JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 5. P. 21-27

RADIATION SAFETY

DOI: 10.12737/article_59f2f75e1cb220.73941126

Radiation Situation in Workplaces of the Personnel at the Ground Facilities of the Priargun Production Mountain Chemical Association 

N.K. Shandala1, A.M. Marenny2, D.V. Isaev1, A.V. Titov1, S.M. Kiselev1, M.P. Semenova1, N.A. Nephedov2, V.I. Astaphurov2, L.A. Zhuravleva3, M.A. Marenny4, E.A. Khohlova5, V.V. Uiba6

  1. A.I. Burnasyan Medical Biophysical Center Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
  2. Scientific and Technical Center of Radiation Chemical Safety and Hygiene Moscow, Russia.
  3. Center for Hygiene and Epidemiology No.107, Krasnokamensk, Russia.
  4. REI group of companies, Moscow, Russia.
  5. Inter-regional Management Center No.107 Krasnokamensk, Russia.
  6. Federal Medical-Biological Agency, Moscow, Russia.

N.K. Shandala – Science and Biophysical Technologies Deputy Director General, Dr. Sc. Med., Member of the Russian scientific commission radiological protection, Member of the Committee on Radiation Protection and Public Health Nuclear Energy Agency Organization for Economic Cooperation and Development, Member of International Radiation Protection Association; A.M. Marenny – professor, Dr. Sc. Phys.-Math., Head of Lab., Member of the European Union of Radiologists, Academician of the Russian Academy of Natural Sciences; D.V. Isaev – Researcher, Member of International Radiation Protection Association; A.V. Titov – Senior Researcher, Member of International Radiation Protection Association; S.M Kiselev – PhD Biol., Leading Researcher, Member of International Radiation Protection Association (IRPA); MP. Semenova – Senior Researcher, Member of International Radiation Protection Association (IRPA); N.A. Nephedov – PhD Phys.-Math., Leading Researcher; V.I. Astaphurov – Associate Prof., PhD Chem., Leading Researcher, Prof.; L.A. Zhuravleva – Chief Medical; M.A. Marenny – PhD Econ., Chief Engineer REI group of companies; E.A. Khohlova – Head Inter-regional Management Center No.107 of FMBA of Russia; V.V. Uiba – Head of Federal Medical Biological Agency of Russia, Dr. Sc. Med., Prof.

Abstract

Purpose: To obtain data of radiation survey in workplaces of the personnel of the Priargun Production Mountain Chemical Association (OJSC PPMCA), who work at the premises of the ground facilities.

Material and methods: In the course of the radiation survey integral track methods were used to measure radon activity concentration by REI-1 track cameras of the TRACK-REI-1M kit.

To assess the activity balance factor between radon and its radionuclide progenies, short term measurements of radon activity concentration (AC) and effective equilibrium concentration (EEC) of radon by handle radiometers of radon and its progenies. Gamma dose rate was measured by handle dosimeters.

Results: Annual AC, EEC and effective dose due to radon and external gamma exposures in workplaces at the ground facilities of OJSC PPMCA have been obtained. Total number of the inspected workshops is 138, including 121 workshops occupied by the A group personnel, and 17 – by the B group personnel.

Conclusions: It was shown that annual doses 20 mSv could be exceeded for the A group personnel who work at three workshops shaft 8K of the mine-2, one workshop of building 630A of the Hydro-metallurgical Plant and one workshop of shaft 5B of G mine.

In the workshops of the B group personnel, 5 mSv annual effective doses can be exceeded 2 and more times at the premises of canteen number 18 and administrative domestic building of mine-2.

Key words: staff, radiation survey, radon, ventilation, gamma radiation, inhalation intake, class of work conditions, workplace, mine, effective dose

REFERENCES

  1. Sajt PPGHO. Available at: http://www.priargunsky.armz.ru/enterprises_association/ (accessed 11.12.2016). (in Russ.).
  2. Radiacionnaya obstanovka na territorii Rossii i sopredel’nyh gosudarstv v 2011 godu. Ezhegodnik. Obninsk. 2012. (in Russ.).
  3. MVI 2.6.1.003–99. Izmerenie ob’emnoj aktivnosti integral’nym trekovym metodom v proizvodstvennyh, zhilyh i obshchestvennyh pomeshcheniyah. (in Russ.).
  4. Metodika izmerenij «Radon. Izmerenie ob»emnoj aktivnosti v vozduhe pomeshchenij integral’nym trekovym metodom» (Svidetel’stvo FGUP VNIIFTRI 40090.2I385 16.06.2012). (in Russ.).
  5. MU 2.6.1. 037–2015. Opredelenie srednegodovyh znachenij EHROA izotopov radona v vozduhe pomeshchenij po rezul’tatam izmerenij raznoj dlitel’nosti. (in Russ.).
  6. MU 2.6.1.11–01. Organizaciya radiacionnogo kontrolya na uranovyh rudnikah i raschet doz oblucheniya personala. Metodicheskie ukazaniya. Moscow. 2004. (in Russ.).
  7. SanPiN 2.6.1.2523-09 Normy radiacionnoj bezopasnosti (NRB-99/2009). (in Russ.).
  8. P 2.2.2006-05 Rukovodstvo po gigienicheskoj ocenke faktorov rabochej sredy i trudovogo processa. Kriterii i klassifikaciya uslovij truda. Utverzhdeno Glavnym gosudarstvennym sanitarnym vrachom Rossijskoj Federacii G.G.Onishchenko 29.06. 2005. (in Russ.).

For citation: Shandala NK, Marenny AM, Isaev DV, Titov AV, Kiselev SМ, Semenova МP, Nephedov NA, Astaphurov VI, Zhuravleva LA, Marenny MA, Khohlova EA, Uiba VV. Radiation Situation in Workplaces of the Personnel at the Ground Facilities of the Priargun Production Mountain Chemical Association. Medical Radiology and Radiation Safety. 2017;62(5):21-7. Russian.DOI: 10.12737/article_59f2f75e1cb220.73941126

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 5. P. 11-20

RADIATION SAFETY

DOI: 10.12737/article_59f2f1e5d45cc5.39553012

About Defining the Borders of Radioactive Contamination Zones as a Result of Large Radiation Accidents. Message I. Post-Accident Analysis of Chernobyl Zoning Experience

A.M. Skorobogatov1, M.G. Germenchuk2, A.V. Simonov1, O.M. Zhukova2, O.N. Apanasyuk1, Yu.N. Golikov2, T.A. Bulantseva1, L.Yu. Lupach1

1. Nuclear Safety Institute of the Russian Academy of Sciences, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Republican Center for Hydrometeorology, Control of Radioactive Contamination and Environmental Monitoring, Minsk, Belarus

A.M. Skorobogatov– Research Worker; M.G. Germenchuk– PhD Tech., First Deputy Head, Expert of the IAEA; A.V. Simonov– PhD Psych., Head of Department; O.M. Zhukova– PhD Tech., Head of Department, Expert of the IAEA; O.N. Apanasyuk– Senior Researcher; Yu.N. Golikov – Head of Department; T.A. Bulantseva– Engineer; L.Yu. Lupach– Junior Researcher

Abstract

Purpose: Retrospective analysis of the process of defining radioactive contamination zones formed after the Chernobyl accident.

Results: Summary of events related to liquidation of the Chernobyl NPP (ChNPP) accident consequences is given in the context of defining the radioactive contamination zones.

Experience of zoning of the territories exposed to radioactive contamination due to the Chernobyl NPP accident during 1986–2015 in Belarus and the Russian Federation has revealed the following:

  • Zones of radioactive contamination as a result of the ChNPP accident have been finally defined by the regulatory-legal acts only by 1991– in five years after the Chernobyl accident;
  • At present, the radioactive contamination zones legally correspond to the borders of settlements that were given a certain status of the radioactively contaminated territory.

This leads, in particular, to paradoxical “automatic” reduction of radioactive contamination zones due to abolition of settlements with no inhabitants. Absence of the established borders of radioactive contamination zones creates difficulties in substantiation of the measures related to radiation monitoring, rehabilitation of radioactively contaminated areas and their return to economic circulation.

Conclusions: Experience of eliminating of the Chernobyl NPP accident consequences shows that the absence of modern and scientifically justified procedures of defining the borders of radioactive contamination zones results not only in an inadequate assessment of the scales of consequences, but also does not allow effective differentiating the inventory and scale of necessary measures on population protection.

