Chertkov K.S. [Radioprotective efficacy of ATP and adenosine at high energy proton irradiation]. Kosm. Biol. Aviakosm. Med. 1984. Vol. 18. No. 5. P. 75–77. (In Russ.).
- Chertkov K.S., Petrov V.M. Pharmaco-chemical protection and substitutive therapy as composite part of cosmonaut radiation safety system during an expedition to Mars. Aviakosm. Ekolog. Med. 1993. Vol. 27. No. 5–6. P. 27–32. (In Russ.).
- Vasin M.V. Search and study of new effective agents of pharmaco-chemical body protection from ionizing radiation injury. Diss. D. Sc. Med. Moscow: State Sc test Institute of avation and space medicine. 1977. 510 p. (In Russ.).
- Ilyin L.A. Reality and myth. Moscow: ALARA Limited. 1994. 448 p. (In Russ.).
- Ilyin L.A., Rudny N.M., Suvorov N.N. et al. [Indralin – radioprotector of emergency action. Radioprotective properties, pharmacology, mechanism of action, clinic]. Moscow. 1994. 436 p. (In Russ.).
- Shashkov V.S., Efimov V.I., Vasin M.V. et al. [Indralin as new effective radioprotector during high energy proton irradiation]. Aviakosm. Ekolog. Med. 2010. Vol. 44. No. 1. P. 15–20. (In Russ.).
- Shashkov V.S., Karsanjva S.K., Yasnestov V.V. [Protective effect of radioprotectors and shielding during high energy proton irradiation on experiments with rats]. Aviakosm. Ekolog. Med. 2008. Vol. 42. No. 2. P. 58–60. (In Russ.).
- Bacq Z. Chemical protection against ionizing radiation. Springfield: Tomas Press.1965. Transf. on Russ. 1968. 263 p.
- Vladimirov V.G. [Radioprotectors and their modern classification]. Voenn-Med. Zhurn. 1978. No. 6. P. 39–43. (In Russ.).
- Vasin M.V. [Classification of radiation protective agents as a basis of modern radiation pharmacology]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 212–222. (In Russ.).
- Stone H., Moulder J., Coleman C. et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, Dec. 3–4. 2003. Radiat. Res. 2004. Vol. 162. No. 6. P. 711–728.
- Vasin M.V. [Classification of radiation protective agents as a reflection up-to-day state and perspective of radiation pharmacology development]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 5. P. 459–467. (In Russ.).
- Vladimirov V.G. Dzharakyan T.G. Radioprotective effects on animal and men. ˯scow: Energoatomizdat. 1982. 88 p. (In Russ.).
- Vasin M.V. Radioprotective drugs. Moscow: Russian medical academy of post-graduated education. 2010. 180 p. (In Russ.).
- Vasin M.V., Ushakov I.B., Koroleva L.V., Antipov V.V. [The role of cell hypoxia in the effect of radiation protectors]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 238–248. (In Russ.).
- Wasserman T.H., Brizel D.M. The role of amifostine as a radioprotector. Oncol. (Williston Park) 2001. Vol. 15. P. 1349–1354.
- Copp R.R., Peebles D.D., Soref C.M. et al. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int. J. Radiat. Biol. 2013. Vol. 89. No. 7. P. 485–492.
- Vasin M.V., Antipov V.V., Chernov G.A. et al. [Studies of the radiation-protective effects of indralin on the hematopoietic system of different species of animals]. Radiats. Biol. Radioecol. 1996. Vol. 36. No. 2. P. 168–189. (In Russ.).
- Vasin M.V., Chernov G.A., Antipov V.V. [Width of radiation protective effects of indralin in comparative studies using different animal species]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 6. P. 896–904. (In Russ.).
- Vasin M.V., Semenov L.F., Suvorov N.N. et al. Protective effect and the therapeutic index of indralin in juvenile monkeys. J. Radiat. Res. 2014. Vol. 55. No. 6. P. 1048–1055. doi: 10.1093/jrr/rru046.
- Vasin M.V. Medicine for prophylaxis and therapy of radiation injuries. Moscow: Russian medical academy of post-graduated education. 2006. 340 p. (In Russ.).
- Vasin M.V., Chernov G.A., Koroleva L.V. et al. [Mechanism of the radiation-protective effect of indralin] // Radiats. Biol. Radioecol. 1996. Vol. 36. 1. P. 36–46.
- Vasin M.V., Ushakov I.B., Semenova L.A., Kovtun V.Iu. [Pharmacologic analysis of the radiation-protecting effect of indraline] // Radiats Biol Radioecol. 2001. Vol. 41. 3. P. 307–309.
- Vasin M.V., Ushakov I.B., Kovtun V.Yu. Radioprotector indralin at early and late manifestation of local radiation injuries // Vopr. Onkol. 2016. Vol. 62. 3. P. 406–412.
- Pomerantseva M.D., Ramaĭia L.K., Vasin M.V., Antipov V.V. [Effect of indralin on genetic disruption induced by radiation in mice]. Genetika. 2003. Vol. 39. No. 9. P. 1293–1296. (In Russ.).
- Vartanian L.P., Krutovskikh G.N., Pustovalov Iu.I., Gornaeva G.F. [The radioprotective effect of riboxine (inosine)]. Radiobiologiia. 1989. Vol. 29. No. 5. P. 707–709. (In Russ.).
- Legeza V.I., Abdul Iu.A., Antushevich A.E. et al. [Clinical and experimental investigation on the radioprotective effect of riboxine in low-dose fractionated irradiation]. Radiats. Biol. Radioecol. 1993. Vol. 33. No. 6. P. 800–807. (In Russ.).
- Gudkov S.V., Gudkova O.Y., Chernikov A.V., Bruskov V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine.. Int. J. Radiat. Biol. 2009. Vol. 85. No. 2. P. 116–125.
- Popova NR, Gudkov SV, Bruskov VI. [Natural purine compounds as radioprotective agents]. Radiats. Biol. Radioecol. 2014. Vol. 54. No. 1. P. 38–49. (In Russ.).
- Virag L., Scabo C. Purines inhibit poly (ADP-ribose) polymerase activation and modulate oxidant induced cell death. FACEB J. 2001. Vol. 15. P. 99–107.
- Buckley S. Barsky L., Weinber K. In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia induced DNA damage through MAP kinase signaling. Amer. J. Physiol. 2005. Vol. 288. P. L569–L575.
- Gudkov S.V., Bruskov V.I. [Guanosine and inosine (riboxin). Antioxidative and radioprotective properties. Saarbrucken: LAMBERT Acad. Publ. 2011. 177 p. (In Russ.).
- Gudkov S.V., Shtarkman I.N., Smirnova V.S. et al. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice.. Radiat. Res. 2006. Vol. 165. P. 538–545.
- Rasgovorov P.L., Saksonov P.P., Antipov V.V. et al. [Modification of animal reactivity to some pharmacologic agents at the shielding of body part during whole irradiation. In. “Problems of space biology”]. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 175–185. (In Russ.).
- Vasin M.V. Potential role of non-uniformity of body absorption of ionizing radiation energy in the efficacy of radiation protective drugs. Med. Radiol. Radiast. Bezop. 2011. Vol. 56. No. 4. P. 60–70. (In Russ.). >
- Vasin M.V., Ushakov I.B., Kovtun V.Iu. et al. [Radioprotective properties of a radioprotector of emergency action indraline at its adminisration after irradiation in conditions of local shielding of a rat abdomen]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 199–201. (In Russ.).
- King G.L., Rabin B.M., Weatherspoon J.K. 5-HT3 receptor antagonists ameliorate emesis in the ferret evoked by neutron or proton radiation. Aviat. Space Environ. Med. 1999. Vol. 70. P. 485–492.
- Rozhdestvenskii L.M. [Cytokines in the aspect of pathogenesis and therapy of acute radiation sickness]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 4. P. 590–596. (In Russ.).
- Rozhdestvenskii L.M., Korovkina E.P., Deshevoi Iu.B. [Recombinant human interleukine-1beta (betaleukine) usage for acute radiation sickness of severe degree treatment at canines]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 185–194. (In Russ.).
- Grebenyuk A.N., Legeza V.I. Radioprotective properties of interleukin-1. Saint Petersburg: Foliant. 2012. 215 p. (In Russ.).
- Gluzman-Poltorak Z., Vainstein V., Basile L.A. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure. Amer. J. Hematol. 2014. Vol. 89. No. 9. P. 868–873.
- Farese A.M. , Cohen M.V., Stead R.B. et al. Pegfilgrastim administered in an abbreviated schedule, significantly improved neutrophil recovery after high-dose radiation-induced myelosuppression in rhesus macaques. Radiat. Res. 2012. Vol. 178. No. 5. P. 403–413. doi: 10.1667/RR2900.1.
- Hankey K.G., Farese A.M., Blaauw E.C. et al. Pegfilgrastim improves survival of lethally irradiated nonhuman primates. Radiat. Res. 2015. Vol. 183. No. 6. P. 643–655.
- Farese A.M., Cohen M.V., Katz B.P. et al. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat. Res. 2013. Vol. 179. No. 1. P. 89–100. doi: 10.1667/RR3049.1.
- Rozhdestvenskii L.M., Shliakova T.G., Shchegoleva R.A. et al. [Evaluation of the treatment effectiveness of domestic G-SCF preparations in experiments on irradiated dogs]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 1. P. 47–54. (In Russ.).
- Selidovkin G.D. [Modern methods of therapy of the patients with acute radiation disease in specialized hospital]. Medicine Catastrophe. 1995. No. 1–2. P. 135–149. (In Russ.).
- Seligovkin G.D., Barabanjva A.V. [Therapy of acute radiation disease from uniform and non-uniform irradiation. Radiation medicine.] . In Ilyin L.A. (ed.). Moscow: Izd.AT. 2001. Vol. 2. P. 108–129. (In Russ.).
- Li M., Holmes V., Ni H. et al. Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during space flight. PLoS One. 2015. Vol. 10. No. 3. P, e0120126. doi: 10.1371/journal.pone.0120126.
- Wu H., Huff J.L., Casey R. et al. Risk of acute radiation syndrome due to solar particle events. In: Human Research Program Requierments Document HRP-47052.4.5. 2009. Chapter 5. P. 171–190.
- Sanzari J.K., Diffenderfer E.S., Hagan S. et al. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model. Life Sci. Space Res. (Amst). 2015. Vol. 6. P. 21–28. doi: 10.1016/j.lssr.2015.06.003.
- Langell J., Jennings R., dark J., Ward J.B. Jr. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
- Shin D.M., Kucia M., Ratajczak M.Z. Nuclear and chromatin reorganization during cell senescence and aging: A mini review. Gerontology. 2011. Vol. 57. No. 1. Р. 76–84. doi: 10.1159/000281882.
- Koltover V.K. [Antioxidative medicine: from chemistry of free radical to system biological mechanism]. Izvestiia Akad. Nauk. Ser. Chim. 2010. No. 1. P. 37–43.
- Meyers K.J., Rudolf J.L., Mitchell A.E. et al. Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem. 2008. Vol. 56. No. 3. Р. 830–838.
- Fiorani M., Guidarelli A., Blasa M. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J. Nutr. Biochem. 2010. Vol. 21. No. 5. P. 397–404. doi: 10.1016/j.jnutbio.2009.01.014.
- Janjua N.K., Siddiqa A., Yaqub A. Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions. Spectrochim. Acta Mol. Biomol. Spectrosc. 2009. Vol. 74. No. 5. P. 1135–1143.
- Lim J.C., Choi H.I., Park Y.S. et al. Irreversible oxidation of the active site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 2008. Vol. 283. No. 43. P. 28873–28880. doi: 10.1074/jbc.M804087200.
- Essler S., Dehne N., Brune B. et al. Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett. 2009. Vol. 583. No. 21. Р. 3531–3539.
