JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 4. P. 19-23
RADIATION SAFETY
V.N. Klochkov, V.I. Rubtsov
Decontamination of the Personal Protective Equipment at Rectification of the Radiation Accident Consequences: Use of Chernobyl Experience Today
A.I. Burnasyan Federal Medical Biophysical Center of FMBA, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To analyze and summarize the experience of decontaminating of the personal protective equipment (PPE) during rectification of the consequences of the accident at the Chernobyl NPP, and to define the main areas of improving the technology and management of decontamination activities at potential radiation accidents.
Material and methods: This work analyzes the results of the authors’ research and literature data on decontamination of overalls and other staff PPE that was contaminated during rectification of the consequences of the accident at the Chernobyl NPP in 1986-87.
Results: Main conclusions on the specifics of decontaminating of the staff overalls and other PPE during rectification of the consequences of the accident at the Chernobyl NPP are provided based on the summary and analysis of literature data and own long-term research experience. It’s shown that efficiency of the PPE decontamination depends on all the constituents including settings of the temporary permissible levels of the PPE radioactive contamination, sorting of PPE based on the contamination level and nature, strict following of the decontamination technology, use of efficient chemicals and modern high-performance laundry equipment, close control over the levels of PPE contamination after decontamination etc. The experts have tested new efficient detergents and recommended them for using in working special laundries. Methodological support of adoption of new high-performance equipment in special laundries has been provided. The actual regulatory and procedural base of the PPE decontamination, as well as training and reference literature have been created.
Conclusion: The analysis of results of the PPE decontamination in the Chernobyl NPP area showed the primary importance of the properly established PPE decontamination framework including settings of the temporary permissible levels of the PPE radioactive contamination, their sorting based on the ontamination level and nature, decontamination in the modern washer-extractors with efficient detergents, decontamination quality control etc.
Key words: decontamination, personal protective equipment, accident at the Chernobyl NPP, temporary permissible levels
REFERENCES
- Klochkov V.N., Gol'dshtein D.S., Vas'kin A.G. et al. Kharakter radioaktivnogo zagryazneniya spetsodezhdy personala, uchastvuyushchego v likvidatsii posledstvii avarii na Chernobyl'skoi AES. Atomnaya energiya. 1990. Vol. 68. No. 2. P. 105-107. (In Russ.).
- Informatsiya ob avarii na Chernobyl'skoi AES i ee posledstviya, podgotovlennaya dlya MAGATE. Atomnaya energiya. 1986. Vol. 61. No. 5. P. 301-320. (In Russ.).
- Kolobashkin V.M., Rubtsov P.M., Ruzhanskii P.A., Sidorenko V.D. Radiatsionnye kharakteristiki obluchennogo yadernogo topliva. Spravochnik. Moscow: Energoatomizdat. 1983. 384 p. (In Russ.).
- Gorodinskii S.M., Gol'dshtein D.S. Dezaktivatsiya polimernykh materialov. Moscow. 1981. 248 p. (In Russ.).
- Gol'dshtein D.S., Fadeev P.E., Gal'perin G.B., Tsameryan I.I. Ochistka ot radioaktivnykh zagryaznenii sredstv individual'noi zashchity, ispol'zuemykh na AES. V sb.: «Energetika i elektrifikatsiya». Seriya «Ekspluatatsiya i remont oborudovaniya atomnykh elektrostantsii». Issue 4. Moscow: Atomizdat. 1984. P. 16-20. (In Russ.).
- Sanitarnye pravila dlya promyshlennykh i gorodskikh spetsprachechnykh po dezaktivatsii spetsodezhdy i dopolnitel'nykh sredstv individual'noi zashchity No. 1298-75. Moscow: MZ SSSR. 1976. 41 p. (In Russ.).