Key words: radiation accidents, radioactive contamination zones, radiation exposure dose, density of radioactive contamination, the Chernobyl accident, the analysis of the experience of zoning

REFERENCES

  1. Vlasova N.G., Visenberg Yu.V., Mataras A.N. Obosnovanie perekhoda ot zonirovaniya radioaktivno zagryaznennoi territorii k klassifikatsii naselennykh punktov po srednim godovym effektivnym dozam oblucheniya v otdalennom periode posle avarii na ChAES. [The substantiation of the transition from the zoning of radioactively contaminated territory to the classification of in human settlement to average annual effective doses of radiation in the remote period after the Chernobyl accident]. Radiacionnaya gigiena [Radiation Hygiene]. 2016. Vol. 9. No. 2. P. 31–39. (In Russ., abstr. in Engl.).
  2. Ekologo-ekonomicheskoe obosnovanie ispol’zovaniya zemel’ v usloviyakh radioaktivnogo zagryazneniya (usloviyakh Belarusi) [Environmental-economic justification of land use in the conditions of radioactive contamination (conditions of Belarus]. Jekonomika sel’skogo hozjajstva. Referativnyj zhurnal [Rural Economics. Abstract journal]. 2008. No. 3. P. 607. (In Russ.).
  3. Normy bezopasnosti MAGATE. Gotovnost’ i reagirovanie v sluchae yadernoi ili radiologicheskoi avariinoi situatsii. Obshchie trebovaniya bezopasnosti [IAEA Safety Standards. Preparedness and response in case of nuclear or radiological emergency. General safety requirements]. No. GSR. Part 7. IAEA. Vienna. 2016. (In Russ.).
  4. Natsional’naya akademiya nauk Ukrainy. “Chernobyl’skaya katastrofa” [National Academy of Sciences of Ukraine. “Chernobyl accident”]. Kiev: Publ. Naukova dumka. 1995. 32 p. (In Russ.).
  5. Natsional’nyi arkhiv Respubliki Belarus’. Chernobyl’. 26 aprelya 1986– dekabr’ 1991. Dokumenty i materialy [National archive of Byelorussia. Chernobyl. April 26. 1986– December 1991. Documents and materials]. Minsk: Publ. NARB. 2006. P. 38–39. (In Russ.).
  6. Postanovlenie TS KPSS, Prezidiuma VS SSSR, Sovmina SSSR, VCPS ot 07 maja 1986 goda No. 524–156 “Ob uslovijah oplaty truda i material’nogo obespechenija rabotnikov predprijatij, organizacij zony Chernobyl’skoj atomnoj jelektrostancii” [Decree of the CPSU Central Committee, Presidium Supreme of the USSR Soviet, Soviet of Ministries of the USSR of May 7. 1986. No. 524-156 “About repayment terms of work and material maintenance of workers of the enterprises and organisations in the area of the Chernobyl NPP”]. Moscow: GARF. F. 5446. Op. 1. D. 994. (In Russ.).
  7. Postanovlenie TsK KPSS, Sovmina SSSR ot 29 maya 1986 goda 634-188 “O provedenii dezaktivatsionnykh rabot v raionakh Ukrainskoi SSR i Belorusskoi SSR, podvergshikhsya radioaktivnomu zagryazneniyu v svyazi s avariei na Chernobyl’skoi AES” [Decree of the CPSU Central Committee, Soviet of Ministries of the USSR of May 29. 1986. No. 634-188 “About carrying out of decontamination works in the areas of the Ukrainian Soviet Socialist Republic and the Belarus Soviet Socialist Republic, exposed to radioactive contamination as a result of the Chernobyl NPP”]. Moscow: GARF. F. 5446. Op. 1. D. 994. (In Russ.).
  8. Prilozhenie k Postanovleniyu TsK KPSS i SM SSSR ot 20 iyunya 1986 g. No. 745-209 “O vozmeshchenii material’nogo ushcherba naseleniyu, evakuirovannomu iz naselennykh punktov zony otchuzhdeniya Chernobyl’skoi AES” [Annex to the Decree of the CPSU Central Committee, Soviet of Ministries of the USSR of June 20. 1986. No. 745-209 “About compensation of material damage to the population evacuated from settlements in the Chernobyl NPP exclusion zone”]. Moscow: GARF. F. 5446. Op. 1. D. 995. (In Russ.).
  9. Natsional’nyi arkhiv Respubliki Belarus’. Chernobyl’. 26 aprelya 1986– dekabr’ 1991. Dokumenty i materialy [National archive of Byelorussia. Chernobyl. April 26. 1986– December 1991. Documents and materials]. Minsk: Publ. NARB. 2006, P. 58–60. (In Russ.).
  10. Postanovlenie TsK KPSS i Soveta Ministrov SSSR ot 22 avgusta 1986 g. No. 1005-285 “O dopolnitel’nykh merakh po trudoustroistvu, obespecheniem zhil’em i sotsial’no-bytovym obsluzhivaniem naseleniya, evakuirovannogo iz naselennykh punktov v svyazi s avariei na Chernobyl’skoi AES, i vozmeshcheniya emu material’nogo ushcherba” [Decree of the CPSU Central Committee, Soviet of Ministries of the USSR of August 22. 1986. No. 1005–285 “About additional measures on employment, welfare and social service of the population evacuated from settlements as a result of the Chernobyl NPP accident, and compensation of material damage”]. Moscow: GARF. F. 5446. Op. 1. D. 997. (In Russ.).
  11. Postanovlenie Sovmina SSSR ot 22 avgusta 1986 g. No. 1006-286 “Ob uluchshenii material’nogo polozheniya naseleniya, prozhivayushchego v naselennykh punktakh s ogranicheniem potrebleniya sel’skokhozyaistvennoi produktsii mestnogo proizvodstva v svyazi s avariei na Chernobyl’skoi AES” [Decree of the Soviet of Ministries of the USSR of August 22. 1986. No. 1006-286 “About improvement of material standing of the population residing in settlements with restriction of consumption of local agricultural production as a result of the Chernobyl NPP accident”]. Moscow: GARF. F. 5446. Op. 1. D. 997. (In Russ.).
  12. Postanovlenie Soveta Ministrov RSFSR ot 06 avgusta 1990 g. No. 280 “O l’gotakh lits, rabotayushchikh v raionakh, podvergshikhsya radioaktivnomu zagryazneniyu v rezul’tate avarii na Chernobyl’skoi AES” [Decree of the Soviet of Ministries of the RSFSR of August 06. 1990. No. 280 “About privileges of the persons working in areas exposed to radioactive contamination as a result of the Chernobyl NPP accident”]. Moscow: GARF. F. 5446. Op. 1. D. 1151. (In Russ.).
  13. Postanovlenie Verkhovnogo Soveta RSFSR ot 19 sentyabrya 1990 g. 173-1 “O gosudarstvennoi programme po likvidatsii posledstvii chernobyl’skoi katastrofy na territorii RSFSR na 1990-1995 gody” [Decree of the Supreme Soviet of the RSFSR of September 19. 1990. No. 173-1 “About the state program on liquidation of the Chernobyl accident consequences in the RSFSR territory for 1990-1995”]. Moscow: GARF. F. 5446. Op. 1. D. 1152. (In Russ.).
  14. Postanovlenie Kabineta Ministrov SSSR 164 ot 8 aprelya 1991 goda “O kontseptsii prozhivaniya naseleniya v raionakh, postradavshikh ot avarii na Chernobyl’skoi AES [Decree of the Cabinet of Ministers of the USSR. No. 164 of April 8. 1991 “About the concept of residing in the areas suffered from the Chernobyl NPP accident]. Moscow: GARF. F. 5446. Op. 1. D. 1160. (In Russ.).
  15. Zakon SSSR ot 12 maya 1991 g. No. 2146-1 “O sotsial’noi zashchite grazhdan, postradavshikh vsledstvie chernobyl’skoi katastrofy” [Law of the USSR of May 12. 1991, No. 2146-1 “About social protection of the citizens suffered from the Chernobyl accident”]. Vedomosti S”ezda narodnykh deputatov SSSR i Verkhovnogo Soveta SSSR [Sheets of Congress of People’s Deputies of the USSR and the Supreme Soviet of the USSR] ot 22 maya 1991 g. No. 21. St. 594. (In Russ.).
  16. Zakon RSFSR ot 15 maya 1991 g. No. 1244-1 “O sotsial’noi zashchite grazhdan, podvergshikhsya vozdeistviyu radiatsii vsledstvie katastrofy na Chernobyl’skoi AES” [The law RSFSR of May 15. 1991. No. 1244-1 “About social protection of citizens exposed to radiation as a result of the Chernobyl NPP accident “]. «Vedomosti S”ezda narodnykh deputatov Rossiiskoi Federatsii i Verkhovnogo Soveta Rossiiskoi Federatsii» ot 23 maya 1991 g. No. 1. St. 699. (In Russ.).
  17. Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 28 dekabrya 1991 g. No. 237-r. Available at: Sistema Garant (accessed 04.04.2017) (Tekst rasporyazheniya ofitsial’no opublikovan ne byl). (In Russ.).
  18. Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 25 fevralya 1992 g. No. 363-r Available at: Sistema Garant (accessed 04.04.2017). (Tekst rasporyazheniya ofitsial’no opublikovan ne byl). (In Russ.).
  19. Rasporyazhenie Soveta Ministrov– Pravitel’stva Rossiiskoi Federatsii ot 5 aprelya 1993 g. No. 557-r. Sobranie aktov Prezidenta i Pravitel’stva Rossiiskoi Federatsii. 1993. No. 15. St. 1312. (In Russ.).
  20. Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 18 yanvarya 1995 g. No. 73-r. Sobr. zakonodatel’stva Ros. Federatsii. 1995. No. 4. St. 341. (In Russ.).
  21. Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 25 aprelya 1995 g. No. 571-r. Sobr. zakonodatel’stva Ros. Federatsii. 1995. No. 20. St. 1874. (In Russ.).
  22. Postanovlenie Pravitel’stva Rossiiskoi Federatsii ot 18 dekabrya 1997 g. No. 1582 “Ob utverzhdenii perechnya naselennykh punktov, nakhodyashchikhsya v granitsakh zon radioaktivnogo zagryazneniya vsledstvie katastrofy na Chernobyl’skoi AES” [“About approval of the list of settlements situated within the borders of radioactive contamination zones as a result of the Chernobyl NPP accident “]. Sobr. zakonodatel’stva Ros. Federatsii ot 29 dekabrya 1997 g. No. 52. St. 5924. (In Russ.).
  23. Postanovlenie Pravitel’stva Rossiiskoi Federatsii ot 7 aprelya 2005 goda, No. 197 “Ob utverzhdenii perechnya naselennykh punktov, nakhodyashchikhsya v granitsakh zon radioaktivnogo zagryazneniya vsledstvie katastrofy na Chernobyl’skoi AES” [“About approval of the list of settlements situated within the borders of radioactive contamination zones as a result of the Chernobyl NPP accident”]. Sobr. zakonodatel’stva Ros. Federatsii. 2005. No. 15. St. 1359. (In Russ.).
  24. Postanovlenie Pravitel’stva Rossiiskoi Federatsii ot 8 oktyabrya 2015 g. No. 1074 “Ob utverzhdenii perechnya naselennykh punktov, nakhodyashchikhsya v granitsakh zon radioaktivnogo zagryazneniya vsledstvie katastrofy na Chernobyl’skoi AES” [“About approval of the list of settlements situated within the borders of radioactive contamination zones as a result of the Chernobyl NPP accident”]. Sobr. zakonodatel’stva Ros. Federatsii ot 19 oktyabrya 2015 g. No. 42. St. 578. (In Russ.).
  25. Zakon Respubliki Belarus’ ot 26 maya 2012 goda 385-Z “O pravov om rezhime territorii, podvergshikhsya radioaktivnomu zagryazneniyu v rezul’tate katastrofy na Chernobyl’skoi AES” [“About the legal regime of territories exposed to radiation as a result of the Chernobyl NPP accident]. Natsional’nyi reestr pravovykh aktov Respubliki Belarus’ ot 06.06.2012 g. No. 63. St. 6. (In Russ.).
  26. Romanovich I.K., Bruk G.Ya., Barkovskii A.N. i soavt. Obosnovanie kontseptsii perekhoda naselennykh punktov, otnesennykh v rezul’tate avarii na Chernobyl’skoi AES k zonam radioaktivnogo zagryazneniya, k usloviyam normal’noi zhiznedeyatel’nosti naseleniya [Substantiation of the concept of returning the settlements, assigned to the zones of radioactive contamination as a result of the Chernobyl NPP accident, to the normal conditions of the population vital functions]. Moscow: Radiatsionnaya gigiena [Radiation Hygiene]. 2016. Vol. 9. No. 1. P. 6–18. (In Russ., abstr. in Engl.).