- Smith M.R., Vayalil P., Zhou F. et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol. 2016. Vol. 8. P. 136–148. doi: 10.1016/j.redox.2016.01.002.
- Butterfield А., Perluigi М. Redox Proteomics: A key tool for new insights into protein modification with relevance to disease. Antioxid. Redox Signal. 2017. Vol. 26. No. 7. Р. 277–279. doi:10.1089/ars.2016.6919.
- Höhn A., König J., Jung T. Metabolic syndrome, redox state, and the proteasomal system. Antioxid. Redox Signal. 2016. Vol. 25. No. 16. P. 902–917.
- Frei B., Higdon J.V. Аntioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003. Vol. 133. No. 10. Р. 3275S–3284S.
- Chen J.C., Ho F.M., Pei Dawn L.C. et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor kappa b and STAT1, and depends on heme oxygenase 1 induction in mouse BV 2 microglia. Eur. J. Pharma Col. 2005. Vol. 521. No. 1–3. Р. 9–20.
- Ivanov V., Cha J., Ivanova S., Kalinovsky, T. Essential nutrients suppress inflammation by modulating key inflammatory gene expression. Int. J. Mol. Med. 2008. Vol. 22. No. 6. P. 731–741.
- Chung M.J., Kang A.Y., Lee K.M. et al. Water soluble genistin glycoside isoflavones upregulate antioxidant metallothionein expression and scavenge free radicals. J. Agric. Food Chem. 2006. Vol. 54. No. 11. Р. 3819–3826.
- Dröse S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta. 2014. Vol. 1844. No. 8. P. 1344–1354. doi: 10.1016/j.bbapap.2014.02.006.
- Ullmann K., Wiencierz A.M., Muller C. et al. A high throughput reporter gene assay to prove the ability of natural compounds to modulate glutathione peroxidase, superoxide dismutase and catalase gene promoters in V79 cells. Free Radic. Res. 2008. Vol. 42. No. 8. Р. 746–753. doi: 10.1080/10715760802337273.
- Singh V.K., Beattie L.A., Seed T.M. Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures. J. Radiat. Res. 2013. Vol. 54. No. 6. P. 973–988. doi: 10.1093/jrr/rrt048.
- Patak P., Willenberg H.S., Bornstein S.R. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 2004. Vol. 30. No. 4. P. 871–875.
- Hafidh R.R., Abdulamir A.S., Abu Bakar F. Antioxidant research in Asia in the period from 2000–2008. Amer. J. Pharmacol. Toxicol. 2009. Vol. 4. No. 3. P. 48–66.
- Batra P., Sharma A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech. 2013. Vol. 3. No. 6. P. 439–459. doi: 10.1007/s13205-013-0117-5.
- Lee J.H., Khor T.O., Shu L. et al. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 2013. Vol. 137. No. 2. P. 153–171.
- Izzi V., Masuelli L., Tresoldi I. et al. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosc. 2012. Vol. 17. P. 2396–2418.
- Schmidt H.H., Stocker R., Vollbracht C. et al. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015. Vol. 23. No. 14. P. 1130–1143. doi: 10.1089/ars.2015.6393.
- Yokozawa T., Kim H.Y., Kim H.J. et al. Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Brit. J. Nutr. 2007. Vol. 97. No. 6. P. 1187–1195.
- Brusselmans K., Vrolix R., Verhoeven G., Swinnen J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005. Vol. 80. No. 7. P. 5636–5645.
- Schroeter H., Boyd C., Spencer J.P. et al. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol. Aging. 2002. Vol. 23. P. 861–880.
- Yoshizumi M., Tsuchiya K., Suzaki Y. et al. Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem. Biophys. Res. Commun. 2002. Vol. 293. P. 1458–1465.
- Ahn S.C., Kim G.Y., Kim J.H. et al. Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells though inhibition of mitogen-activated-protein kinases and NF-kB. Biochem. Biophys. Res. Commun. 2004. Vol. 313. P. 148–155.
- Berkovich Y.A., Krivobok N.M., Sinyak Y.Y. et al. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplanetary missions. Adv. Space Res. 2004. Vol. 34. No. 7. P. 1552–1557.
- Oh M.M., Carey E.E., Rajashekar C.B. et al. Environmental stresses induce health promoting to chemicals in lettuce. Plant. Physiol. Biochem. 2009. Vol. 47. No. 7. P. 578–583. DOI: 10.1016/j.plaphy.2009.02.008.
- Guan, J., Wan, X.S., Zhou Z. Effects of dietary supplements on space radiation induced oxidative stress in Sprague–Dawley rats. Radiat. Res. 2004. Vol. 162. No. 5. P. 572–579.
- Kennedy A.R., Guan J., Ware J.H. Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys. 2007. Vol. 46. No. 2. P. 201–203.
- Rabin B.M., Shukitt-Hale B., Joseph J., Todd P. Diet as a factor in behavioral radiation protection following exposure to heavy particles. Gravit. Space Biol. Bull. 2005. Vol. 18. No. 2. P. 71–77.
- Yang T.C., Tobias C.A. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents. Adv. Space Res. 1984. Vol. 4. No. 10. P. 207–213.
- Kennedy A.R. Biological effects of space radiation and development of effective countermeasures. Life Sci. Space Res. 2014. Vol. 1. P. 10–43.
- Kennedy A.R., Todd P. Biological countermeasures in space radiation health. Gravit. Space Biol. Bull. 2003. Vol. 16. No. 2. P. 37–44.
- Kennedy A.R., Zhou Z., Donahue J.J., Ware J.H. Protection against adverse biological effects induced by space radiation by the Bowman-Birk inhibitor and antioxidants. Radiat. Res. 2006. Vol. 166. No. 2. P. 327–332.
- Langell J., Jennings R., Clark J., Ward J. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
- Epperly M.W., Wang H., Jones J.A. et al. Antioxidant chemoprevention diet ameliorates late effects of total body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat. Res. 2011. Vol. 175. P. 759–765.
For citation: Ushakov IB, Vasin MV. The Drugs and Natural Antioxidants as the Components of Anti-radiation Countermeasures during Spase Flightss. Medical Radiology and Radiation Safety. 2017;62(4):66-78. Russian. DOI: 10.12737/article_59b10b5ea417a6.00174966
Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 31-65
RADIATION PHYSICS, TECHNOLOGY AND DOSIMETRY
DOI: 10.12737/article_59b10998808b74.63554924
Risk of Thyroid Cancer after Exposure to 131I: Combined Analysis of Experimental and Epidemiological Data over Seven Decades. Part 2. Overview of Methods of Internal Dose Estimation and Thyroid Absorbed Dose Determination
A.N. Koterov1, L.N. Ushenkova1, E.S. Zubenkova1, A.A. Wainson1,2, A.P. Biryukov1
1. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
A.N. Koterov – Head of Lab., Dr. Sc. Biol.; L.N. Ushenkova – Leading Researcher, PhD Biol.; E.S. Zubenkova– Leading Researcher, PhD Biol.; A.A. Wainson– Head of Group, Dr. Sc. Biol., Prof.; A.P. Biryukov– Head of Department, Dr. Sc. Med., Prof.
Abstract
The research was done in order to create check-analytical base for future data combining synthetic studies of experimental and epidemiological works on carcinogenesis in the thyroid after 131I exposure which carried out in different decades on the basis of various dosimetry and dosimetric units.
The information about the history of the origin, development, and essence of three types of internal dosimetry of incorporated radionuclides was present. The first is the ‘classic’ system, based on the main semi-empirical formula of Marinelli–Quimby–Haine (1942–1948), and further developed by Loevinger et al. (1953–1956). In 1960s the calculated systems providing various types of phantoms which simulated body and individual organs of the human – MIRD scheme (‘MIRD-formalism’, 1965; calculation of doses from medical exposure of incorporated radionuclides), and ICRP system (1960; calculation of internal doses from professional exposure to radiation with different LET) were appeared.
In details, including a retrospective personalized aspect, the calculations leading to the basic formula of the classical dosimetry of β-sources internal exposure (Dβ (∞) = 73,8EβC0Teff) and its main modifications were used among other things for the calculation of diagnostic and therapeutic doses of radioiodine to the thyroid were considered. Thoroughly the examples of formula modification from various publications mainly on treatment of hyperthyroidism were investigated. It is revealed is not explained by the authors of original works and unpredictable variations in the numerical constants of the equations, and the imparted ‘basic formula’ names of its creators and modifiers. The errors in the formula in some Russian sources were found.
The studies on comparing of 131I doses to the thyroid which were determined by several different methods (on the base ‘classic’ formula, according to MIRD-scheme, by the Monte Carlo simulation and by direct determination with thermoluminescent dosimeters) were considered; only five such studies have been found and the results were generally inconsistent.
Key words: radioiodine, thyroid, history of internal dose dosimetry, formulas of Marinelly–Quimby–Hine and Loevinger, MIRD-scheme, ICRP-system
REFERENCES
- Koterov A.N., Ushenkova L.N., Biryukov A.P., Uyba V.V. Risk raka shchitovidnoy zhelezy posle vozdeystviya 131I: obyedinennyy analiz eksperimentalnykh i epidemiologicheskikh dannykh za sem desyatiletiy. Soobshcheniye 1. Aktualnost problemy i postanovka zadach dlya tsikla issledovaniy. Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 6. P. 25–49. (In Russ.).
- Vlasov V.V. Epidemiologiya: uchebnoye posobiye. 2-e izd., ispr. Moscow: GEOTAR-Media. 2006. 464 p . (In Russ.).
- World Health Organization Centre for Health Development. A Glossary of terms for Community Health Care and Services for Older Persons. 2004. (For citation: «The Rulebase Foundation». https://definedterm.com/synthetic_study, accessed 11.01.2017) .
- Ushenkova L.N., Koterov A.N., Biryukov A.P. Obyedinennyy (pooled) analiz chastoty gennykh perestroyek RET/PTC v spontannykh i radiogennykh papillyarnykh kartsinomakh shchitovidnoy zhelezy. Radiats. biologiya. Radioekologiya. 2015. Vol. 55. No. 4. P. 355–388.
- Bradford Hill A. The environment and disease: association or causation? Proc. R. Soc. Med. 1965. Vol. 58. P. 295–300.
- Rothman K.J. Causes. Amer. J. Epidemiol. 1976. Vol. 104. No. 6. P. 587–592.
- Rothman K.J., Greenland S. Causation and causal inference in epidemiology. Amer. J. Public Health. 2005. Vol. 95. Suppl 1. P. S144–S150.
- Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Amer. J. Epidemiol. 1991. Vol. 133. No. 7. P. 635–648.
- UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex A. Epidemiological studies of radiation and cancer. United Nations. New York. 2008. P. 17–322.
- Hofmann B., Holm S., Iversen J.-G. Philosophy of science. In: ‘Research methodology in the medical and biological sciences’. Ed. by P. Laake, H.B. Benestad, B.R. Olsen. Academic Press, Elsevier. 2007. P. 1–32.
- Marinelli L.D. Dosage Determination with Radioactive Isotopes. Amer. J. Roentgenol. 1942. Vol. 47. P. 210–216.
- ICRP Publication 53 (1988). Radiation dose to patients from radiopharmaceuticals. Ann. ICRP. 1988. Vol. 18. 1988.
- ICRP Publication 71 (1995). Age-dependent doses to members of the public from intake of radionuclides. Part 4. Inhalation dose coefficients. Ann. ICRP 25 (3–4). 1995.
- NCRP Report No. 164. Uncertainties in internal radiation dose assessment. National Council on Radiation Protection and Measurements. Bethesda. 2010.
- Radiatsionnaya dozimetriya. Khayna Dzh. & Braunella G. (eds). Transl. from engl. Guseva N.G. & Trukhanova K.A. (eds.). Moscow: Publ. In. lit., 1958. 760 p. (In Russ.).