- Normy radiatsionnoi bezopasnosti NRB-76. V sb.: «Normy radiatsionnoi bezopasnosti NRB-76» i «Osnovnye sanitarnye pravila raboty s radioaktivnymi veshchestvami i istochnikami ioniziruyushchikh izluchenii OSP 72/80». Minzdrav SSSR. 2-e izd. Moscow: Energoatomizdat. 1981. P. 3-54. (In Russ.).
- Klochkov V.N., Rubtsov V.I., Surovtsev N.A., Avetisov G.M. Obespechenie radiatsionnoi bezopasnosti personala i naseleniya pri likvidatsii posledstvii radiatsionnoi avarii. Moscow: FGU «VTsMK «Zashchita». 2005. 65 p. Prilozhenie k zhurn. «Meditsina katastrof». No. 8. 2005. (In Russ.).
- Klochkov V.N., Vas'kin A.G., Filatova V.M. Osnovnye itogi raboty po organizatsii dezaktivatsii imushchestva pri likvidatsii posledstvii avarii na Chernobyl'skoi AES. Meditsina katastrof. 1996. Spets. vyp. P. 19-27. (In Russ.).
- Rekomendatsii po vyboru i dezaktivatsii zimnei spetsodezhdy i dopolnitel'nykh sredstv individual'noi zashchity dlya rabot po likvidatsii posledstvii avarii na Chernobyl'skoi AES v osenne-zimnii period 1986-1987 gg. V sb. Normativno-metodicheskikh dokumentov. Moscow: IBF MZ SSSR. 1987. P. 45-50. (In Russ.).
- Sbornik instruktivno-metodicheskikh materialov. Moscow: Minzdrav SSSR. 1986. (In Russ.).
- Avetisov G.M., Grachev M.I., Klochkov V.N. et al. Pervoocherednye mediko-gigienicheskie meropriyatiya pri radiatsionnoi avarii. Posobie. Moscow: VTsMK «Zashchita». 1997. 155 p. (In Russ.).
- Klochkov V.N., Vas'kin A.G., Filatova V.M. Organizatsiya rabot po predotvrashcheniyu rasprostraneniya radioaktivnykh zagryaznenii i dezaktivatsii poverkhnostei pomeshchenii i sredstv individual'noi zashchity v usloviyakh radiatsionnoi avarii.. Meditsina katastrof. 1995. No.. 1-2, P. 43-48. (In Russ.).
- Koshcheev V.S., Gol'dshtein D.S., Klochkov V.N. et al. Individual'naya zashchita rabotayushchikh v atomnoi energetike. Moscow: Energoatomizdat. 1992. 176 p. (In Russ.).
- SanPiN 2.2.8.46-03. Sanitarno-epidemiologicheskie pravila i normy. Sanitarnye pravila po dezaktivatsii sredstv individual'noi zashchity. Opublikovany v «Rossiiskoi gazete», no. 22 (3399) ot 6 fevralya 2004 g. (In Russ.).
For citation: Klochkov VN, Rubtsov V.I. Decontamination of the Personal Protective Equipment at Rectification of the Radiation Accident Consequences: Use of Chernobyl Experience Today. Medical Radiology and Radiation Safety. 2016;61(4):19-23. Russian.
Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 4. P. 5-18
RADIATION SAFETY
S.V. Panchenko, A.A. Arakelyan, E.A. Gavrilina, A.M. Shvedov
Dynamic of Radiological Situation in the Rural Settlements Contaminated by Cesium-137 caused by the Chernobyl Accident in April 1986
Nuclear Safety Institute of RAS, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: The study of the long-term migration of 137Cs in the soil of rural settlement to improve prediction of radiation exposure to the population caused by the Chernobyl accident and contamination of the territory.
Material and methods: The main experimental techniques are homestead measuring of gamma radiation dose rate in the settlement (6473 measurements) performed during 4 expeditions and covering a period of 24 years. In addition, the data on surface ground contamination of the territory was analyzed; the results of studies on migration of cesium deep into soil are given. Reconstruction of radiation exposure was conducted in accordance with national and international recommendations.