For citation: Skorobogatov AM, Germenchuk MG, Simonov AV, Zhukova OM, Apanasyuk ON, Golikov YuN, Bulantseva TA, Lupach LYu. About Defining the Borders of Radioactive Contamination Zones as a Result of Large Radiation Accidents. Message I. Post-Accident Analysis of Chernobyl Zoning Experience. Medical Radiology and Radiation Safety. 2017;62(5):11-20. Russian. DOI: 10.12737/article_59f2f1e5d45cc5.39553012

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 81-86

MEDICAL PRACTICE ISSUE

DOI: 10.12737/article_59b10d1ea229a0.59653865

Organization System of the Causal Relationship between Diseases, Disability and Death of the Citizens Affected by Radiation Factors

A.Yu. Bushmanov1, Yu.D. Udalov1, N.N. Ryzhman2, V.A. Basharin2, S.V. Voronin2, M.A. Karamullin2, A.V. Yazenok2, A.S. Kretov1, I.V. Vlasova1

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. S.M. Kirov Military Medical Academy, St. Petersburg, Russia

A.Yu. Bushmanov – First Deputy Director General, Dr. Sc. Med., Prof.; Yu.D. Udalov – Deputy Director General of Medical Department, PhD Med.; N.N. Ryzhman – Deputy Head, PhD Med.; V.A. Basharin – Chief Toxicologist-radiologist, Head of the Dep., Dr. Sc. Med.; S.V. Voronin – Assoc. Prof of the Naval-Therapy Dep., Chairman of the Military Physician Board; M.A. Karamullin – Dr. Sc. Med., Prof.; A.V. Yazenok – Assoc. Prof. the Military-medical Academy, Dr. Sc. Med.; A.S. Kretov – Head of the Central Organizational and Methodology Dep.; I.V. Vlasova – Occupational Disease Doctor.

Abstract

There are two Advisory councils on the territory of the Russian Federation: the Interdepartmental Advisory Council (IAC) and Military Medical Commission (MMC) – where citizens may apply to establish the cause of a disease, disability and death from exposure to ionizing radiation.

The article describes the normative documents and the legislative base which regulates work of IAC and MMC on the establishment of a causal relationship between diseases, disability and death of the citizens, exposed to radiation from the Chernobyl accident.

 Categories of citizens who are eligible to apply for the examination to establish causation of the disease, disability and death as a result of exposure to ionizing radiation in IAC and MMC are defined.

MMC can treat only military servants, personnel and citizens, passing military service (equal service), service in bodies and organizations of Prosecutor’s office, the actions of high-risk units, who took part in liquidation of consequences of the Chernobyl accident. Veterans of special risk subdivisions, and all other citizens exposed to radiation due to the Chernobyl accident may apply to IAC.