- Hine G.J., Brownell G.L. (eds.). Radiation dosimetry. New York: Academic Press. 1956.
- Radiation Dosimetry: Vol. I: Fundamentals. Ed. by F.H. Attix, W.C. Roesch. New York: Academic Press. 1968.
- Radiation Dosimetry: Vol. II: Instrumentation. Ed. by F.H. Attix, W.C. Roesch. New York: Academic Press. 1966.
- Radiation Dosimetry: Vol. III: Sources, Fields, Measurements, and Applications. Ed. by F.H. Attix, E. Tochilin. New York: Academic Press. 1969.
- Atabek A.A. Radioaktivnyi iod v terapii tireotoksikozov. Moscow: Medgiz, 1959. 184 p. (In Russ).
- Loevinger R., Berman M. A formalism for calculation of absorbed dose from radionuclides. Phys. Med. Biol. 1968. Vol. 13. No. 2. P. 205–217.
- Report of ICRP Committee II on permissible dose for internal radiation (1959), with bibliography for biological, mathematical and physical data. Health. Phys. 1960. Vol. 3. P. 1–380.
- Moiseyev A.A., Ivanov V.I. Kratkiy spravochnik po radiatsionnoy zashchite i dozimetrii. Moscow: Atomizdat. 1964. 184 p. (In Russ).
- Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. Izd. 2-e. Moscow: Atomizdat. 1974. 336 p. (In Russ).
- Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. 3-e izd., pererab. i dop. Moscow: Atomizdat. 1984. 296 p. (In Russ).
- Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene. 4-e izd., pererab. i dop. Moscow: Atomizdat. 1990. 252 p. (In Russ).
- Krongauz A.N., Lyapidevskiy V.K., Frolova A.V., Fizicheskiye osnovy klinicheskoy dozimetrii. Moscow: Atomizdat. 1969. 304 p. (In Russ).
- Ivanov V.I. Kurs dozimetrii. Uchebnik dlya vuzov. 4-e izd. pererab. i dop. Moscow: Energoatomizdat. 1988. 400 p. (In Russ).
- Golubev B.P. Dozimetriya i zashchita ot ioniziruyushchikh izlucheniy. Uchebnik dlya vuzov. In Stolyarova E.L. (ed.). 4-e izd. Moscow: Energoatomizdat. 1986. 464 p. (In Russ).
- Osanov D.P., Likhtarev I.A. Dozimetriya izlucheniy inkorporirovannykh radioaktivnykh veshchestv. Moscow: Atomizdat. 1977. 199 p. (In Russ).
- Shamov V.P. Tkanevodozimetricheskiye kharakteristiki osnovnykh radioaktivnykh izotopov. Spravochnik. Moscow: Atomizdat. 1972. 128 p. (In Russ).
- Narkevich B.Ya., Kostylev V.A., Levchuk A.V. et al. Radiatsionnaya bezopasnost v meditsinskoy radiologii. Chast 2. Obespecheniye radiatsionnoy bezopasnosti patsiyentov. Medical Radiology and Radiation Safety. 2009. Vol. 54. No. 9. P. 46–57. (In Russ).
- Narkevich B.Ya., Shiryayev S.V. Metodicheskiye osnovy radionuklidnoy terapii // Medical Radiology and Radiation Safety. 2004. Vol. 49. No. 5. P. 35–44. (In Russ).
- Klimanov V.A. Fizika yadernoy meditsiny. Chast 1. Fizicheskiy fundament yadernoy meditsiny. ustroystvo i osnovnyye kharakteristiki gamma-kamer i kollimatorov γ-izlucheniya. odnofotonnaya emissionnaya tomografii. rekonstruktsiya raspredeleniy radionuklidov v organizme cheloveka. polucheniye radionuklidov. Uchebnoye posobiye. Moscow: NIYaU MIFI. 2012. 308 p. (In Russ).
- Belyayev V.N., Klimanov V.A. Fizika yadernoy meditsiny. Chast 2. Pozitronno-emissionnyye skanery. rekonstruktsiya izobrazheniy v pozitronno-emissionnoy tomografii. kombinirovannyye sistemy PET/KT & OFEKT/PET. kinetika radiofarmpreparatov. radionuklidnaya terapiya. vnutrennyaya dozimetriya. radiatsionnaya bezopasnost. Uchebnoye posobiye. Moscow: NIYaU MIFI. 2012. 248 p. (In Russ).
- Stabin M.G. Demystifying internal dose calculations. The RADAR site. (www.doseinfo-radar.com/demystify.doc; accessed 12.12.2016).
- Stabin M.G., Siegel J.A. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003. Vol. 85. No. 3. P. 294–310.
- Stabin M. Nuclear medicine dosimetry. Phys. Med. Biol. 2006. Vol. 51. No. 13. P. R187–R202.
- Stabin M.G. Radiation protection and dosimetry. An introduction to Health Physics. New York: Springer-Verlag. 2007. 384 p.
- Stabin M.G., Brill A.B. State of the art in nuclear medicine dose assessment. Semin. Nucl. Med. 2008. Vol. 38. No. 5. P. 308–320.
- Stabin M.G. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 1996. Vol. 37. No. 3. P. 538–546.
- Stabin M.G., Sparks R.B. MIRDOSE4 does not exist. J. Nucl. Med. 1996. Vol. 40. Suppl. P. 306.
- Stabin M.G., da Luz P.L. New decay data for internal and external dose assessment. Health Phys. 2002. Vol. 83. No. 4. P. 471–475.
- Stabin M.G. Fundamental of nuclear medicine dosimetry. New York. 2008. Springer.
- Klimanov V.A., Kramer-Ageyev E.A., Smirnov V.V. Radiatsionnaya dozimetriya. Chast 1. Peredacha i pogloshcheniye energii ioniziruyushchikh izlucheniy v veshchestve. Teoreticheskiy fundament radiatsionnoy dozimetrii. Interpritatsiya pokazaniy detektorov. Metody rascheta doz ot vneshnikh istochnikov. Pod red. V.A. Klimanova. Moscow: NIYaU MIFI. 2014. 286 p. (In Russ.).
- Klimanov V.A., Kramer-Ageyev E.A., Smirnov V.V. Radiatsionnaya dozimetriya. Chast 2. Metody dozimetrii fotonov. zaryazhennykh chastits i neytronov. Kalibrovka puchkov ioniziruyushchikh izlucheniy. Dozimetriya v luchevoy terapii i yadernoy meditsine. Pod red. V.A. Klimanova. Mosc ow: NIYaU MIFI. 2014. 320 p. (In Russ.).
- Bolch W.E., Eckerman K.F., Sgouros G., Thomas S.R. MIRD Pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J. Nucl. Med. 2009. Vol. 50. P. 477–484.
- Marinelli L.D. Dosage determination in the use of radioactive isotopes. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt 1. P. 1271–1280.
- Conard R.A., Rall J.E., Sutow W.W. Thyroid nodules as a late sequela of radioactive fallout in a Marshall Island population exposed in 1954. New Eng. J. Med. 1966. Vol. 274. No. 25. 1391–1399.
- Garner R.J., Sansom B.F., Jones H.G., West L.C. Fission products and the dairy cow. 5. The radiotoxicity of iodine-131. J. Comp. Pathol. 1961. Vol. 71. P. 71–84.
- Gilbert E.S., Huang L., Bouville A. et al. Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests: an update. Radiat. Res. 2010. Vol. 173. No. 5. P. 659–664.
- Shinkarev S.M., Kotenko K.V., Granovskaya E.O. et al. Estimation of the contribution of short-lived radioiodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident. Radiat. Prot. Dosimetry. 2015. Vol. 164. No. (1–2). P. 51–56.
- Gavrilin Y.I., Khrouch V.T., Shinkarev S.M. et al. Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus. Health Phys. 1999. Vol. 76. No. 2. P. 105–119.
- Drozdovitch V., Minenko V., Khrouch V. et al. Thyroid dose estimates for a cohort of Belarusian children exposed to radiation from the Chernobyl accident. Radiat. Res. 2013. Vol. 179. No. 5. P. 597–609.
- Likhtarov I., Kovgan L., Vavilov S. et al. Post-Chornobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid doses. Radiat. Res. 2005. Vol. 163. No. 2. P. 125–136.
- Kereiakes J.G., Wellman H.N., Tieman J., Saenger E.L. Radiopharmaceutical dosimetry in pediatrics. Radiology. 1968. Vol. 90. No. 5. P. 925–930.
- Jacob P., Bogdanova T., Buglova E. et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat. Res. 2006. Vol. 165. No. 1. P. 1–8.
- Bustad L.K., George L.A. Jr, Marks S. Biological effects of 131I continuously administered to sheep. Radiat. Res. 1957. Vol. 6. No. 3. P. 380–413.
- Peterson M.E., Kintzer P.P., Hurley J.R., Becker D.V. Radioactive iodine treatment of a functional thyroid carcinoma producing hyperthyroidism in a dog. J. Vet. Intern. Med. 1989. Vol. 3. No. 1. P. 20–25.
- Shvedov V.L. Pogloshcheniye radioaktivnogo yoda shchitovidnoy zhelezoy i narusheniye eye funktsii v usloviyakh khronicheskogo eksperimenta. Med. radiologiya. 1961. Vol. 6. No. 6. P. 38–41. (In Russ.).
- Walinder G., Sjoden A.M. Effect of irradiation on thyroid growth in mouse foetuses and goitrogen challenged adult mice. Acta Radiol. Ther. Phys. Biol. 1971. Vol. 10. No. 6. P. 579–592.
- Book S.A., McNeill D.A., Parks N.J., Spangler W.L. Comparative effects of iodine-132 and iodine-131 in rat thyroid glands. Radiat. Res. 1980. Vol. 81. No. 2. P. 246–253.
- Moore W., Colvin M. The effect of 131I on the aberration-rate of chromosomes from Chinese hamster thyroids. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1966. Vol. 10. No. 4. P. 391–401.
- Book S.A., McNeill D.A., Spangler W.L. Age and its influence on effects of iodine-131 in guinea pig thyroid glands. Radiat. Res. 1980. Vol. 81. No. 2. P. 254–261.
- Prakash P., St Clair L.E., Romack F.E. Localization of radioiodine in the tissues of swine: an autoradiographic study. Acta Histochem. 1976. Vol. 57. No. 2. P. 282–290.
- Loevinger R. The dosimetry of beta sources in tissue. The point-source function. Radiology. 1956. Vol. 66. No. 1. P. 55–62.
- Van Nostrand D., Atkins F., Yeganeh F. et al. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002. Vol. 12. No. 2. P. 121–134.
- Loevinger R, Berman M. A schema for absorbed-dose calculations for biologically-distributed radionuclides. MIRD Pamphlet No. 1. New York, NY: Society of Nuclear Medicine, 1968.
- Lee W., Shleien B., Telles N.C. Chiacchierini R.P. An accurate method of 131I dosimetry in the rat thyroid. Radiat. Res. 1979. Vol. 79. No. 1. P. 55–62.
- Spetz J., Rudqvist N., Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother. Radiopharm. 2013. Vol. 28. No. 9. P. 657–664.
- Rudqvist N., Schuler E., Parris T.Z. et al. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl. Med. Biol. 2015. Vol. 42. No. 3. P. 263–268.
- ICRP Publication 60 (1990). New York: Pergamon Press. 1991.
- Lyra M., Phinou P. Internal dosimetry in Nuclear Medicine: a summary of its development, applications and current limitations. RSO Magazine. 2000. Vol. 5. No. 2. P. 17–30.
- Seidlin S.M., Marinelli L.D., Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J. Amer. Med. Assoc. (JAMA). 1946. Vol. 132. No. 14. P. 838–847.