Results: A normalized estimation of the average external dose due to 137Cs for population residing permanently in the rural settlement located in the south-western district of the Bryansk Region was found out. It is in 50 mSv over 70 years at 1 MBq/m2 of the fallout of this nuclide.
Conclusion: The migration factor of radioactive cesium precipitated after the accident affected the formation of radiation exposure during the first 10-15 years. In subsequent years the radioactive decay of the isotope became a more significant factor.
Key words: radiological situation, Chernobyl accident, external doses, migration, soil, cesium-137
REFERENCES
- Aloi A.S., Baranov S.V., Logunov M.V. Istochniki gamma-izlucheniya s tseziem-137 (svoistva, proizvodstvo, primenenie). Ozersk: RITs IRB FGUP «PO Mayak». 2013. 232 p. (In Russ.).
- Arutyunyan R.V., Bol'shov L.A., Kiselev A.E. et al. Operativnyi analiz avarii na AES «Fukusima-1» i prognozirovanie ee posledstvii Trudy IBRAE RAN. L.A. Bol'shova (ed.). IBRAE RAN. Moscow: Nauka. 2007. Vyp. 13: Avariya na AES «Fukusima-1»: opyt reagirovaniya i uroki. R.V. Arutyunyan (ed.). 2013. 246 p. (In Russ.).
- French-German Initiative for Chernobyl - The Radioecology Project: Main Results. G. Deville Cavelin, H. Biesold, V. Chabanyuk, C. Brun Yaba, N. Rutschkowsky 3rd Congress On Radiation Research (Radiobiology And Radioecology). Kiev. Ukraine. 21-25 may 2004.
- Balonov M.I., Golikov V.Yu., Parkhomenko V.I. et al. Dezaktivatsiya naselennykh punktov Bryanskoi oblasti posle avarii na Chernobyl'skoi AES Radiatsionnaya gigiena. 2014. Vol. 7. No. 1. P. 5-15. (In Russ.).
- Miller K.M., Kuiper I.L., Helfer I.K. Cs-137 fallout depth distributions in forest versus field sites: implication for external dose rates J. Environ. Radioact. 1990. Vol. 12. P. 23-47.
- Beck H.L. Environmental gamma radiation from deposited fission products, 1960-1964 Health Phys. 1966. Vol. 12. P. 313-322.
- Ioniziruyushchee izluchenie: Istochniki i biologicheskie effekty. NKDAROON. Doklad za 1982 god, vol. 1. Prilozhenie E. 1982. P. 451-527. (In Russ.).
- Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly, with annexes. Annex D. New York. 1988. 646 p.
- Beck H.L. Exposure rate conversion factors for radionuclides deposited on the ground. 1980. EHL-378.
- Metodicheskie ukazaniya MU 2.6.1.547-96. Opredelenie srednei godovoi effektivnoi dozy oblucheniya zhitelei naselennykh punktov Rossiiskoi Federatsii v 1996-1998 gg. vsledstvie avarii na Chernobyl'skoi AES. Moscow. 1996. (In Russ.).
- Metodicheskie ukazaniya MU 26.1.579-96. Rekonstruktsiya srednei nakoplennoi v 1986-1995 gg. effektivnoi dozy oblucheniya zhitelei naselennykh punktov Rossiiskoi Federatsii, podvergshikhsya radioaktivnomu zagryazneniyu vsledstvie avarii na Chernobyl'skoi AES v 1986 godu. Moscow. 1996. (In Russ.).
- Metodicheskie ukazaniya MU 2.6.1.2153-06. Operativnaya otsenka doz oblucheniya naseleniya pri radioaktivnom zagryaznenii territorii vozdushnym putem. Moscow. 2006.
- Eckerman Keith F., Ryman Jeffrey C. External Exposure to Radionuclides in Air, Water, and Soil. Federal Guidance Report. No. 12. EPA-402-R-93-081. September 1993. (In Russ.).
- Available at: http:radioactivity.mext.go.jp/old/ja/distribution_map_around_FukushimaNPP/5600_201203131000_report1-1.pdf.