Key words: radiation factors, radiation-induced effects, nterdepartmental Advisory Councils (IAC), Military-Medical Commission (MMC), legislative base, organizational structure, Chernobyl nuclear power plant (CNPP)

REFERENCES

  1. Sbornik normativnyh dokumentov k Zakonu Rossijskoj Federacii «O social’noj zashchite grazhdan, podvergshihsya vozdejstviyu radiacii vsledstvie katastrofy na Chernobyl’skoj AEHS». Moscow: Energoatomizdat. 1993. 238 p.
  2. Bushmanov A.Yu., Gus’kova A.K., Krasnyuk V.I., Galstyan I.V. Metodicheskoe posobie po ustanovleniyu svyazi zabolevanij s vozdejstviem ioniziruyushchego izlucheniya. Moscow: FMBC im. A.I. Burnazyana FMBA Rossii. 2009. 27 p.
  3. Gus’kova A.K. Trudnosti v ehkspertize pri ustanovlenii svyazi zabolevanij s vozdejstviem radiacii v otdalennye sroki posle oblucheniya i metody po ih preodoleniyu. Medical Radiology and Radiation Safety. 2010. Vol. 55. No. 1. P. 81–85.
  4. Gus’kova A.K. Trudnosti i oshibki v interpretacii dannyh o svyazi zabolevaemosti i smertnosti razlichnyh kategorij lic s vozdejstviem ioniziruyushchego izlucheniya. Medical Radiology and Radiation Safety. 2010. Vol. 55. No. 6. P. 72–74.
  5. Tukov A.R., Gus’kova A.K. Analiz opyta i istochnikov oshibok v ocenke sostoyaniya zdorov’ya lic, vovlechennyh v radiacionnye avarii. Medical Radiology and Radiation Safety. 1997. Vol. 42. No. 5. P. 5–10.
  6. Bushmanov A.Yu., Biryukov A.P., Korovkina EH.P., Kretov A.S.. Analiz normativno-pravovoj bazy i rezul’taty deyatel’nosti mezhvedomstvennyh ehkspertnyh sovetov po ustanovleniyu prichinnoj svyazi zabolevaniya, invalidnosti i smerti grazhdan Rossii, podvergshihsya vozdejstviyu radiacionnyh faktorov vsledstvie chernobyl’skoj katastrofy. Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 3. P. 103–108.
  7. Bushmanov A.Yu., Rozhko A.V., Biryukov A.P. i soavt. Analiz normativno-pravovoj bazy, ispol’zuemoj ehkspertnymi sovetami pri ustanovlenii prichinnoj svyazi zabolevanij, invalidnosti i smerti grazhdan Soyuznogo gosudarstva, podvergshihsya radiacionnomu vozdejstviyu vsledstvie Chernobyl’skoj katastrofy. Medicina Ekstremal’nyh Situacij. 2016. Vol. 58. No. 4. P. 8–17.
  8. Sanitarnye pravila 2.6.1.2523-09 «Normy Radiacionnoj Bezopasnosti» (NRB-99/2009).
  9. Sanitarnye pravila 2.6.1.2612-10 «Osnovnye Sanitarnye Pravila Obespecheniya Radiacionnoj Bezopasnosti» (OSPORB-99/2010)
  10. Otchet MKRZ po tkanevym reakciyam, rannim i otdalennym ehffektam v normal’nyh tkanyah i organah – porogovye dozy dlya tkanevyh reakcij v kontekste radiacionnoj zashchity. Trudy MKRZ. Publikaciya 118. Red. F.A. Styuart i dr. Chelyabinsk: Kniga. 2012. 384 p.

For citation: Bushmanov AYu, Udalov YuD, Ryzhman NN, Basharin VA, Voronin SV, Karamullin MA, Yazenok AV, Kretov AS, Vlasova IV. Organization System of the Causal Relationship between Diseases, Disability and Death of the Citizens Affected by Radiation Factors. Medical Radiology and Radiation Safety. 2017;62(4):81-6. Russian. DOI: 10.12737/article_59b10d1ea229a0.59653865

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 5. P. 5-10

RADIATION BIOLOGY

DOI: 10.12737/article_59f2ef130f5421.00591025

Study of Uridylic Nucleotides Contents and the Investigation Aspartate Carbamoyltransferase in Liver and Small Intestine Mucosa Exposed when Administered to Rats Orotic Acid and Perftoran

E.R. Nagiev, S.E. Nagieva, F.E. Ismailova

Dagestan State Medical University, Makhachka, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

E.R. Nagiev – Academician of the Russian Academy of Natural Sciences, Honored Worker of the Higher School of Russian Federation, Prof., Dr. Sc. Med., Head the Department of General and Biological Chemistry, Dagestan State Medical University; S.E. Nagieva – PhD Med., Assoc. Prof.; F.E. Ismailova – PhD Med., Assistant

Abstract

Purpose: Study of uridylic nucleotides content and aspartate carbamoyltransferase which was a key enzyme on the pathway for the synthesis of pyrimidine nucleotides in tissues of irradiated animals upon administration of orotic acid and perftorane was conducted.

Material and methods: Studies were performed on random-bred albino rats subjected to a single γ-ray exposure at a total dose of 6 Gy. Orotic acid was injected as potassium salt in a dose of 60 mg / kg, perftoran salt in a dose of 1 ml / 100 g water.

Results: A decrease in the content of UTP and UDP, as well as an increase in UMP after irradiation, especially on the 7th day, was established. The most pronounced changes in the studied biochemical parameters take place in the mucosa of the small intestine. The administration of orotic acid and perftorane to irradiated animals contributes to a significant correction of both the nucleotide content and the activity of aspartate carbamoyltransferase.

Conclusion: The radiation leads to some decrease in the content of UDP and UTP. Changes in the content of nucleotides and activity of aspartate carbamoyltransferase in the mucosa of the small intestine are more pronounced in comparison with liver tissue. The combined administration of orotic acid and perftorane promotes the normalization of the content of nucleotides, and the activity of aspartate carbamoyltransferase in the liver and mucous membrane of the small intestine of irradiated animals.

Key words: uridylic nucleotides, aspartate carbamoyltransferase, irradiation, orotic acid, perftoran, liver, small intestine, mucosa

REFERENCES

  1. Lenindzher A. Osnovy biokhimii: V 3-kh t. Vol. 2. Moscow: Mir. 1985. 655 p.
  2. Anderson M., Levan L., Stenram U. Compartmentation of purine and pyrimidine nucleotides in animal cells. Int. J. Biochem. 1988. Vol. 20. No. 10. P. 1039–1050.
  3. Kashcheyenko N.N. O biokhimicheskom mekhanizme protivoluchevogo deystviya adenilovykh soyedineniy. Nauchnyye doklady vysshey shkoly. Biologicheskiye nauki. 1982. No. 2. P. 5–18.
  4. Nagiyev E.R., Litovchenko I.N., Savitskiy I.V. Izmeneniya soderzhaniya pirimidinovykh nukleozidfosfatov v pecheni obluchennykh krys. Ukr. biokhim. zhurn. 1989. Vol. 61. No. 1. P. 89–91.
  5. Nagiyev E.R. Pirimidinovyy nukleotidnyy fond pri deystvii oblucheniya i fizicheskoy nagruzki. i puti ego korrektsii. Med. radiol. i radiats. bezopasnost. 1996. Vol. 41. No. 3. P. 39–41.
  6. Grebenyuk A.N., Zatsepin V.V., Nazarov V.B., Vlasenko T.N. Sovremennyye vozmozhnosti medikamentoznoy profilaktiki i ranney terapii radiatsionnykh porazheniy. Voyen.-med. zhurn. 2011. Vol. 332. No. 2. P. 13–17.
  7. Ivanitskiy G.R. Biofizika na poroge novogo tysyacheletiya: perftoruglerodnyye sredy i gazotransportnyye krovezameniteli. Biofizika. 2001. Vol. 46. No. 1. P. 5–33.
  8. Ismailova F.E. Soderzhaniye nukleotidov adenina i uratsila v pecheni krys i ego korrektsiya perftoranom pri sochetannom vozdeystvii γ-izlucheniya i gazovogo kondensata. Dis. kand. med. nauk. Krasnodar: Kubanskiy gosudarstvennyy meditsinskiy universitet. 2011. 145 p.
  9. Nagiyev E.R. Rol kriticheskikh sistem v opredelenii ustoychivosti organizma k vozdeystviyu ekstremalnykh faktorov vneshney sredy. Makhachkala: IPTs Dagestanskoy gosudarstvennoy meditsinskoy akademii. 2006. 184 p.
  10. Nagiyev E.R. Farmakologicheskaya korrektsiya metabolizma pirimidinovykh nukleotidov pri luchevoy bolezni. Avtoref. dis. dokt. med. nauk. Odessa: Odesskiy gosudarstvennyy meditsinskiy universitet. 1996. 41 p.
  11. Kireyev M.M., Konvay V.D. Polumikrometod opredeleniya kislotoekstragiruyemykh nukleotidov v organakh melkikh laboratornykh zhivotnykh. Vopr. med. khimii. 1979. Vol. 25. No. 3. P. 352–354.
  12. Kusen S.I., Pashkovskaya I.S., Svistun Yu.D. Aktivnost aspartatkarbamoiltransferazy. alanin- i aspartataminotransferaz v zarodyshakh vyuna pri inkubatsii v rastvorakh bioorganicheskikh soyedineniy. Ukr. biokhim. zhurn. 1975. Vol. 47. No. 3. P. 347–351.
  13. Kokunin V.A. Statisticheskaya obrabotka dannykh pri malom chisle opytov. Ukr. biokhim. zhurn. 1975. Vol. 47. 6. P. 776–790.
  14. Nagiyev E.R., Litovchenko I.N. Issledovaniye katabolizma pirimidinovykh nukleotidov v pecheni obluchennykh zhivotnykh. Radiobiologiya. 1988. Vol. 28. No. 2. P. 209–213.