- NCRP Report No. 83. The experimental basis for absorbed-dose calculations in medical uses of radionuclides. National Council on Radiation Protection and Measurements, Bethesda. 1985. 109 p.
- Svegborn S.L. Experimental studies of the biokinetics of 111In-DTPA-D-Phe1-octreotide, 99mTc-MIBI, 14C-triolein and 14C-urea and development of dosimetric models. Doct. Diss. Dep. Radiat. Phys, Malmö. Lund University. Malmo University Hospital. Malmo, 1999. 70 p. (http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/018/30018803.pdf; acessed 16.01.2017).
- Schlafke-Stelson A.T., Watson E.E., Cloutier R.J. A history of medical internal dosimetry. Health Phys. 1995. Vol. 69. No. 5. P. 766–782.
- Zanzonico P.B. Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. J. Nucl. Med. 2000. Vol. 41. No. 2. P. 297–308.
- Potter C.A. Internal dosimetry–a review. Health Phys. 2004. Vol. 87. No. 5. P. 455–468; Health Phys. 2005. Vol. 88. No. 6. P. 565–578.
- Mattsson S., Johansson L., Jonsson H., Nosslin B. Radioactive iodine in thyroid medicine–how it started in Sweden and some of today’s challenges. Acta Oncol. 2006. Vol. 45. No. 8. P. 1031–1036.
- McParland B.J. Nuclear Medicine Radiation Dosimetry. Advanced Theoretical Principles. London: Springer-Verlag. 2010. 610 p.
- Saenger E.L., Seltzer R.A., Sterling T.D., Kereiakes J.G. Carcinogenic effects of 131I compared with X-irradiation – a review. Health Phys. 1963. Vol. 9. P. 1371–1384.
- Greig W.R., Smith J.F., Orr J.S., Foster C.J. Comparative survivals of rat thyroid cells in vivo after 131I, 125I and X irradiations. Brit. J. Radiol. 1970. Vol. 43. No. 512. P. 542–548.
- Read C.H. Jr1, Tansey M.J., Menda Y. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J. Clin. Endocrinol. Metab. 2004. Vol. 89. No. 9. P. 4229–4233.
- Kita T., Yokoyama K., Kinuya S. Single dose planning for radioiodine-131 therapy of Graves’ disease. Ann. Nucl. Med. 2004. Vol. 18. No. 2. P. 151–155.
- Traino A.C., Di Martino F., Lazzeri M. A dosimetric approach to patient-specific radioiodine treatment of Graves’ disease with incorporation of treatment-induced changes in thyroid mass. Med. Phys. 2004. Vol. 31. No. 7. P. 2121–2127.
- Nakajo M., Tsuchimochi Sh., Tanabe H. et al. Three basic patterns of changes in serum thyroid hormone levels in Graves’ disease during the one-year period after radioiodine therapy. Ann. Nucl. Med. 2005. Vol. 19. No. 4. P. 297–308.
- Regalbuto C., Marturano I., Condorelli A. et al. Radiometabolic treatment of hyperthyroidism with a calculated dose of 131-iodine: Results of one-year follow-up. J. Endocrinol. Invest. 2009. Vol. 32. No. 2. P. 134–138.
- Goldsmith S.J. Nuclear Endocrinology. Board Review. Presentation. SNM Annual Meeting. New York Presbyterian-Weill Cornell Medical Center. New York. 2009. 68 slides. (http://apps.snm.org/docs/CME/PresenterItems/EventID_85/PresenterItemTypeID_1/2.; accessed 23.01.2017).
- Nakatake N., Fukata S., Tajiri J. Prediction of post-treatment hypothyroidism using changes in thyroid volume after radioactive iodine therapy in adolescent patients with Graves’ disease. Int. J. Pediatr. Endocrinol. 2011. Vol. 2011. No. 14. 6 p. (http://www.ijpeonline.com/content/2011/1/14; accessed 26.01.2017).
- Szumowski P., Rogowski F., Abdelrazek S. et al. Iodine isotope ¹³¹I therapy for toxic nodular goitre: treatment efficacy parameters. Nucl. Med. Rev. Cent. East. Eur. 2012. Vol. 15. No. 1. P. 7–13.
- Loevinger R., Holt J.G., Hine J.G. Chapter 17. Internally administered radioisotopes. In: Hine G.J, Brownell G.L. (eds.) Radiation dosimetry. New York: Academic Press. 1956. P. 803–875.
- Klimanov V.A. Dozimetricheskoye planirovaniye luchevoy terapii. Chast 2. Distantsionnaya luchevaya terapiya puchkami zaryazhennykh chastits i neytronov. Brakhiterapiya i radionuklidnaya terapiya. Uchebnoye posobiye. Moscow: MIFI. 2008. 328 p. (In Russ.).
- Marinelli L.D., Hill R.F. Radiation dosimetry in the treatment of functional thyroid carcinoma with 131I. Radiology. 1950. Vol. 55. No. 4. P. 494–501.
- Sawin C.T., Becker D.V. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997. Vol. 7. No. 2. P. 163–176.
- Chapman E.M., Evans R.D. The treatment of hyperthyroidism with radioactive iodine. J. Amer. Med. Assoc. (JAMA). 1946. Vol. 131. P. 86–91.
- Hertz S. Roberts A. Means J.H., Evans R.D. Radioactive iodine as an indicator in thyroid physiology: II. Iodine collection by normal and hyperplastic thyroids in rabbits. Trans. Amer. A. Study Goiter. 1939. P. 260.
- Hertz S., Roberts A., Means J.H., Evans R.D. Radioactive iodine as an indicator in thyroid physiology. II. Iodine collection by normal and hyperplastic thyroids in rabbits. Amer. J. Physiol. 1940. Vol. 128. P. 565–576.
- Morgan K.Z. The use of the roentgen equivalent physical (rep). Oak Ridge National Laboratory. Health Physics Division. Contract No W-7405-Eng-26. Report Number; ORNL-783. Oak Ridge. Tennessee. 1950. 8 p. (http://web.ornl.gov/info/reports/1950/3445603608004.pdf; accessed 24.01.2017).
- Parker H.M. Health physics, instrumentation and radiation protection. Health Physics. 1980. Vol. 38. No. 6. P. 957–996.
- Parker H.M. Health-physics, instrumentation, and radiation protection. Adv. Biol. Med. Phys. 1948. Vol. 1. P. 223–285.
- Swallow A.J. Radiation chemistry of organic compounds: international series of monographs on radiation effects in materials. Pergamon Press. Oxford. London. New York. Paris. 1960. 380 p.
- Yarmonenko S.P. Radiobiologiya cheloveka i zhivotnykh. Moscow: «Vyssh. shkola». 1977. 368 p. (In Russ.).
- NCRP Report No. 156. Development of a Biokinetic Model for Radionuclide-contaminated Wounds for their Assessment, Dosimetry and Treatment. National Council on Radiation Protection and Measurements. Bethesda. 2008.
- Rem. Unit of measurement. Encyclopaedia Britannica. (https://www.britannica.com/science/rem-unit-of-measurement; дaccessed 26.01.2017).
- Grebenyuk A.N., Strelova O.Yu., Legeza V.I., Stepanova E.N. Osnovy radiobiologii i radiatsionnoy meditsiny. Saint Petersburg: OOO «Izdatelstvo FOLIANT». 2012. 232 p. (In Riss.).
- Dozimetricheskoye planirovaniye radionuklidnoy terapii // Sayt Endokrinologicheskogo nauchnogo tsentra. Otdel radionuklidnoy diagnostiki i terapii. (https://www.orndt.ru/innovation/26/djozimetricheskoe-planirovanie-radjionuklidjnoj-terapii-1; accessed 27.01.2017. (In Riss.).
- Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes I. Fundamental dosage formulae. Nucleonics. 1948. Vol. 2. No. 4. P. 56.
- Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes II. Practical considerations in therapy and protection. Nucleonics. 1948. Vol. 2. No. 5. PT. 1. P. 44–49.
- Marinelli L.D., Quimby E.H., Hine G.J. Dosage determination with radioactive isotopes. II. Practical considerations in therapy and protection. Amer. J. Roentgenol. Radiol. Ther. 1948. Vol. 59. No. 2. P. 260–280.
- Nickson J.J. Dosimetric and protective considerations for radioactive iodine. J. Clin. Endocrinol. 1948. Vol. 8. No. 9. P. 721–731.
- Frank H., Gray S.J. The determination of plasma volume in man with radioactive chromic chloride. J. Clin. Invest. 1953. Vol. 32. No. 10. P. 991–999.
- Conversion factor. In: English Living Oxford Dictionaries. (https://en.oxforddictionaries.com/definition/conversion_factor; accessed 06.01.2017).
- Soley M.H., Foreman N. Radioiodine therapy in Graves’ disease; a review. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt. 1. P. 1367–1374.
- Hertz S., Roberts A. Radioactive iodine in the study of thyroid physiology, VII: the use of radioactive iodine therapy in hyperthyroidism. J. Amer. Med. Assoc. (JAMA) 1946. Vol. 131. P. 81–86.
- Rumyantsev P.O., Korenev S.V. Istoriya poyavleniya terapii radioaktivnym yodom. Klinicheskaya i eksperimentalnaya tireoidologiya. 2015. Vol. 11. No. 4. P. 55–55. (In Russ.).
- Skanse B.N. The biologic effect of irradiation by radioactive iodine. J. Clin. Endocrinol. Metab. 1948. Vol. 8. No. 9. P. 707–716.
- Budarkov V.A. Vliyaniye 131 I na shchitovidnuyu zhelezu kur i ikh potomkov. Radiats. biologiya. Radioekologiya. 2015. Vol. 55. No. 2. P. 180–196. (In Russ.).
- Brues A.M. Biological hazards in toxicity of radioactive isotopes. J. Clin. Invest. 1949. Vol. 28. No. 6. Pt. 1. P. 286–296.
- Maloof F., Dobyns B.M., Vickery A.L. The effect of various doses of radioactive iodine on the function and structure of the thyroid of the rat. Endocrinology. 1952. Vol. 50. No. 6. P. 612–638.
- Doniach I. The effect of radioactive iodine alone and in combination with methylthiouracil upon tumour production in the rat’s thyroid gland. Brit. J. Cancer. 1953. Vol. 7. No. 2. P. 181–202.
- Evans R.D. Tissue dosage in radio-isotope therapy. Amer. J. Roentgenol. Radium. Ther. 1947. Vol. 58. No. 6. P. 754–756.
- Hertz B. A daughter’s efforts to preserve her physician father’s extraordinary legacy (Saul Hertz). Site EMPOWER. (http://www.empoweryourhealth.org/magazine/vol6_issue1/a_daughters_efforts_to_preserve_her_physician_fathers_extraordinary_legacy; accessed 06.02.2017).
- Quimby E.H. Dosimetry of internally administered radioactive isotopes. In: A Manual of artificial radioisotope therapy. New York: Academic Press. 1951. P. 36–52.
- Quimby E.H., McCune D.J. Uptake of radioactive iodine by the normal and disordered thyroid gland in children. Radiology. 1947. Vol. 49. No. 2. P. 201–205.
- Quimby E.H., McCune D.J. Uptake of radioactive iodine by the normal and by the disordered thyroid gland in children. Amer. J. Dis. Child. 1948. Vol. 75. No. 3. P. 440.
- Quimby E.H., Werner S.C., Schmidt C. Influence of age, sex, and season upon radioiodine uptake by the human thyroid. Proc. Soc. Exp. Biol. Med. 1950. Vol. 75. No. 2. P. 537–540.
- Quimby E.H. Radioactive isotopes in clinical diagnosis. In: Advances in Biological and Medical Physics: Vol. 2. Ed. by J.H. Lawrence, J.G. Hamilton. New York: Academic Press. 1951. P. 243–267.