- Generic Procedures for Assessment and Response during a Radiological Emergency IAEA TECDOC Series. IAEA. Vienna. No. 1162. 2000; na rus. yaz.: «Obshchie instruktsii i otsenki reagirovaniya na radiologicheskie avariinye situatsii, MAGATE. Vena. 2004. IAEA-TECDOC-1162/R.
- Metodicheskie printsipy rascheta urovnei vneshnego i vnutrennego oblucheniya naseleniya, prozhivayushchego na territoriyakh, zagryaznennykh radioaktivnymi produktami avariinykh vybrosov chernobyl'skoi AES. K.I. Gordeev, R.M. Barkhudarov, I.K. Dibobes et al. (In Russ.).
- Metodicheskie osnovy prognoza urovnei oblucheniya naseleniya ot radionuklidov tseziya pri postoyannom prozhivanii na territoriyakh, zagryaznennykh v rezul'tate avarii na ChAES. M. Avetisov, R.M. Barkhudarov, K.I. Gordeev et al. 1988. (In Russ.).
- Metodicheskie ukazaniya No. 5792-91. Opredelenie godovykh summarnykh effektivnykh ekvivalentnykh doz oblucheniya naseleniya, dlya kontroliruemykh raionov RSFSR, USSR, BSSR, podvergshikhsya radioaktivnomu zagryazneniyu v rezul'tate avarii na Chernobyl'skoi AES. Moscow. 1991. (In Russ.).
- Metodicheskie ukazaniya MU 2.7.7.001-93. Opredelenie srednei godovoi effektivnoi dozy oblucheniya zhitelei naselennykh punktov Rossiiskoi Federatsii, podvergshikhsya radioaktivnomu zagryazneniyu vsledstvie avarii Chernobyl'skoi AES. Moscow. 1993. (In Russ.).
- Metodicheskie ukazaniya MU 2.6.1.018-94. Opredelenie srednei godovoi effektivnoi dozy oblucheniya zhitelei naselennykh punktov Rossiiskoi Federatsii, podvergshikhsya radioaktivnomu zagryazneniyu vsledstvie avarii Chernobyl'skoi AES. Moscow. 1994. (In Russ.).
- Pathway analysis and dose distributions Final report EUR 16541 en. Brussels, Luxembourg: JSP. No. 5. 1996. VIII. 130 p.
- Jacob P., Rosenbaum H., Petoussi N., Zankl M. Calculation of organ doses from environmental gamma rays using human phantoms and Monte Carlo methods. Part II: Radionuclides Distributed in the air or deposited on the ground. GSF-Bericht 12: May. 1990.
- Robison W.L., Bogen K.T., Conrad oC.L. An updated dose assessment for resettlement options at Bikini Atoll: a U.S. nuclear test site Health Phys. 1997. Vol. 73. No. 1. P. 100-114.
- Miller K.M., Heifer I.K. In situ measurements of 137Cs inventory in natural terrain In: Environmental Radiation. Proc. 18th Midyear Topical Symp. Health Physics Society. Central Rocky Mountain Chapter of the Health Physics Society. Colorado Springs. Colorado. 1985. P. 243-251.
- Persson H. Migration of radiocaesium in six Swedish pasture soils after the Chernobyl accident: a comparison with earlier studies 1987-2005 Examensoch seminariearbeten. Sveriges lantbruksuniversitet, Institutionen för markvetenskap, Avdelningen för markkemi och jordmånslära. 2008. Vol. 91.
- Metodicheskie rekomendatsii po otsenke radiatsionnoi obstanovki v naselennykh punktakh. Moscow. 1990. (In Russ.).
- Urban Environment and Countermeasures, Final Report. French German Initiative for Chernobyl, Project No. 2 “Radioecological Consequences of the Accident”. Conference on “Radioactive Contamination in Urban Areas”, May 7-9, 2003, Risø National Laboratory, Roskilde, Denmark.