For citation: Nagiev ER, Nagieva SE, Ismailova FE. Study of Uridylic Nucleotides Contents and the Investigation Aspartate Carbamoyltransferase in Liver and Small Intestine Mucosa Exposed when Administered to Rats Orotic Acid and Perftoran. Medical Radiology and Radiation Safety. 2017;62(5):5-10. Russian. DOI: 10.12737/article_59f2ef130f5421.00591025

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 66-78

REVIEW

DOI: 10.12737/article_59b10b5ea417a6.00174966

The Drugs and Natural Antioxidants as the Components of Anti-Radiation Countermeasures During Space Flights

I.B. Ushakov1, M.V. Vasin2

1. A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Russian Medical Academy of Continuous Professional Education of the Ministry of Health Care of the Russian Federation, Moscow

I.B. Ushakov – Chief Scientific Researcher, Member of RAS, Dr. Sc. Med., Prof., M.V. Vasin – Honoured Science Worker of the Russian Federation, Dr. Sc. Med., Prof.

Abstract

Radiation situation for cosmonauts over long-term space flights is caused by low-rate radiation of galactic cosmic rays and solar cosmic rays consisting of high-energy proton as well as heavy particles (Z>10) within 1–2 % that is exclusively a threat of stochastic radiation effects (small increase of cancer risk and decrease of mean life span) for men. During interplanetary expedition periods the small probability of raised solar activity occurring approximately every 11 years there is a threat of exposure to astronauts at doses that cause deterministic radiation effects leading to the development of the disease as a clinical manifestation of radiation injuries. In a similar scenario it is necessary to have available to spaceship anti-radiation countermeasures for astronaut protection. Among personal radioprotective equipment can be provided with radiation protective agents and partial shielding of body separate section providing the best condition for post-radiation repair of radiosensitive body tissues. Preparation B-190 (indralin) is the most perspective from a small number of other radioprotectors permitting for men administration. Besides high radioprotective efficacy and large broadness of radioprotective action B-190 is well tolerated including the impact of extreme flight factors. Antiemetic agent latran (ondansetron) is most interesting among preparation for prophylaxis and reduction of prodromal radiation reaction. To accelerate post-radiation hematopoietic recovery after raised solar activity an administration of radiomitigators (riboxin et al.) is substantiated. Neupomax (neupogen) is recommended as a preparation for pathogenesis therapy of acute radiation syndrome. Possible consequences of long-term space voyages for oxidative stress development are taken into consideration. On their basis of natural antioxidants, preparations and nutrients as radiomodulators, fully qualitative nutrition including vegetable food enriched flavonoids, vitamins C, E and carotene potentially prevent a shorten of cosmonaut biological age induced by solar cosmic rays and galactic cosmic rays and stress factors of long-term cosmic voyages. Radiomodulators are low and non-toxic and have not side effects in recommended doses. Their radioprotective effect is directly induced by adaption reaction on cellular and organismic levels through gene expression modulation and in that way the increase of non-specific body tolerance. The implementation of radiomodulator action is possible through hormesis mechanism.

Key words: space radiation, manned space flights, radiation protective agents, indralin, latran (ondansetron), neupomax (filgrastim), natural antioxidants