- Loevinger R. Calculation of radiation dosage in internal therapy with 131I. In: Radioisotopes in Medicine. OSAEC Conference, Sept. 1953. ORO-125. Oak Ridge TN. Washington, Atomic Energy Commission. 1955. P. 91–102.
- Loevinger R., Japha E., Brownell G. Chapter 16. Discrete radiosotope processes. In: Hine G.J, Brownell G.L. (eds) Radiation dosimetry. New York: Academic Press. 1956. P. 694–802.
- Berger M.J. Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. MIRD Pamphlet No. 7. J. Nucl. Med. 1971. Suppl. 5. P. 5–23.
- Loevinger R., Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides. MIRD Pamphlet No. 1. Revised ed. New York, NY: Society of Nuclear Medicine. 1976.
- Berger M. Energy deposition in water by photons from point isotropic sources. MIRD Pamphlet No. 2. J. Nucl. Med. 1968. Vol. 9. Suppl. 1. P. 15–25.
- Howell R.W. Wessels B.W., Loevinger R. et al. The MIRD perspective 1999. J. Nucl. Med. 1999. Vol. 40. No. 1. P. 3S–10S.
- Wessels B.W. Loevinger-Berman Award presented to Brownell. J. Nucl. Med. 2006. Vol. 47. No. 9. P. 20N.
- ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam – New York: Elsevier. 2007. 329 p.
- Yarmonenko S.P., Vaynson A.A. Radiobiologiya cheloveka i zhivotnykh. – M.: Vysshaya shkola 2004. 549 p. (In Russ.).
- ICRP Publication 2 (1959). Report of committee II on permissible dose for internal radiation. Pergamon Press: Oxford. 1959.
- ICRP Publication 23 (1975). Report of the task group on reference man. Pergamon Press. Oxford. 1975.
- ICRP Publication 30 (1979). Limits for intakes of radionuclides by workers. Part 1. Pergamon Press: Oxford. 1979.
- ICRP Publication 56 (1990). Age-dependent doses to members of the public from intake of Radionuclides. Part 1. Ann. ICRP. 1990. Vol. 20. No. 2.
- ICRP Publication 67 (1993). Age-dependent doses to members of the public from intake of radionuclides. Part 2. Ingestion Dose Coefficients. Ann. ICRP. 1993. Vol. 23. No. 3–4.
- ICRP Publication 80 (2000). Radiation dose to patients from radiopharmaceuticals. New York: Pergamon. Press. 2000.
- Stepanenko V.F., Skvortsov V.G., Orlov M.Yu., Sokolov V.A., Tsyb A.F. Dozimetricheskoye soprovozhdeniye sozdaniya radiofarmatsevticheskikh preparatov dlya radionuklidnoy diagnostiki i terapii: uchebnoye posobiye po kursu «Osnovy fizicheskoy dozimetrii v radiologii i radiobiologii». Obninsk: IATE NIYaU MIFI. 2013. 28 p. (http://studopedia.org/3-16987.html; accessed 31.01.2017).
- Abramova N.A., Aleksandrov A.A., Andreyeva E.N. et al. Endokrinologiya. Natsionalnoye rukovodstvo. Pod red. I.I. Dedova. G.I. Melnichenko. Moscow: GEOTAR-Media. 2009. 1072 p. (Kratkoye izdaniye (752 p.): http://fs1.socmedica.com/e2a8d6e140001015a52f92997f4f44df/Endokrinologiya.pdf; accessed 02.02.2017).
- Audia G., Bersillon O., Blachot J., Wapstra A.H. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A. 2003. Vol. 729. P. 3–128.
- ICRP Publication 56 (1989). Age-dependent doses to members of the public from intake of radionuclides. Part 1. Ann. ICRP. 1989. Vol. 20. P. 1–122.
- UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes. Biological mechanism of radiation action at low doses. New York. 2012. 35 p.
- BEIR VII Report 2006. Phase 2. Health Risks from Exposure to Low Levels of Ionizing Radiation. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, – National Research Council. (http://www.nap.edu/catalog/11340.html; https://www.nap.edu/read/11340/chapter/1; accessed 11.01.2017).
- Koterov A.N. Malyye dozy i malyye moshchnosti doz ioniziruyushchey radiatsii: reglamentatsiya diapazonov. kriterii ikh formirovaniya i realii XXI veka .Medical Radiology and Radiation Safety. 2009. Vol. 54. 3. P. 5–26. (In Russ.).
- Koterov A.N. Ot ochen malykh do ochen bolshikh doz radiatsii: novyye dannyye po ustanovleniyu diapazonov i ikh eksperimentalno-epidemiologicheskiye obosnovaniya. Medical Radiology and Radiation Safety. 2013. Vol. 58. 2. P. 5–21. (In Russ.).
- Koterov A.N., Vaynson A.A. Biologicheskiye i meditsinskiye effekty izlucheniya s nizkoy LPE dlya razlichnykh diapazonov doz .Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 3. P. 5–31. (In Russ.).
- Quimby E.H. Calculation of dosage in radioiodine therapy. In: Brookhaven Conf. Rep., BNL-C-5, July 1948. P. 43.
- Masalova N.N., Zakharenko R.V. Effektivnost radioyodterapii tireotoksikoza metodom dvukhetapnogo kursa s ispolzovaniyem standartnoy aktivnosti 131I. Dalnevostochnyy meditsinskiy zhurnal. 2010. No. 3. P. 87–89. (In Russ.).
- Semenov D.Yu., Boriskova M.E., Farafonova U.V. et al.Prognosticheskoye znacheniye ekspressii natriy-yodnogo simportera dlya vysokodifferentsirovannogo raka shchitovidnoy zhelezy // Klin. i eksperiment. tireoidologiya. 2015. Vol. 11. No. 1. P. 50–58. (In Russ.).
- Shestakova G.V., Efimov A.S., Strongin L.G. Prediktory iskhodov radioyodterapii bolezni Greyvsa // Klin. i eksperiment. tireoidologiya. 2010. Vol. 6. No. 3. P. 48–53. (In Russ.).
- Hertz S., Roberts A., Evans R.D. Radioactive iodine as an indicator in the study of thyroid physiology. Proc. Soc. Exper. Biol. Med. 1938. Vol. 38. P. 510–513.
- Hertz S., Roberts A., Salter W.T. Radioactive iodine as an indicator in thyroid physiology, IV: the metabolism of iodine in Graves’ disease. J. Clin. Invest. 1942. Vol. 21. No. 1. P. 25–29.
- Hertz S., Roberts A. Radioactive iodine as indicator in thyroid physiology. Vol. The use of radioactive iodine in the differential diagnosis of two types of Graves’ disease. J. Clin. Invest. 1942. Vol. 21. No. 1. P. 31–32.
- Hamilton J.G. The rates of absorption of the radioactive isotopes of sodium, potassium, chlorine, bromine, and iodine in normal human subjects. Amer. J. Physiol. 1938. Vol. 124. P. 667–678.
- Hamilton G.J., Soley M.H., Relly W.A., Eichorn K.B. Radioactive iodine studies in childhood hypothyroidism. Amer. J. Dis. Child. 1943. Vol. 66. No. 5. P. 495–502.
- Vanderlaan W.P., Bissell A. Effects of propylthiouracil and of potassium thiocyanate on the uptake of iodine by the thyroid gland of the rat. Endocrinology. 1946. Vol. 39. P. 157–160.
- Skanse B.N. Radioactive iodine. Its use in studying the urinary excretion of iodine by human in various states of the thyroid function. Acta Medica Scand. 1948. Vol. 131. No. 3. P. 251–268.
- Werner S.C., Quimby E.H., Schmidt C. Clinical experience in diagnosis and treatment of thyroid disorders with radioactive iodine; 8-day half-life. Radiology. 1948. Vol. 51. No. 4. P. 564–581.
- Werner S.C., Quimby E.H., Schmidt C. Radioactive iodine, 131I in the treatment of hyperthyroidism. Amer. J. Med. 1949. Vol. 7. No. 6. P. 731–740.
- Sanchez M.A., de Miliani Y.Z., de Valeri M.P. et al. Evaluacion del tratamiento con radioyodo en el hipertiroidismo. Rev. Venez. Endocrinol. Metab. 2005. Vol. 3. No. 1. P. 25–31. (http://docplayer.es/11967180-Evaluacion-del-tratamiento-con-radioyodo-en-el-hipertiroidismo.html; accessed 29.01.2017).
- Walinder G. Determination of the 131I dose to the mouse thyroid. Acta Radiol. Ther. Phys. Biol. 1971. Vol. 10. No. 6. P. 558–578.
- Holm L.-E. Thyroid cancer after exposure to radioactive 131I. Acta Oncol. 2006. Vol. 45. No. 8. P. 1037–1040.
- Seltzer R.A., James G. Kereiakes J.G. et al. Radiation exposure from radioiodine compounds in pediatrics. Radiology. 1964. Vol. 82. P. 486–494.
- UNSCEAR 2008. Report to the General Assembly, with Scientific Annexes. Volume I. Annex A. Medical radiation exposures. – United Nations. New York. 2010. P. 23–220.
- Goldberg R.C., Chaikoff I.L., Lindsay S.T., Feller D.D. Histopathological changes induced in the normal thyroid and other tissues of the rat by internal radiation with various doses of radioactive iodine. Endocrinology. 1950. Vol. 46. No. 1. P. 72–90.
- Shoshina R.R., Lavrentyeva G.V., Synzynys B.I. Primeneniye kontseptualnoy modeli zonalnosti khronicheskogo deystviya ioniziruyushchey radiatsii pri izuchenii povedeniya radiostrontsiya v sukhoputnykh ekosistemakh. Izvestiya VUZov. Yadernaya energetika. 2015. No. 2. P. 143–148. (In Russ.).
- Vasilyeva A.N. Ekologo-tekhnicheskaya otsenka sostoyaniya khranilishcha radioaktivnykh otkhodov na primere regionalnogo obyekta v basseyne reki Protva na severe Kaluzhskoy oblasti. Avtoref. dis. … kand. tekhn. nauk. Gosudarstvennyy nauchnyy tsentr RF – Fiziko-energeticheskiy institut im. A.I. Leypunskogo. Moscow: 2007. 18 p. (In Russ.).
- Gross W.G. Empirical expression for beta ray point source dose distribution. Radiat. Protect. Dosimetry. 1997. Vol. 69. No. 2. P. 85–96.
- Swietaszczyk C., Pilecki S.E. Approximation of time-uptake curve to a modified Bateman equation based on three uptake tests–potential value for dosimetry of corpuscular radiation. Nucl. Med. Rev. Cent. East. Eur. 2015. Vol. 18. No. 1. P. 42–45.
- Swietaszczyk C. Calculation of the dosis of radioiodine (or another radionuclide) with the Marinelli-formula. Nuclear Medicine. Calculator. 2013. (http://www.nuk.org.pl/index.php?la=en&go=kal&kalk=tar_mar#proc; accessed 06.01.2017).
- Aktolun C., Urhan M. Radioiodine therapy of benign thyroid disease: Grave’s disease, Plummer’s disease, non-toxic goiter an nodules. In: Nuclear Medicine Therapy. Principles and Clinical Application. Ed. by C. Aktolun, S. Goldsmith. New York: Springer. 2013. P. 281–314.
- Berg G.B., Michanek M.K. Holmberg E.C.V., Fink M. Iodine-131 treatment of hyperthyroidism: significance of effective half-life measurements. J. Nucl. Med. 1996. Vol. 37. No. 2. P. 228–232.
- Labhart A. Clinical Endocrinology. Theory and practice. Berlin. Heidelberg. New York: Springer-Verlag. 1974. 1092 p.
- Oeser H. On the roentgen diagnosis of operable lung diseases. Dtsch. Med. J. 1961. Vol. 12. P. 441–442.