REFERENCE

  1. Comstock G.M., Fan C.Y., Simpson J.A. Energy spectra and abundances of the cosmic-ray nuclei helium to iron from the OGO-1 satellite experiment. Astrophys. J. 1969. Vol. 155. P. 609–617.
  2. Maalouf M., Durante M., Foray N. Biological effects of space radiation on human cells: history, advances and outcomes. A general review. J. Radiat. Res. 2011. Vol. 52. P. 126–246.
  3. Durante M. Physical and biomedical countermeasures for space radiation risk. Z. Med. Phys. 2008. Vol. 18. P. 244–252.
  4. Durante M., Cucinotta F. A. Heavy ion carcionegensis and human space exploration. Nature Rev. Cancer. 2008. Vol. 8. P. 465–472.
  5. Shafirkin A.V. [Biological effectiveness of fission spectrum neutrons and protons with energies 60–126 MeV during acute and prolonged irradiation]. Aviakosm. Ekolog. Med. 2015. Vol. 49. No. 6. P. 5–13. (In Russ.).
  6. Shafirkin A.V., Kolomenskii A.V., Mitrikas V.G., Petrov V.M. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development]. Aviacosm. Ecolog. Med. 2010. Vol. 44. No. 1. P. 5–14. (In Russ.).
  7. Petrov V.M. Problems and conception of ensuring radiation safety during Mars missions. Adv. Space Res. 2004. Vol. 34. No. 6. P. 1451–1454. (In Russ.).
  8. Ushakov I.B., Petrov V.M., Shafirkin A.V., Shtemberg A.S. [Problems of ensuring human radiation safety during interplanetary flights] . Radiats. Biol. Radioecol. 2011. Vol. 51. No. 5. P. 595–610. (In Russ.).
  9. Shafirkin A.V., Grigoriev Yu. G. Radiobiological foundation of crew radiation risk for Mars mission to the problem of the space flight safety. Amer. J. Life Sci. Special issue: Space flight factors: from cell to body. 2015. Vol. 3. No. 1–2. P. 32–42. doi: 10.11648/j.ajls.s. 2015030102.16.
  10. Carnell L., Blatting S., Hu S. et al. Evidence Report: Risk of Acute Radiation Syndromes due to Solar Particle Events.. NASA Technical Report JSC-CN-35747. 2016. 66 p.
  11. Haskin F.E., Harper F.T., Gooseens L.H et al. Probabilistic accident consequence uncertainty analysis: Early health effects uncertainty assessment. Main Report. NUREG/CR-6545, EUR 15855 Vol. 1. Washington: US Nuclear Regulatory Commission, DC. 1997.
  12. Kim M.Y., De Angelis G., Cucinotta F.A. Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronautica. 2011. Vol. 68. P. 747–759.
  13. Romero-Weaver A.L., Wan X.S., Diffenderfer E.S. et al. Effect of SPE-like proton and photon radiation on the kinetics of mouse peripheral blood cells and radiation biological effectiveness determinations. Astrobiology. 2013. Vol. 13. P. 570–577.
  14. Ushakov I.B., Vasin M.V. [Radiation protectors within the radiation safety system for extended duration exploration missions]. Aviakosm. Ekolog. Med. 2011. Vol. 45. No. 3. P. 3–12. (In Russ.).
  15. Frank G.M., Saksonov P.P., Antipov V.V., Dobrov N.N. Radiobiological problems in space flights.. In: Proc. First Internat. Symposium on “Basic environmental problems of man in space”. Paris. 19.10–2.11 1962. Ed. By H. Bjurstadt. New York: Springer-Verlag. 1965. P. 240–264.
  16. Saksonov P.P., Antipov V.V., Shashkov V.S. et al. On the biological effects high-energy protons. 14th Int. Astronautical Congress. Paris. 25.09–1.10 1963. Washington: NASA Report CR 15202. 1963.
  17. Saksonov P.P., Antipov V.V., Davydov B.I. [Essay of space radiobiology. Problems of space biology]. Vol. 9. Moscow: Nauka. 1968. 532 p. (In Russ.).
  18. Saksonov P.P., Antipov V.V., Davydov B.I., Dobrov N.N. [Protection of cosmonauts from cosmic radiation by radioprotectors]. Kosm. Biol. Med. 1970. Vol. 4. No. 5. P. 17–19. (In Russ.).
  19. Saksonov P.P. Protection against radiation (biological, pharmacological, chemical, physical).. In: Foundation of Space Biology and Medicine. Vol. 3. Ed. by M. Calvin, O.G. Gazenko. Washington: NASA. 1975. P. 316–347.
  20. Saksonov P.P., Shashkov V.S., Sergeev P.V. [Radiation pharmacology]. Moscow: Medistina. 1976. 255 p. (In Russ.).
  21. Kuznestov V.I., Tank L.I. [Pharmacology and clinic application of aminothiols] / Moscow: Medistina. 1966. 169 p. (In Russ.).
  22. Shashkov V.S., Vasin M.V. Saksonov P.P., Kozlov V.A. [Pharmacological properties of radioprotective agents ]. Farmakol. Toksikol. 1967. Vol. 30. No. 1. P. 109–117. (In Russ.).
  23. Torrisi A.T., Kligerman P., Glover DJ. et al. I phase of clinical investigation of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F.Nygaard. New York: Acad. Press. 1983. P. 681–694.
  24. Glick J.H., Glover D.J., Torrisi A.T. Phase I trials of WR-2721. In: Radioprotectors and Anticarcinogens. Ed. by O.F. Nygaard. New York: Acad. Press. 1983. P. 719–734.
  25. Antipov V. cystamine V., Vasin M.V., Davydov B.I., Saksonov P.P. [The influence of overloads to cystamine sensitivity]. Izvestiia AN SSSR Ser. Biol. 1969. No. 3. P. 434–437. (In Russ.).
  26. Antipov V.V., Vasin M.V., Davydov B.I. et al. Study of reactivity of the organism exposed to transverse accelerations and radioprotectants. Aerosp. Med. 1971. Vol. 42. No. P. 837–839.
  27. Vasin M.V., Antipov V.V., Davydov B.I., Saksonov P.P. [Mouse sensitivity to radioprotectors from family of indolylalkylamines and aminothiols during afteraction of tranverse accelerations] . In. “Problems of space biology”. Eds. P.P. Saksonov, B.I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 53–57. (In Russ.).
  28. Davydov B.I., Daidamakin N.A. [The influence of radioprotective agents from the family of mercapthoalkylamines (cystamine S, b-aminoethylisothiuronium) to animal reactiveness transverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 1–29. (In Russ.).
  29. Davydov B.I., Kozlov V.A. [The influence of mononitrate salt g-amineethylthiophosphoric acid to animal resistance with transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 30–32. (In Russ.).
  30. Kozlov V.A., Davydov B.I. [The influence of radioprotectors from the family of aminothiols to guinea pig heart function during overloads] . In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. 1971. Vol. 14. P. 33–39. (In Russ.).
  31. Davydov B.I. [Reactivity of irradiated animals protected by mercapto-(cystamine, cystafos) and indolylalkylamines (mexamine, serotonin) to transeverse acceleration]. In. “Problems of space biology”. Eds. P.P. Saksonov, B,I.Davydov. Moscow: Nauka. Vol. 14. P. 410–421. (In Russ.).
  32. Kolemeeva L.Ya., Shashkov V.S., Egorov B.B. [Radioprotective effect of mexamine and cystamine in animals during hypokinesia and ionizing irradiation]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 6. P. 78–79. (In Russ.).
  33. Vorobyev E.I., Efimov V.I., Karsanova S.K. [Radioprotetor effect on body reactiveness during space flight factors]. Kosm. Biol. Aviakosm. Med. 1982. Vol. 16. No. 1. P. 4–12. (In Russ.).
  34. Vasin M.V., Lebedeva N.N. [Cystamine influence to men-operator capacity]. Kosm. Biol. Aviakosm. Med. 1975. Vol. 9. No. 5. P. 54–57. (In Russ.).
  35. Badyugin I.S., Zabrodskii P.F., Polyarush V.P. et al. [Military toxicology, radiology and protection from weapon of mass defeat]. Ed. I.S. Badyugin. Moscow: Military publishers. 1992. 336 p. (In Russ.).
  36. Belay V.E., Vasilyev P.V., Saksonov P.P. [Material to comparative pharmacological characteristic of various salts of mercamine]. Farmakol. Toksikol. 1960, Vol. 23. P. 450–453. (In Russ.).
  37. Yarmonenko S.P., Avrunina G,A., Shashkov V.S., Govorun R.D. [Study of biological protection from high energy proton irradiation. Radiobiologiia. 1962. Vol. 2. P. 188–192. (In Russ.).
  38. Shashkov V.S. Saksonov P.P., Antipov V.S. [Comparative radioprotective effects of mercapto- and indolylalkylamines during gamma-irradiation and proton irradiation of high energy 660 and 120 MeV]. Farmakol. Tiksikol. 1965. Vol. 28. No.3. P. 350–351.
  39. Shashkov V.S., Morosov V.S. Injurious effect of 660 and 120 MeV protons and the efficacy of pharmacological and chemical protection. NASA Technical Report No. 66-1926609-04. 1966.
  40. Rogozkin V.D., Sbitneva M.V. [To prophylactic and therapeutic effect of vitamins from family of B during acute radiation disease. In: Question of pathogenesis, experimental therapy and prophylaxis of radiation disease]. Moscow: Medgiz. 1960. P. 182–190. (In Russ.).
  41. Rogozkin V.D. [The use of vitamin-amino acid complex during proton irradiation in non-lethal doses // In: Biological effect of high energy proton]. Moscow: Atomizdat. 1967. P. 417–433. (In Russ.).
  42. Rogozkin V.D., Sbitneva M.V., Shapiro G.A. et al. [The experiance of prophylactic agent use during irradiation imitated radiation injury in space flight]. Kosm. Biol. Med. 1970. Vol. 4. No. 2. P. 20–24. (In Russ.).
  43. Rogozkin V.D., Tikhomirova M.V., Davydova S.A. et al. [The effectiveness of aminotetravit and adenosine triphosphate acid in the condition of prolonged irradiation]. Kosm. Biol. Aviakosm. Med. 1974. Vol. 8. No. 3. P. 11–14. (In Russ.).
  44. Tikhomirova M.V., Rogozkin V.D. [The effectiveness of use of ATP, antibiotics and vitamins during prolonged monkey irradiation]. Radiobiologiia. 1977. Vol. 17. No. 3. P. 400–403. (In Russ.).
  45. Tikhomirova M.V., Yashkin P.N. [Comparative radioprotective efficacy of adenylates during short-term and prolonged irradiation]. Radiobiologiia. 1983. Vil. 23. No. 1. P. 100–104. (In Russ.).
  46. Tikhomirova M.V., Yashkin P.N., Fedorenko B.S., Chertkov K.S. [Radioprotective efficacy of ATP and adenosine at high energy proton irradiation]. Kosm. Biol. Aviakosm. Med. 1984. Vol. 18. No. 5. P. 75–77. (In Russ.).
  47. Chertkov K.S., Petrov V.M. Pharmaco-chemical protection and substitutive therapy as composite part of cosmonaut radiation safety system during an expedition to Mars. Aviakosm. Ekolog. Med. 1993. Vol. 27. No. 5–6. P. 27–32. (In Russ.).
  48. Vasin M.V. Search and study of new effective agents of pharmaco-chemical body protection from ionizing radiation injury. Diss. D. Sc. Med. Moscow: State Sc test Institute of avation and space medicine. 1977. 510 p. (In Russ.).
  49. Ilyin L.A. Reality and myth. Moscow: ALARA Limited. 1994. 448 p. (In Russ.).
  50. Ilyin L.A., Rudny N.M., Suvorov N.N. et al. [Indralin – radioprotector of emergency action. Radioprotective properties, pharmacology, mechanism of action, clinic]. Moscow. 1994. 436 p. (In Russ.).
  51. Shashkov V.S., Efimov V.I., Vasin M.V. et al. [Indralin as new effective radioprotector during high energy proton irradiation]. Aviakosm. Ekolog. Med. 2010. Vol. 44. No. 1. P. 15–20. (In Russ.).
  52. Shashkov V.S., Karsanjva S.K., Yasnestov V.V. [Protective effect of radioprotectors and shielding during high energy proton irradiation on experiments with rats]. Aviakosm. Ekolog. Med. 2008. Vol. 42. No. 2. P. 58–60. (In Russ.).
  53. Bacq Z. Chemical protection against ionizing radiation. Springfield: Tomas Press.1965. Transf. on Russ. 1968. 263 p.
  54. Vladimirov V.G. [Radioprotectors and their modern classification]. Voenn-Med. Zhurn. 1978. No. 6. P. 39–43. (In Russ.).
  55. Vasin M.V. [Classification of radiation protective agents as a basis of modern radiation pharmacology]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 212–222. (In Russ.).
  56. Stone H., Moulder J., Coleman C. et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, Dec. 3–4. 2003. Radiat. Res. 2004. Vol. 162. No. 6. P. 711–728.
  57. Vasin M.V. [Classification of radiation protective agents as a reflection up-to-day state and perspective of radiation pharmacology development]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 5. P. 459–467. (In Russ.).
  58. Vladimirov V.G. Dzharakyan T.G. Radioprotective effects on animal and men. ˯scow: Energoatomizdat. 1982. 88 p. (In Russ.).
  59. Vasin M.V. Radioprotective drugs. Moscow: Russian medical academy of post-graduated education. 2010. 180 p. (In Russ.).
  60. Vasin M.V., Ushakov I.B., Koroleva L.V., Antipov V.V. [The role of cell hypoxia in the effect of radiation protectors]. Radiats. Biol. Radioecol. 1999. Vol. 39. No. 2–3. P. 238–248. (In Russ.).
  61. Wasserman T.H., Brizel D.M. The role of amifostine as a radio­protector. Oncol. (Williston Park) 2001. Vol. 15. P. 1349–1354.
  62. Copp R.R., Peebles D.D., Soref C.M. et al. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int. J. Radiat. Biol. 2013. Vol. 89. No. 7. P. 485–492.
  63. Vasin M.V., Antipov V.V., Chernov G.A. et al. [Studies of the radiation-protective effects of indralin on the hematopoietic system of different species of animals]. Radiats. Biol. Radioecol. 1996. Vol. 36. No. 2. P. 168–189. (In Russ.).
  64. Vasin M.V., Chernov G.A., Antipov V.V. [Width of radiation protective effects of indralin in comparative studies using different animal species]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 6. P. 896–904. (In Russ.).
  65. Vasin M.V., Semenov L.F., Suvorov N.N. et al. Protective effect and the therapeutic index of indralin in juvenile monkeys. J. Radiat. Res. 2014. Vol. 55. No. 6. P. 1048–1055. doi: 10.1093/jrr/rru046.
  66. Vasin M.V. Medicine for prophylaxis and therapy of radiation injuries. Moscow: Russian medical academy of post-graduated education. 2006. 340 p. (In Russ.).
  67. Vasin M.V., Chernov G.A., Koroleva L.V. et al. [Mechanism of the radiation-protective effect of indralin] // Radiats. Biol. Radioecol. 1996. Vol. 36. 1. P. 36–46.
  68. Vasin M.V., Ushakov I.B., Semenova L.A., Kovtun V.Iu. [Pharmacologic analysis of the radiation-protecting effect of indraline] // Radiats Biol Radioecol. 2001. Vol. 41. 3. P. 307–309.
  69. Vasin M.V., Ushakov I.B., Kovtun V.Yu. Radioprotector indralin at early and late manifestation of local radiation injuries // Vopr. Onkol. 2016. Vol. 62. 3. P. 406–412.
  70. Pomerantseva M.D., Ramaĭia L.K., Vasin M.V., Antipov V.V. [Effect of indralin on genetic disruption induced by radiation in mice]. Genetika. 2003. Vol. 39. No. 9. P. 1293–1296. (In Russ.).
  71. Vartanian L.P., Krutovskikh G.N., Pustovalov Iu.I., Gornaeva G.F. [The radioprotective effect of riboxine (inosine)]. Radiobiologiia. 1989. Vol. 29. No. 5. P. 707–709. (In Russ.).
  72. Legeza V.I., Abdul Iu.A., Antushevich A.E. et al. [Clinical and experimental investigation on the radioprotective effect of riboxine in low-dose fractionated irradiation]. Radiats. Biol. Radioecol. 1993. Vol. 33. No. 6. P. 800–807. (In Russ.).
  73. Gudkov S.V., Gudkova O.Y., Chernikov A.V., Bruskov V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine.. Int. J. Radiat. Biol. 2009. Vol. 85. No. 2. P. 116–125.
  74. Popova NR, Gudkov SV, Bruskov VI. [Natural purine compounds as radioprotective agents]. Radiats. Biol. Radioecol. 2014. Vol. 54. No. 1. P. 38–49. (In Russ.).
  75. Virag L., Scabo C. Purines inhibit poly (ADP-ribose) polymerase activation and modulate oxidant induced cell death. FACEB J. 2001. Vol. 15. P. 99–107.
  76. Buckley S. Barsky L., Weinber K. In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia induced DNA damage through MAP kinase signaling. Amer. J. Physiol. 2005. Vol. 288. P. L569–L575.
  77. Gudkov S.V., Bruskov V.I. [Guanosine and inosine (riboxin). Antioxidative and radioprotective properties. Saarbrucken: LAMBERT Acad. Publ. 2011. 177 p. (In Russ.).
  78. Gudkov S.V., Shtarkman I.N., Smirnova V.S. et al. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice.. Radiat. Res. 2006. Vol. 165. P. 538–545.
  79. Rasgovorov P.L., Saksonov P.P., Antipov V.V. et al. [Modification of animal reactivity to some pharmacologic agents at the shielding of body part during whole irradiation. In. “Problems of space biology”]. Eds. P.P. Saksonov, B.I. Davydov. Moscow: Nauka. 1971. Vol. 14. P. 175–185. (In Russ.).
  80. Vasin M.V. Potential role of non-uniformity of body absorption of ionizing radiation energy in the efficacy of radiation protective drugs. Med. Radiol. Radiast. Bezop. 2011. Vol. 56. No. 4. P. 60–70. (In Russ.).
  81. >
  82. Vasin M.V., Ushakov I.B., Kovtun V.Iu. et al. [Radioprotective properties of a radioprotector of emergency action indraline at its adminisration after irradiation in conditions of local shielding of a rat abdomen]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 199–201. (In Russ.).
  83. King G.L., Rabin B.M., Weatherspoon J.K. 5-HT3 receptor antagonists ameliorate emesis in the ferret evoked by neutron or proton radiation. Aviat. Space Environ. Med. 1999. Vol. 70. P. 485–492.
  84. Rozhdestvenskii L.M. [Cytokines in the aspect of pathogenesis and therapy of acute radiation sickness]. Radiats. Biol. Radioecol. 1997. Vol. 37. No. 4. P. 590–596. (In Russ.).
  85. Rozhdestvenskii L.M., Korovkina E.P., Deshevoi Iu.B. [Recombinant human interleukine-1beta (betaleukine) usage for acute radiation sickness of severe degree treatment at canines]. Radiats. Biol. Radioecol. 2008. Vol. 48. No. 2. P. 185–194. (In Russ.).
  86. Grebenyuk A.N., Legeza V.I. Radioprotective properties of interleukin-1. Saint Petersburg: Foliant. 2012. 215 p. (In Russ.).
  87. Gluzman-Poltorak Z., Vainstein V., Basile L.A. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure. Amer. J. Hematol. 2014. Vol. 89. No. 9. P. 868–873.
  88. Farese A.M. , Cohen M.V., Stead R.B. et al. Pegfilgrastim administered in an abbreviated schedule, significantly improved neutrophil recovery after high-dose radiation-induced myelosuppression in rhesus macaques. Radiat. Res. 2012. Vol. 178. No. 5. P. 403–413. doi: 10.1667/RR2900.1.
  89. Hankey K.G., Farese A.M., Blaauw E.C. et al. Pegfilgrastim improves survival of lethally irradiated nonhuman primates. Radiat. Res. 2015. Vol. 183. No. 6. P. 643–655.