- Volkert W.A., Hoffman T.J. Therapeutic radiopharmaceuticals. Chem. Rev. 1999. Vol. 99. No. 9. P. 2269–2292.
- Snyder W., Ford M., Warner G., Watson S. ‘S’ absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. New York. NY: Society of Nuclear Medicine. 1975. P. 1–257.
- Livergant Yu.E. Vybor terapevticheskoy dozy pri lechenii tireotoksikoza 131I. Med. radiologiya. 1967. Vol. 12. 3. P. 48–55. (In Russ.).
- Burykina L.N., Karadzhiyev G.D. Zavisimost yodpoglotitelnoy funktsii shchitovidnoy zhelezy ot vozrasta zhivotnykh. V kn.: Materialy po toksikologii radioaktivnykh veshchestv. In: Letaveta A.A., Burykinoy L.N. (eds.). Vyp. 8: 131I. Moscow: Meditsina. 1972. P. 12–23. (In Russ.).
- Burykina L.N., Smirnova E.I., Kurnayeva V.P., Kapitonenko I.P. Embriotoksicheskoye deystviye 131I pri odnokratnom ego vvedenii. V kn.: Materialy po toksikologii radioaktivnykh veshchestv. In: Letaveta A.A., Burykinoy L.N. (eds.). Vyp. 8: 131I. Moscow: Meditsina. 1972. P. 175–202. (In Russ.).
- Vlasova O.P. Metod identifikatsii parametrov metabolizma yoda i raschet pogloshchennykh doz pri radionuklidnoy terapii shchitovidnoy zhelezy s 131I. Avtoref. dis. … kand. biol. nauk. IATE filial NIYaU MIFI. Obninsk. Moscow: 2010. 22 p. (In Russ.).
- Vlasova O.P., Matusevich E.S., Klepov A.N. et al.Stsintigrafiya s yodom-123 dlya dozimetricheskogo planirovaniya radioyodterapii zabolevaniy shchitovidnoy zhelezy. Med. radiol. i radiats. bezopasnost. 2007. Vol. 52. 4. P. 53–61. (In Russ.).
- Vlasova O.P., Klepov A.N., Garbuzov P.I. et al.Zavisimost «doza–effekt» pri radionuklidnoy terapii 131I patsiyentov s zabolevaniyami shchitovidnoy zhelezy // Med. radiol. i radiats. bezopasnost. 2009. Vol. 54. No. 1. P. 47–55. (In Russ.).
- Matveyev A.V., Noskovets D.Yu. Farmakokineticheskoye modelirovaniye i dozimetricheskoye planirovaniye radioyodterapii tireotoksikoza , Vestn. Om. un-ta. 2014. No. 4. P. 57–64. (In Russ.).
- Organisation Intergouvernementale de la Convention du Metre. The International System of Units (SI). 8th edition. 2006. 88 p.
- UNSCEAR 1977. Report to the General Assembly, with Scientific Annexes. Annex A. Concepts and quantities in the assessment of human exposures. United Nations. New York. 1977. P. 1–34.
- Hahn K., Schnell-Inderst P. Grosche B., Holm L.E. Thyroid cancer after diagnostic administration of iodine-131 in childhood. Radiat. Res. 2001. Vol. 156. No. 1. P. 61–70.
- Quimby E., Feitelberg S. Radioactive isotopes in medicine and biology. Philadelphia. Pennsylvania: Lea and Febiger, 2d. 1963. P. 123.
- Dumont J.G., Malone J.F., Van Herle A.J. Irradiation and thyroid disease: dosimetric, clinical and carcinogenic aspects. Commission of the European Communities. Medicine. EUR 6713 EN. ECSC-EEC-EAEC, Brussels and Luxembourg. 1980. 258 p. (http://aei.pitt.edu/43416/; accessed 29.03.2017).
- Beierwaltes W.H., Crane H.R., Wegst A. et al. Radioactive iodine concentration in the fetal human thyroid gland from fall-out. J. Amer. Med. Assoc. (JAMA). 1960. Vol. 173. No. 17. P. 1895–1902.
- Marks S., Dockum N.L., Bustad L.K. Histopathology of the thyroid gland of sheep in prolonged administration of 131I. Amer. J. Pathol. 1957. Vol. 33. No. 2. P. 219–249.
- Marks S., George L.A. Jr., Bustad L.K. Fibrosarcoma involving the thyroid gland of a sheep given 131I daily. Cancer. 1957. Vol. 10. No. 3. P. 587–591.
- Marks S.; Bustad L.K. Thyroid neoplasms in sheep fed radioiodine. J. Nat. Cancer Inst. 1963. Vol. 30. No. 4. P. 661–673.
- Seltzer R.A., Kereiakis J.G., Saenger E.L. Radiation exposure from radioisotopes in pediatrics. N. Engl. J. Med. 1964. Vol. 271. P. 84–90.
- Streltsova V.I. Moskalev Yu.I. Otdalennyye posledstviya pri porazhenii131I. Med. radiol. 1968. Vol. 13. No. 6. P. 17–27. (In Russ.).
- Pilch B.Z., Kahn C.R., Ketcham A.S., Henson D. Thyroid cancer after radioactive iodine diagnostic procedures in childhood. Pediatrics. 1973. Vol. 51. No. 5. P. 898–902.
- Listewnik M.H. Analysis of factors affecting treatment results for toxic goiter with radioactive 131I. Ann. Acad. Med. Stetin. 2000. Vol. 46. P. 109–121 (на польском).
- Pirnat E., Zaletel K., Gaberscek S. et al. Measured and calculated absorbed dose of 131I in Graves’ patients trated with fixed activity of 550 MBq 131I. The twenty three years experience of the radionuclide synovectomy. 2005. Vol. 10. No. 15. (http://www.cigota.rs/en/medicinski-glasnik/vol-10-iss-15?page=10&header=&footer=&layout=; accessed 06.01.2017).
- Danilova L.I., Valuyevich V.V. Radioyodterapiya funktsionalnoy avtonomii shchitovidnoy zhelezy // Ministerstvo zdravookhraneniya Respubliki Belarus. Instruktsiya po primeneniyu. Registratsionnyy 122-1005. 27 dekabrya 2005 g. 9 p. (http://med.by/methods/pdf/122-1005.pdf; accessed 17.01.2017). (In Russ.).
- Bernard D., Desrueta M.D., Wolf M. et al. Radioiodine therapy in benign thyroid disorders. Evaluation of French nuclear medicine practices. Annales d’Endocrinologie. 2014. Vol. 75. P. 241–246.
- Merrill S., Horowitz J., Traino A.C. et al. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys. Med. Biol. 2011. Vol. 56. No. 3. P. 557–571.
- Krohn T., Hanscheid H., Muller B. et al. Maximum dose rate is a determinant of hypothyroidism after 131I therapy of Graves’ disease but the total thyroid absorbed dose is not. J. Clin. Endocrinol. Metab. 2014. Vol. 99. No. 11. P. 4109–4015.
- Zare M., Lewis D., Richardson M. Robustness of male treatment failure with 131I in hyperthyroidism. J. Nucl. Med. 2016. Vol. 57. Suppl. 2. P. 1707
- Sukarochana K., Parenzan L., Thakurdas N., Kiesewetter W.B. Red cell mass determinations in infancy and childhood, with the use of radioactive chromium. J. Pediatr. 1961. Vol. 59. P. 903–908.
- Reddy A.R. Dosimetry of internal emitters: past, present and future. Def. Sci. J. 1990. Vol. 40. No. 4. P. 389–399.
- Noskovets D.Yu. Matematicheskoye modelirovaniye i dozimetricheskoye planirovaniye radioyodterapii tireotoksikoza. Mater. 53-y mezhd. nauchn. stud. konfer. «Fizicheskiye metody v estestvennykh naukakh». Novosibirsk. 11–17 aprelya 2015 g. Novosibirsk. 2015. P. 83 (In Russ.).
- Quimby E.H., Feitelberg S. Radioactive isotopes in medicine and biology. In: Quimby E.H., Feitelberg S., eds. Basic physics and instrumentation. Philadelphia: Lea and Febiger. 1961. P. 104–128.
- Endo S., Nitta Y., Ohtaki M. et al. Estimation of dose absorbed fraction for 131I-beta rays in rat thyroid. J. Radiati. Res. 1998. Vol. 39. No. 3. P. 223–230.
- Bauer A.J. Approach to the pediatric patient with Graves’ disease: when is definitive therapy warranted?. J. Clin. Endocrinol. Metab. 2011. Vol. 96. No. 3. P. 580–588.
- Poste J., Weiss I.A., Mozzor M.H. et al. Clinical outcomes after calculated activity of radioiodine for the treatment of benign hyperthyroid disease at Westchester Medical Center: a retrospective analysis. In: Endocrine Society’s 97th Annual Meeting and Expo, San Diego, March 5–8. 2015. Poster Board THR-192. (https://endo.confex.com/endo/2015endo/webprogram/Paper20044.html; accessed 23.01.2017).
- Mizokami T., Hamada K., Maruta T. et al. Painful radiation thyroiditis after 131I therapy for Graves’ hyperthyroidism: clinical features and ultrasonographic findings in five cases. Eur. Thyroid J. 2016. Vol. 5. No. 3. P. 201–206.
- Waterstram-Rich K.M., Gilmor D. Nuclear medicine and PET/CT. Technology and techniques. Eight edition. Elsevier. 2017. 696 p.
- Quimby E.H., Feitelberg S., Gross W. Chapter 16. Radioactive nuclides in medicine and biology. In: Radionuclides in Medicine and Biology. Philadelphia: Lea & Febiger. 1970.
- Loevinger R. Distributed radionuclide sources. In: Radiation dosimetry (2nd ed., Vol. 3). Attix F.H. & Tochilin E. (Eds.). New York: Academic Press. 1969. P. 51–89.
- Glants S. Mediko-biologicheskaya statistika. Transl. from engl. Yu.A. Danilova. In: Buzikashvili N.E. & Samoylova D.V. (eds.) . Moscow: Praktika. 1998. 459 p. (In Russ.).
- Van Best J.A. Dose calculations for 123I, 124I, 125I and 131I in the thyroid gland of the mouse, rat and man and comparison with thyroid function for mice and rats. Phys. Med. Biol. 1981. Vol. 26. No. 6. P. 1035–1053.
- Van Best J.A. Comparison of thyroid function in mice after various injected activities of 123I, 125I and 131I. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1982. Vol. 42. No. 5. P. 545–557.
- Shahbazi-Gahrouei D., Ayat S. Comparison of three mMethods of calculation, experimental and Monte Carlo Simulation in investigation of organ doses (thyroid, sternum, cervical vertebra) in radioiodine therapy. J. Med. Signals Sens. 2012. Vol. 2. No. 3. P. 149–152.
- Chen D.-G., Peace K.E. Applied meta-analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton – London – New York: CRC Press. 2013. 314 p.
For citation: Koterov AN, Ushenkova LN, Zubenkova ES, Wainson AA, Biryukov AP. Risk of Thyroid Cancer after Exposure to 131I: Combined Analysis of Experimental and Epidemiological Data over Seven Decades. Part 2. Overview of Methods of Internal Dose Estimation and Thyroid Absorbed Dose Determination. Medical Radiology and Radiation Safety. 2017;62(4):31-65. Russian.DOI: 10.12737/article_59b10998808b74.63554924
Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 17-23
RADIATION SAFETY
DOI: 10.12737/article_59b106429c5b80.00887618
Radiological Justification of Radionuclide Inventory Control in the Context of the Long-Term Safety of Radioactive Waste Disposal Facilities
P.A. Blokhin, A.A. Samoylov
Nuclear Safety Institute of RAS, Moscow, Russia, e-mail: samoylov@ibrae.aс.ru; blokhin@ibrae.aс.ru
P.A. Blokhin – Junior Researcher; A.A. Samoylov – Senior Specialist
Abstract
Purpose: this paper concentrates on the development and validation of an approach enabling to identify radiologically relevant radionuclides in radioactive waste at different stages of their management, as well as to implement their direct instrumental control.