  90. Farese A.M., Cohen M.V., Katz B.P. et al. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat. Res. 2013. Vol. 179. No. 1. P. 89–100. doi: 10.1667/RR3049.1.
  91. Rozhdestvenskii L.M., Shliakova T.G., Shchegoleva R.A. et al. [Evaluation of the treatment effectiveness of domestic G-SCF preparations in experiments on irradiated dogs]. Radiats. Biol. Radioecol. 2013. Vol. 53. No. 1. P. 47–54. (In Russ.).
  92. Selidovkin G.D. [Modern methods of therapy of the patients with acute radiation disease in specialized hospital]. Medicine Catastrophe. 1995. No. 1–2. P. 135–149. (In Russ.).
  93. Seligovkin G.D., Barabanjva A.V. [Therapy of acute radiation disease from uniform and non-uniform irradiation. Radiation medicine.] . In Ilyin L.A. (ed.). Moscow: Izd.AT. 2001. Vol. 2. P. 108–129. (In Russ.).
  94. Li M., Holmes V., Ni H. et al. Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during space flight. PLoS One. 2015. Vol. 10. No. 3. P, e0120126. doi: 10.1371/journal.pone.0120126.
  95. Wu H., Huff J.L., Casey R. et al. Risk of acute radiation syndrome due to solar particle events. In: Human Research Program Requierments Document HRP-47052.4.5. 2009. Chapter 5. P. 171–190.
  96. Sanzari J.K., Diffenderfer E.S., Hagan S. et al. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model. Life Sci. Space Res. (Amst). 2015. Vol. 6. P. 21–28. doi: 10.1016/j.lssr.2015.06.003.
  97. Langell J., Jennings R., dark J., Ward J.B. Jr. Phar­macological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
  98. Shin D.M., Kucia M., Ratajczak M.Z. Nuclear and chromatin reorganization during cell senescence and aging: A mini review. Gerontology. 2011. Vol. 57. No. 1. Р. 76–84. doi: 10.1159/000281882.
  99. Koltover V.K. [Antioxidative medicine: from chemistry of free radical to system biological mechanism]. Izvestiia Akad. Nauk. Ser. Chim. 2010. No. 1. P. 37–43.
  100. Meyers K.J., Rudolf J.L., Mitchell A.E. et al. Influence of dietary quercetin on glutathione redox status in mice. J. Agric. Food Chem. 2008. Vol. 56. No. 3. Р. 830–838.
  101. Fiorani M., Guidarelli A., Blasa M. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J. Nutr. Biochem. 2010. Vol. 21. No. 5. P. 397–404. doi: 10.1016/j.jnutbio.2009.01.014.
  102. Janjua N.K., Siddiqa A., Yaqub A. Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions. Spectrochim. Acta Mol. Biomol. Spectrosc. 2009. Vol. 74. No. 5. P. 1135–1143.
  103. Lim J.C., Choi H.I., Park Y.S. et al. Irreversible oxidation of the active site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 2008. Vol. 283. No. 43. P. 28873–28880. doi: 10.1074/jbc.M804087200.
  104. Essler S., Dehne N., Brune B. et al. Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett. 2009. Vol. 583. No. 21. Р. 3531–3539.
  105. Smith M.R., Vayalil P., Zhou F. et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol. 2016. Vol. 8. P. 136–148. doi: 10.1016/j.redox.2016.01.002.
  106. Butterfield А., Perluigi М. Redox Proteomics: A key tool for new insights into protein modification with relevance to disease. Antioxid. Redox Signal. 2017. Vol. 26. No. 7. Р. 277–279. doi:10.1089/ars.2016.6919.
  107. Höhn A., König J., Jung T. Metabolic syndrome, redox state, and the proteasomal system. Antioxid. Redox Signal. 2016. Vol. 25. No. 16. P. 902–917.
  108. Frei B., Higdon J.V. Аntioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003. Vol. 133. No. 10. Р. 3275S–3284S.
  109. Chen J.C., Ho F.M., Pei Dawn L.C. et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor kappa b and STAT1, and depends on heme oxygenase 1 induction in mouse BV 2 microglia. Eur. J. Pharma Col. 2005. Vol. 521. No. 1–3. Р. 9–20.
  110. Ivanov V., Cha J., Ivanova S., Kalinovsky, T. Essential nutrients suppress inflammation by modulating key inflammatory gene expression. Int. J. Mol. Med. 2008. Vol. 22. No. 6. P. 731–741.
  111. Chung M.J., Kang A.Y., Lee K.M. et al. Water soluble genistin glycoside isoflavones upregulate antioxidant metallothionein expression and scavenge free radicals. J. Agric. Food Chem. 2006. Vol. 54. No. 11. Р. 3819–3826.
  112. Dröse S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta. 2014. Vol. 1844. No. 8. P. 1344–1354. doi: 10.1016/j.bbapap.2014.02.006.
  113. Ullmann K., Wiencierz A.M., Muller C. et al. A high throughput reporter gene assay to prove the ability of natural compounds to modulate glutathione peroxidase, superoxide dismutase and catalase gene promoters in V79 cells. Free Radic. Res. 2008. Vol. 42. No. 8. Р. 746–753. doi: 10.1080/10715760802337273.
  114. Singh V.K., Beattie L.A., Seed T.M. Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures. J. Radiat. Res. 2013. Vol. 54. No. 6. P. 973–988. doi: 10.1093/jrr/rrt048.
  115. Patak P., Willenberg H.S., Bornstein S.R. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 2004. Vol. 30. No. 4. P. 871–875.
  116. Hafidh R.R., Abdulamir A.S., Abu Bakar F. Antioxidant research in Asia in the period from 2000–2008. Amer. J. Pharmacol. Toxicol. 2009. Vol. 4. No. 3. P. 48–66.
  117. Batra P., Sharma A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech. 2013. Vol. 3. No. 6. P. 439–459. doi: 10.1007/s13205-013-0117-5.
  118. Lee J.H., Khor T.O., Shu L. et al. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 2013. Vol. 137. No. 2. P. 153–171.
  119. Izzi V., Masuelli L., Tresoldi I. et al. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosc. 2012. Vol. 17. P. 2396–2418.
  120. Schmidt H.H., Stocker R., Vollbracht C. et al. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015. Vol. 23. No. 14. P. 1130–1143. doi: 10.1089/ars.2015.6393.
  121. Yokozawa T., Kim H.Y., Kim H.J. et al. Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Brit. J. Nutr. 2007. Vol. 97. No. 6. P. 1187–1195.
  122. Brusselmans K., Vrolix R., Verhoeven G., Swinnen J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005. Vol. 80. No. 7. P. 5636–5645.
  123. Schroeter H., Boyd C., Spencer J.P. et al. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol. Aging. 2002. Vol. 23. P. 861–880.
  124. Yoshizumi M., Tsuchiya K., Suzaki Y. et al. Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem. Biophys. Res. Commun. 2002. Vol. 293. P. 1458–1465.
  125. Ahn S.C., Kim G.Y., Kim J.H. et al. Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells though inhibition of mitogen-activated-protein kinases and NF-kB. Biochem. Biophys. Res. Commun. 2004. Vol. 313. P. 148–155.
  126. Berkovich Y.A., Krivobok N.M., Sinyak Y.Y. et al. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplane­tary missions. Adv. Space Res. 2004. Vol. 34. No. 7. P. 1552–1557.
  127. Oh M.M., Carey E.E., Rajashekar C.B. et al. Environmental stresses induce health promoting to chemicals in lettuce. Plant. Physiol. Biochem. 2009. Vol. 47. No. 7. P. 578–583. DOI: 10.1016/j.plaphy.2009.02.008.
  128. Guan, J., Wan, X.S., Zhou Z. Effects of dietary supplements on space radiation induced oxidative stress in Sprague–Dawley rats. Radiat. Res. 2004. Vol. 162. No. 5. P. 572–579.
  129. Kennedy A.R., Guan J., Ware J.H. Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys. 2007. Vol. 46. No. 2. P. 201–203.
  130. Rabin B.M., Shukitt-Hale B., Joseph J., Todd P. Diet as a factor in behavioral radiation protection following expo­sure to heavy particles. Gravit. Space Biol. Bull. 2005. Vol. 18. No. 2. P. 71–77.
  131. Yang T.C., Tobias C.A. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents. Adv. Space Res. 1984. Vol. 4. No. 10. P. 207–213.
  132. Kennedy A.R. Biological effects of space radiation and development of effective countermeasures. Life Sci. Space Res. 2014. Vol. 1. P. 10–43.
  133. Kennedy A.R., Todd P. Biological countermeasures in space radiation health. Gravit. Space Biol. Bull. 2003. Vol. 16. No. 2. P. 37–44.
  134. Kennedy A.R., Zhou Z., Donahue J.J., Ware J.H. Protection against adverse biological effects induced by space radiation by the Bowman-Birk inhibitor and antioxidants. Radiat. Res. 2006. Vol. 166. No. 2. P. 327–332.
  135. Langell J., Jennings R., Clark J., Ward J. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat. Space Environ. Med. 2008. Vol. 79. No. 7. P. 651–660.
  136. Epperly M.W., Wang H., Jones J.A. et al. Antioxidant chemoprevention diet ameliorates late effects of total body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat. Res. 2011. Vol. 175. P. 759–765.

For citation: Ushakov IB, Vasin MV. The Drugs and Natural Antioxidants as the Components of Anti-radiation Countermeasures during Spase Flightss. Medical Radiology and Radiation Safety. 2017;62(4):66-78. Russian. DOI: 10.12737/article_59b10b5ea417a6.00174966

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2759247
Today
Yesterday
This week
Last week
This month
Last month
For all time
1978
3035
17631
18409
66990
75709
2759247

Forecast today
2064


Your IP:216.73.216.230