Material and methods: The research was carried out by comparing relevant radiological effects produced by radionuclides contained in activation RW from VVER-440 unit (reactor vessel, vessel internals and fuel rod cladding) on human at different stages of RW management. AKDAM-2.0 complex was used to evaluate the changes in the radionuclide inventory of materials during their irradiation and cooling.
Results: The study enabled to calculate relevant contribution of different radionuclides to the overall activity and dose rate from external and internal human exposure at different stages of RW management. This paper proposes a novel approach to identify radiologically relevant radionuclides based on a comparative evaluation of their contribution to the dose rate their activity, half-lives and migration properties. Relevant lists of radionuclides were developed for the studied materials. These radionuclides should be considered in the safety assessments of RW management practices and the post-closure safety demonstration for deep geological disposal facilities (DGDF). The study suggests that direct instrumental control is feasible for a number of radionuclides along with the use of an integrated approach enabling to evaluate the content of other radionuclides.
Conclusions: Further validation proved the viability of the proposed approach in the development of lists of radiologically relevant radionuclides. It has been found that the generated list is consistent with international practice used to demonstrate DGDF safety. It should be noted that only a small number of radionuclides should be considered radiologically relevant notwithstanding a variety of radionuclides generated due to material activation. In some cases, certain radionuclides are required to be added to the lists specified in the appendices to Radiation Safety Standards (RSS). However, the direct instrumental control covering the entire list of radiologically relevant radionuclides (for each RW management stage) is considered not feasible and hard to implement. The study shows that an integrated approach combining direct instrumental control for certain radionuclides, periodic destructive tests and inventory calculations is a preferred option. At the stage of periodic radiation monitoring in the disposal facility, such instrumental control should be focused on the evaluation of disposal system properties affecting its safety (hydrogeochemical, hydrogeological characteristics and etc.).
Key words: radioactive waste, disposal facility, radiation safety, safety assessment, radiologically relevant radionuclides, instrumental measurements, periodical radiation monitoring
REFERENCES
- Normy radiatsionnoy bezopasnosti (NRB-99/2009). SP 2.6.1.2523-09. (In Russ.).
- Linge I.I., Panchenko S.V., Gorelov M.M. O radiatsionnom kontrole radionuklidov dlya tseley gosudarstvennogo regulirovaniya v sfere okhrany okruzhayushchey sredy. Apparatura i novosti radiats.h izmereniy. 2017. No. 1. P. 2–8. (In Russ.).
- Bolshov L.A., Laverov N.P., Linge I.I. et al. Problemy yadernogo naslediya i puti ikh resheniya. Vol. 2. Moscow: Enegopromanalitika. 2013. 392 p. (In Russ.).
- Federalnyye normy i pravila v oblasti ispolzovaniya atomnoy energii. Kriterii priyemlemosti radioaktivnykh otkhodov dlya zakhoroneniya (NP-093-14). (In Russ.).
- Kapyrin I.V., Grigoryev F.V., Konshin I.N. Geomigratsionnoye i geofiltratsionnoye modelirovaniye v raschetnom kode GeRa. V sb.: «Superkompyuternyye dni v Rossii: Trudy mezhdunarodnoy konferentsii. 26–27 sentyabrya 2016. Moskva». Moscow: Publ. MGU. 2016. P. 133–139. (In Russ.).
- Postanovleniye Pravitelstva RF ot 19 oktyabrya 2012 g. 1069 «O kriteriyakh otneseniya tverdykh. zhidkikh i gazoobraznykh otkhodov k radioaktivnym otkhodam. kriteriyakh otneseniya radioaktivnykh otkhodov k osobym radioaktivnym otkhodam i k udalyayemym radioaktivnym otkhodam i kriteriyakh klassifikatsii udalyayemykh radioaktivnykh otkhodov».(In Russ.).
- Kolobashkin V.M., Rubtsov P.M., Ruzhanskiy P.A., Sidorenko V.D. Radiatsionnyye kharakteristiki obluchennogo yadernogo topliva. Spravochnik. Moscow: Energoatomizdat. 1983. 385 p. (In Russ.).
- Korenkov I.P., Shandala N.K., Lashchenova T.N., Sobolev A.I. Zashchita okruzhayushchey sredy pri ekspluatatsii i vyvode iz ekspluatatsii radiatsionno-opasnykh obyektov. In: Korenkova I.P., Kotenko K.V. (eds.). Moscow: Binom. 2014. 440 p. (In Russ.).
- Engovatov I.A., Mashkovich V.P., Orlov Yu.V. et al. Radiatsionnaya bezopasnost pri vyvode iz ekspluatatsii reaktornykh ustanovok grazhdanskogo i voyennogo naznacheniya. Moscow: PAIMS. 1999. 300 p. (In Russ.).
- Blokhin A.I., Demin N.A., Manokhin V.N. et al. Raschetnyy kompleks ACDAM-2.0 dlya issledovaniy yadernykh fizicheskikh svoystv materialov v usloviyakh neytronnogo oblucheniya. Voprosy atomnoy nauki i tekhniki. ser. Materialovedeniye i novyye materialy. 2015. Vol. 82. No. 3. P. 81–109. (In Russ.).
- Engineering Compendium on Radiation Shielding. R.G. Jaeger (Editor-in-Chief). Vol. 1. Heidelberg: Springer-Verlag Berlin GmbH. 1968. 357 p.
- Radionuclide Transport Report for the Safety Assessment SR-Site. TR-10-50. Stockholm: Svensk Kärnbränslehantering AB. 2010. 325 p.
- Dolgikh V.P. Razrabotka podkhodov opredeleniya perioda potentsialnoy opasnosti RAO s uchetom dochernikh radionuklidov.. In “ V Mezhdunar. konf. molodykh uchenykh i spetsialistov atomnoy otrasli. Saint Petersburg. 2013. P. 36–38. (In Russ.).
- Dolgikh V. . Razrabotka podkhodov k opredeleniyu perioda potentsialnoy opasnosti RAO. Rossiyskaya konferentsiya po radiokhimii «Radiokhimiya» 2012. P. 209. (In Russ.).
- Linge I.I., Samoylov A.A. Vozmozhnosti optimizatsii normativnogo regulirovaniya edinoy gosudarstvennoy sistemy obrashcheniya s radioaktivnymi otkhodami. Voprosy radiatsionnoy bezopasnosti. 2016. Vol. 84. No. 4. P. 12–20. (In Russ.).
- Bokov D., Samoilov A., Ragimov T., Sanders J. Development and Attestation of Gamma-Ray Measurement Methodologies for Use by Rostekhnadzor Inspectors in the Russian Federation. INL/CON-06-11453. Idaho: Idaho Nat.Lab. 2006. 9 p.
- Bushuev A., Kozhin A., Samoilov A. et al. Gamma-spectroscopy methodology for simultaneous determination of mass and isotopic composition of large plutonium samples. Nucl. Technol. 2010. Vol. 170. No. 2. P. 353–359.
For citation: Blokhin PA, Samoylov AA. Radiological Justification of Radionuclide Inventory Control in the Context of the Long-Term Safety of Radioactive Waste Disposal Facilities. Medical Radiology and Radiation Safety. 2017;62(4):17-23. Russian. DOI: 10.12737/article_59b106429c5b80.00887618
Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 24-30
DIAGNOSTIC RADIOLOGY
DOI: 10.12737/article_59b1077eca2810.73078621
Sonography in the Diagnosis of Fractures of the Maxillofacial Region
N.A. Akramova, Yu.M. Khodjibekova
Tashkent State Dental Institute, Tashkent, Uzbekistan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
N.A. Akramova – Assistant of the Dep.; Yu.M. Khodjibekova – Associate Prof.
Abstract
Purpose: To evaluate the role and significance of ultrasonography in the general complex of methods of radiation diagnosis of bone fractures of the maxillofacial region.
Material and methods: Ultrasound examination was carried out on 104 patients at the age of 6–59 with trauma of the maxillofacial region. All patients were examined with sonography (SLE-501 device with linear frequency controller at 7.5 MHz, Lithuania), radiography and multislice computed tomography (Somation Emotion 6 device, Siemens, Germany).
Results: Fractures of the maxillofacial bones confirmed in 96 patients, including 36 isolated, 60 multiple and associated injuries of bones of the maxillofacial region. All injuries were identified by CT with 3D reconstruction, thus the method was adopted as verifying during analysis and comparison of results produced by other methods of visualization.
The ultrasonography findings revealed the following: interruption of the cortical layer with or without displacement of bone fragments, bone contour deformation. In 11 out of 13 cases of mandibular fractures with negative sonographic signs were detected by sonography with functional tests with the mouth opening. In comparison with X-ray, ultrasonography was more sensitive in detecting fractures (94.0 % to 81.5 %), especially in fractures of the front wall of the maxillary sinus, articular and coronoid process of the mandible.
Ultrasonographic examination was carried out with 57 patients after closed and open reposition. The unsatisfactory condition of bone fragments, which need re-repositioning, were detected in 25. In 11 patients sonography was used intraoperatively to control the repositioning of the bone fragments, thus making it possible to achieve satisfactory results after operations.
Conclusion: Ultrasonography has proved to be a valuable tool in detecting fractures in the facial bones in addition to X-ray examination. Particular value of sonography is a control for repositioning bone fragments.
Key words: trauma, maxillofacial region, sonography
REFERENCES
- Nigam A., Goni A., Benjamin A., Dasgupta A.R. The value of radiographs in the management of the fractured nose. Arch. Emerg. Med. 1993. Vol. 10. P. 293–297.
- Logan M.O., Driscoll K., Masterson J. The utility of nasal bone radiographs in nasal trauma. Clin. Radiol. 1994. Vol. 49. P. 192–194.
- Friedrich R.E., Heiland M., Bartel-Friedrich S. Potentials of ultrasound in the diagnosis of midfacial fractures. Clin. Oral. Investig. 2003. Vol. 7. P. 226–229.
- Aburn N.S., Sergott R.C. Color Doppler imaging of the ocular and orbital blood vessels. Curr. Opin. Ophthalmol. 1993. Vol. 4. No. 6. P. 3–6.
- Jank S., Emshoff R., Etzelsdorfer M. et al. Ultrasound versus computed tomography in the imaging of orbital floor fractures. J. Oral. Maxillofac. Surg. 2004. Vol. 62. P. 150–154.
- Nezafati S., Javadrashid R., Rad S., Akrami S. Comparison of ultrasonography with submentovertex films and computed tomography scan in the diagnosis of zygomatic arch fractures. Dento-maxillofac. Radiol. 2010. Vol. 39. P. 11–16.
- Rabukhina N.A., Butsan S.B. Ispolzovaniye spiralnoy KT dlya trekhmernogo kompyuternogo modelirovaniya pri planirovanii khirurgicheskogo lecheniya defektov i deformatsiy litsevogo skeleta. Vestnik rentgenol. i radiol. 2009. Vol. 1. P. 10–15. (In Russ.).
- McCann P.J., Brocklebank L.M., Ayoub A.F. Assessment of zygomatico-orbital complex fractures using ultrasonography. Brit. J. Oral. Maxillofac. Surg. 2000. Vol. 4. P. 525–529.
- . Serova N.S. Luchevaya diagnostika sochetannykh povrezhdeniy kostey litsevogo cherepa i struktur orbity. – M.: Disc.kand.med.nauk. 2006. 130 p. (In Russ.).
- Lezhnev D.A., Vasilyev A.Yu. Luchevaya diagnostika travmaticheskikh povrezhdeniy chelyustno-litsevoy oblasti. Byull. sibirskoy meditsiny. 2008. No. 3. P. 92–96. (In Russ.).
- Jank S., Emshoff R., Etzelsdorfer M. et al. Ultrasound versus computed tomography in the imaging of orbital floor fractures. J. Oral Maxillofac. Surg. 2004. Vol. 62. No. 2. P. 150–154.
- Ogunmuyiwa S.A., Fatusi O.A., Ugboko V.I. The validity of ultrasonography in the diagnosis of zygomaticomaxillary complex fractures. Internat. J. Oral Maxillofac. Surg. 2012. Vol. 41. No. 4. P. 500–505.
- Singh K.S., Jayachandran S. A comparative study on the diagnostic utility of ultrasonography with conventional radiography and computed tomography scan in detection of zygomatic arch and mandibular fractures. Amer. J. Emergency Med. 2014. Vol. 5. No. 2. P. 166–169.
- Sreeram M.P., Rupesh M., Ravindran C. Use of ultrasound as a screening tool in the maxillofacial fractures. Internat. Med. J. 2016. Vol. 3. No. 6. P. 573–577.
- Sangayeva L.M. Luchevaya diagnostika travm glaza i struktur orbity. Moscow: Avtoref. diss. kand. med. nauk. 2009. 21 p. (In Russ.).
- Rahul P. Menon, Sanjay Kumar Roy Chowdhuty. Comparision of ultrasonography with conventional radiography in the diagnosis of zygomatic complex fractures. J. Cranio-Maxillo Fac. Surg. 2016. Vol. 44. No. 4. P. 353–356.
- Raby N., Moore D. Radiography of facial trauma, the lateral view is not required. Clin. Radiol. 1998. Vol. 55. No. 3. P. 218–220.
- Maha Sallam, Ghada Khalifa, Fatma Ibrahim Mohamed Taha. Ultrasonography vs computed tomography in imaging of zygomatic complex fractures. J. Amer. Sci. 2010. Vol. 6. No. 9. P. 524–533.
- Pi-Yun Chiu, Jen-Darchen, Ping-Yi Ko. Cheng-Yenchang Clinical assessment of the diagnostic value of facial radiography in facial trauma patients at the emergency department. Chin. J. Radiol. 2005. Vol. 30. P. 327–333.
- Pavlova O.Yu., Serova N.S., Medvedev Yu.A., Petruk P.S. Luchevaya diagnostika travm kostey sredney zony litsa. Russ.Electronic J. Radiol. 2014. Vol. 4. No. 3. P. 39–44. (In Russ.).
Для цитирования: Akramova NA, Khodjibekova YuM. Sonography in the Diagnosis of Fractures of the Maxillofacial Region. Medical Radiology and Radiation Safety. 2017;62(4):24-30. Russian. DOI: 10.12737/article_59b1077eca2810.73078621
Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 12-16
RADIATION SAFETY
DOI: 10.12737/article_59b10531b5b9a1.53751147
V.V. Uiba1, M.K. Sneve2, A.S. Samoylov3, N.K. Shandala3, A.V. Simakov3, S.M. Kiselev3, K. Siegien-Iwaniuk2, M.P. Semenova3, Y.S. Belskikh3, V.P. Kryuchkov3, K.A. Chizhov3, G.M. Smith4
REGULATION OF THE SPENT NUCLEAR FUEL MANAGEMENT AT THE ANDREEVA BAY SITE FOR TEMPORARY STORAGE ON THE KOLA PENINSULA
1. Federal Medical Biological Agency. Moscow, Russia; 2. Norwegian Radiation Protection Authority, Grini naeringspark 13, 1332 Østerås, Norway; 3. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 4. GMS Abingdon Ltd, Abingdon, Oxfordshire, OX14 3PP, UK
V.V. Uiba – Head of Federal Medical Biological Agency of Russia, Dr. Sc. Med., Prof.; M.K. Sneve – Director of Regulatory Programmes, Ph.D.; A.S. Samoylov –Director General of Federal Medical Biophysical Center, Dr. Sci. Med.; N.K. Shandala – Science and Biophysical Technologies Deputy Director General, Dr. Sc. Med.; A.V. Simakov – Head of Radiation Occupational Protection Laboratory, PhD Med.; S.M. Kiselev – Head of RSLS Laboratory, PhD Biol.; K. Siegien-Iwaniuk – Senior Adviser, Dr. Sc. Tech.; M.P. Semenova – Senior Researcher; Yu.S. Belskikh – Junior Researcher; V.P. Kryuchkov – Leading Researcher, PhD in Phys.-Math. K.A. Chizhov – Researcher; G.M. Smith – Director, Ph.D.
Abstract
Purpose: To share the experience in regulation of radiation safety and protection of workers involved in management of the spent nuclear fuel (SNF) and radioactive waste (RW), as well as radiation protection of the population and environment in the vicinity of sites for temporary storage at Andreeva Bay on the Kola Peninsula.
Material and methods: Spent fuel from Russian nuclear powered submarines has been stored at shore based facilities for more than 20 years, notably at Andreeva Bay. The storage facilities were for some years poorly maintained and a significant fraction of the fuel that is still in store at the site was damaged. Over the last years, huge work has been done to improve the technical infrastructure and prepare for removal of the SNF from the temporary stores, management of existing RW.
Results: This paper presents progress with projects of the FMBA of Russia and NRPA cooperation for regulation of radiation safety and protection. During the researches, the following issues were addressed: radiological threat assessment to identify the priority directions of regulation; detailed analysis of the radiation situation on sites, at the territories and nearby the sites; radiation control and monitoring of the environmental conditions; development of the computer maps and geo-information system; emergency preparedness and response; improvement of radiation safety culture; etc.
Based on the received results of monitoring and assessment of the current risks, site-specific regulatory documents have been developed for the bodies and institutions under the FMBA of Russia involved in the activities to control the facility. Those documents include the requirements for radiation protection of workers and population; personal dose monitoring; the RW management including the very low level RW; implementation of the environmental monitoring; radiation monitoring nearby the Andreeva Bay SevRAO facility; and remediation of the sites as remediation criteria and regulations.
The next stage of work is to carry out the regulation of large-scale removal of SNF during 2017–2021 and its subsequent transfer to Mayak PA, and operations to bring the infrastructure of the site into the safe conditions, i.e., ecological remediation of the site – by 2025.
Lessons learnt from this work are being used in support of improved international recommendations and guidance on how to address legacy issues.
Conclusion: The experience accumulated during regulation of the remediation process of the former Naval Coastal Technical Bases has helped to identify new relevant areas of improvement of the regulatory supervision at nuclear legacy sites. The study of potential hazard of radiation exposure to the personnel during technological operations of SNF and RW management is very important issue. In this light, the regulator in cooperation of the operator should develop some effective and efficient activities for dose monitoring. When dealing with the protection of the population and environment, a methodology of comprehensive radiation and chemical monitoring should be developed and models of radiation and chemical risks should be improved taking into account features of contamination of the site under remediation. An important link of the social focus of the regulator and the operator is to improve strategies of public communications near legacy sites under remediation.
Key words: spent nuclear fuel, radioactive waste, site for temporary storage, threat assessment, radiation protection and safety, radiation monitoring, regulatory supervision, remediation
REFERENCES
- Shandala N.K., Kochetkov O.A., Savkin M.N. et al. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian Northwest. J. Radiol. Protect. 2008. Vol. 28. P. 453–465.
- Shandala N.K., Titov A.V., Novikova N.Ya. et al. Radiological criteria for the remediation of sites for spent fuel and radioactive waste storage in the Russian Northwest. J. Radiol. Protect. 2008. Vol. 28. P. 479–497.
- Grigoriev A. Presentation at the 5th Information Workshop “The history, current status and prospects of remediation of nuclear and radiation hazardous facilities of Andreeva Bay (North-West of Russia)” http://www.atomic-energy.ru/news/2016/11/01/70008.
- Ilyin L., Kochetkov O., Simakov A. et al. Initial Threat Assessment. Radiological Risks Associated with SevRAO Facilities Falling Within the Regulatory Supervision Responsibilities of FMBA. NRPA Report 2005:17. Norwegian Radiation Protection Authority, Østerås. 2005.
- Sneve M.K., Shandala N., Kiselev S. Radiation Safety during remediation of the SevRAO facilities: 10 years of regulatory experience. J. Radiol. Protect. 2015. Vol. 35. P. 571–596. doi:10.1088/0952-4746/35/3/571.
- Chizhov K., Sneve M.K., Szoke I. et al. 3D simulation as a tool for improving the safety culture during remediation work at andreeva Bay. J. Radiol. Protect. 2014. Vol. 34. P.755–773.
- Siegien-Iwaniuk K., Sneve M.K., Strand P. et al. Regulatory Cooperation Program between Norwegian Radiation Protection Authority and Russian Federation. Results of projects completed from 2010 to 2015.
- Chizhov K., Sneve M. K., Shinkarev S. et al. Methods of minimizing doses incurred by external exposure while moving in radiation hazardous areas. Submitted to J. Radiol. Protect., (in review).
- Filonova A. Progress with the environment project at Andreeva Bay.. Report of the 17th BIOPROTA Workshop, 18–19 May 2015. Madrid. Spain.
- Shandala N.K., Seregin V.A. Russian-Norwegian cooperation in regulation of public radiation protection in Northwest Russia. Proc. Conf. WM2012. Amer. Nucl. Soc. 2013.
- Copplestone D., Larsson C-M., Strand P., Sneve M.K. Protection of the environment in existing exposure situations. In: Clement C.H., Hamada N. (Eds.) Annals of the ICRP: Proc. Third Internat. Symp. System of Radiol. Protect. 2016. Vol. 45. No. 1S. P. 91–115.
- Shandala N.K., Seregin V.A., Semenova M.P. et al. Progress with ENVIRONMENT project at Andreeva Bay. Report of the 2016 BIOPROTA Ann. Workshop. Version 2.0. Final. July 2016. P. 24–26
- Shandala N.K., Sneve M.K., Kiselev S.M. et al. Status of Regulatory Issues in Personnel, Public and Environmental Radiation Safety at Legacy Nuclear Sites in Russia. 10 year FMBA-NRPA collaboration. 2004–2014. – Moscow. Burnasyan FMBC, FMBA-Russia. 2015. 23 p.
- Siegien-Iwaniuk K., Sneve M.K., Strand P. et al. Regulatory Cooperation Program between NRPA and Russian Federation. Strålevern Rapport 2016:4. Østerås: Statens strålevern. 2016. 66 p.
- Savkin M., Sneve M., Grachev M. et al. Medical and radiological aspects of emergency preparedness and response at SevRAO facilities. J. Radiol. Protect. 2008. Vol. 28. P. 499–509.
- Sneve M.K., Strand P. Regulatory supervision of legacy sites from recognition to resolution. Report Internat. Workshop. Strålevern Rapport 2016:5. Norwegian Radiation Protection Authority. Østerås. 2016.
- Kiselev S.M., Zhukovsky M.V., Stamat I.P., Yarmoshenko I.V. Radon: from fundamental studies to regulatory practice. Moscow: Burnasyan FMBC, FMBA-Russia. 2016. 400 p.
- Nuclear Energy Agency, Management of Radioactive Waste after a Nuclear Power Plant Accident. NEA No. 7305. Nuclear Energy Agency, Organization for Economic Co-operation and Development. Paris. 2016.
For citation: Uiba VV, Sneve MK, Samoylov AS, Shandala NK, Simakov AV, Kiselev SM, Siegien-Iwaniuk K, Semenova MP, Belskikh YS, Kryuchkov VP, Chizhov KA, Smit GM. Regulation of the Spent Nuclear Fuel Management at the Andreeva Bay Site for Temporary Storage on the Kola Peninsulas. Medical Radiology and Radiation Safety. 2017;62(4):12-6. DOI: 10.12737/article_59b10531b5b9a1.53751147