- Panchenko S.V., Arakelyan A.A., Gavrilina E.A. Dinamika parametrov radiatsionnoi obstanovki v sel'skom naselennom punkte, zagryaznennom v rezul'tate avarii na ChAES v aprele 1986 g. Preprint IBRAE No. IBRAE-2014-06. Moscow. 2014. 35 p. (In Russ.).
- Karlin N.E., Karlina L.V., Parkhomenko V.I. et al. Otsenka effektivnosti i razrabotka rekomendatsii po reabilitatsii naselennykh punktov, raspolozhennykh na radioaktivno-zagryaznennykh territoriyakh Bryanskoi oblasti Rossiiskoi Federatsii (zaklyuchitel'nyi otchet). Inv. 937 (1). Filial Sankt-Peterburgskogo NII radiatsionnoi gigieny. Novozybkov. 1993. (In Russ.).
- Sakharov V.K. Radioekologiya. Uchebnoe posobie.Saint Petersburg: Lan'. 2006. 320 p. (In Russ.).
- Instruktsiya po otboru prob pochv pri radiatsionnom obsledovanii zagryazneniya mestnosti. 1987. (In Russ.).
- Dannye po radioaktivnomu zagryazneniyu territorii naselennykh punktov Rossiiskoi Federatsii tseziem-137, strontsiem-90 i plutoniem-239+240. NPO «Taifun». Obninsk. 2015. 238 p. (In Russ.).
- Instruktsiya po obsledovaniyu radiatsionnoi obstanovki na zagryaznennykh territoriyakh. 1988. (In Russ.).
- Instruktsiya po nazemnomu obsledovaniyu radiatsionnoi obstanovki na zagryaznennoi territorii. 1989. (In Russ.).
- Eremeev M.S., Eremenko V.A., Zhernov V.S. et al. Gibridnyi monitoring radiatsionnoi obstanovki, perspektivnyi podkhod k operativnomu kontrolyu i prognozirovaniyu radiatsionnykh zagryaznenii sredy vybrosami i sbrosami AES Atomnaya energiya. 1985. Vol. 59. No. 5. P. 370-372. (In Russ.).
- Bogatov S.A., Gavrilov S.L., Tkachenko S.A. et al. Mobil'noe sredstvo radiatsionnoi razvedki na baze bespilotnogo letatel'nogo apparata MD4-1000. Spetsial'naya tekhnika. 2012. No. 6. P. 16-22. (In Russ.).
- Bogatov S.A., Kiselev A.A., Shvedov A.M. Razvitie sushchestvuyushchikh sistem ASKRO v kontseptsii gibridnogo monitoringa Trudy IBRAE RAN «Razvitie sistem avariinogo reagirovaniya i radiatsionnogo monitoringa». Pod red. L.A. Bol'shova. Moscow: Nauka. 2013. (In Russ.).
- Bogatov S.A., Gavrilov S.L., Dolgov V.N. et al. Testirovanie modelei interpretatsii dannykh izmerenii dlya opredeleniya parametrov radioaktivnykh zagryaznenii pochvy na primere zagryazneniya territorii Bryanskoi oblasti tseziem-137. ANRI. 2014. No. 3. P. 32-39. (In Russ.).
- Linnik V.G. Landshaftnaya differentsiatsiya tekhnogennykh radionuklidov: geoinformatsionnye sistemy i modeli. Avtoref. diss. dokt. geograf. nauk. Moscow. 2008. 40 p. (In Russ.).
- Arkhiv IBRAE RAN. V arkhiv vkhodyat 7 otchetov NIR, vypolnennykh v ramkakh proekta FGI v period s 1999 po 2002 gg. (In Russ.).
- Micro-Shield Version 5. Grove Engineering. Framatome Technologies. 1996.
For citation: Panchenko SV, Arakelyan AA, Gavrilina EA, Shvedov AM. Dynamic of Radiological Situation in the Rural Settlements Contaminated by Cesium-137 caused by the Chernobyl Accident in April 1986. Medical Radiology and Radiation Safety. 2016;61(4):5-18. Russian.
Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 5. P. 69-79
CHRONICLE
V.V. Uyba1, A.V. Akleyev2,3, T.V. Azizova4, S.A. Geras’kin5, V.K. Ivanov6, A.N. Koterov7, A.I. Kryshev8, S.G. Mikheyenko9, S.A. Romanov4, S.M. Shinkarev7
Results of the 63rd Session of the United Nations Scientific Committee on the Effects of the Atomic Radiation (UNSCE AR) (Vienna, 27 June - 1 July, 2016)
1. FMBA of Russia, Moscow, Russia; 2. Urals Research Center for Radiation Medicine of Federal Medical Biological Agency, Chelyabinsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 3. Chelyabinsk State University, Chelyabinsk, Russia.; 4. Southern Urals Biophysics Institute of Federal Medical Biological Agency, Ozyorsk, Chelyabinsk Region, Russia.; 5. Russian Institute of Radiology and Agroecology, Obninsk, Russia.; 6. A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia; 7. A.I. Burnasyan Federal Medical Biophysical Center. Moscow, Russia; 8. RPA “Typhoon” of Roshydromet, Obninsk, Russia; 9. Russian Federation national nuclear corporation ROSATOM, Moscow, Russia
ABSTRACT
Current paper is devoted to the major results of the work of the 63rd Session of the UNSCVEAR that was held in Vienna from 27 June to 1 July, 2016. Within the framework of the meeting of the Work group
and subgroups the documents on the following projects were discussed:
− Methodology for estimating human exposures due to radioactive discharges.
− Radiation exposures from electricity generation.
− Biological effects of selected internal emitters.
− Developments since the 2013 UNSCEAR Report on the levels and effects of radiation exposure due to the nuclear accident following the great East-Japan earthquake and tsunami
− Cancer epidemiology of exposures at low dose-rates due to environmental radiation.
− Collection, analysis and dissemination of data on radiation exposures, particular on medical and occupational exposures.
− Selected evaluations of health effects and risk inference from radiation exposure.
In the course of the discussion some organizational issues such as the status of UNSCEAR publications, governing principles of the Committee’s activities, the structure of the UNSCEAR Bureau, public affairs, future research program, report to the General Assembly and etc., were considered.
Key words: 63rd UNSCEAR Session, exposure dose, radioactive discharges, electricity generation, biological effects, radiation epidemiology, medical exposure, environment
REFERENSES
- Sources and Effects of Ionizing Radiation. Vol. I: Sources. UNSCEAR 2000 Report. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. United Nations sales publication E.00.IX.3. United Nations. New York. 2000.
- Bertrand M. Consommations et lieux d’achats des produits alimentaires en 1991. INSEE résultats. Consommation-Mode de vie 54–55. Institut national de la statistique et des études économiques (INSEE). Paris. 1993.
- Sources, Effects and Risks of Ionizing Radiation. Vol. I: Report to the General Assembly and Scientific Annex A. UNSCEAR 2013 Report. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations sales publication E.14.IX.1. United Nations. New York. 2014.
- Brown J., Simmonds J.R. FARMLAND: a dynamic model for the transfer of radionuclides through terrestrial foodchains. NRPB- National Radiological Protection Board, Chilton, Didcot. 1995.
- Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472. International Atomic Energy Agency. Vienna, 2010.
For citation: Uyba VV, Akleyev AV, Azizova TV, Geras'kin SA, Ivanov VK, Koterov AN, Kryshev AI, Mikheyenko SG, Romanov SA, Shinkarev SM. Results of the 63rd Session of the United Nations Scientific Committee on the Effects of the Atomic Radiation (UNSCEAR) (Vienna, 27 June - 1 July, 2016). Medical Radiology and Radiation Safety. 2016;61(5):69-79. Russian.
Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 5. P. 80-84
MEDICAL PRACTICE ISSUE
E.V. Dorokhov1, E.D. Isaguliyan2, P.A. Isaev3, D.Yu. Siomin3, V.V. Polkin3
Possibilities of Spinal Cord Stimulation for Radiation-Induced Brachial Plexopathy
1. I.M. Sechenov First Moscow State Medical University, Moscow, Russia; 2. N.N. Burdenko Neurosurgery Institute, Moscow, Russia; 3. A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
According to current data in modern oncology, delayed radiation-induced brachial plexopathies are rare complications of radial therapy of malignant tumors. However, in Russian clinical practice these complications appear not so rarely for a number of reasons, including obsolescent equipment usage. Unfortunately, full functional rehabilitation for such patients is almost impossible due to irreversibility of pathological process. That is why the main problem in the treatment of radiation-induced plexopathy is chronic pain management that is rather limited in remedies. The article is aimed to demonstrate and analyze the clinical case of high efficacy of spinal cord stimulation in the treatment of chronic medically resistant pain in a female patient with radiation-induced plexopathy.
Key words: radiation therapy, plexopathia, neurostimulation
REFERENSES
- Gosk J., Rutowski R., Reichert P., Rabczynski J. Radiation-induced brachial plexus neuropathy -aetiopathogenesis, risk factors, differential diagnostics, symptoms and treatment. Folia Neuropathologica. 2007. Vol. 45. No 1. P. 26-30.
- Delanian S., Lefaix J.L. Pradat P.F. Radiation-induced neuropathy in cancer survivors. Radiother. Oncol. 2012. Vol. 105. No. 3. P. 273-282.
- Pradat P.F., Delanian S. Late radiation injury to peripheral nerves. Handbook of Clinical Neurology. Vol. 115. P. 743-758.
- Pasov V.V. Mestnye luchevye povrezhdeniya posle kombinirovannogo lecheniya raka molochnoi zhelezy. Chastota razvitiya i metody korrektsii. Dis. d-ra. med. nauk. 2000. Available from: http://dlib.rsl.ru/01004299840. (In Russ.).
- Pasov V.V., Bardychev M.S. Luchevye povrezhdeniya plechevogo spleteniya ili metastazy. Problemy diagnostiki. Medical Radiology and Radiation Safety. 1996. Vol. 41. No. 6. P. 64-66. (In Russ.).
- Lederman R.J., Wilbourn A.J. Brachial plexopathy: recurrent cancer or radiation?. Neurology. 1984. Vol. 34. No. 10. P. 1331-1335.
- Roth G., Magistris M.R., Le Fort D. et al. Postradiation brachial plexopathy. Persistent conduction block. Myokymic discharges and cramps.. Revue Neurologique. 1988. Vol. 144. No. 3. P. 173-180.
- Harper C.M., Thomas J.E., Cascino T.L., Litchy W.J. Distinction between neoplastic and radiation-induced brachial plexopathy, with emphasis on the role of EMG. Neurology. 1989. Vol. 39. No. 4. P. 502-506.
- Rubin D.I. Diseases of the plexus. CONTINUUM: Lifelong Learning in Neurology. Vol. 3. No. 14. P. 156-179.
- Olsen N.K, Pfeiffer P., Johannsen L. et al. Radiationinduced brachial plexopathy: neurological follow-up in 161 recurrence-free breast cancer patients. Internat. J. Radiat. Oncol. Biol. Phys. 1993. Vol. 26. No. 1. P. 43-49.
- Wolter T. Spinal cord stimulation for neuropathic pain: current perspectives. J. Pain Res. 2014. Vol. 18. No. 7. P. 651-653.
- Cruccu G., Aziz T.Z, Garcia-Larrea L. et al. EFNS guidelines on neurostimu. Eur. J. Neurol. 2007. 14. No. 9. P. 952-970.
For citation: Dorokhov EV, Isaguliyan ED, Isaev PA, Siomin DYu, Polkin VV. Possibilities of Spinal Cord Stimulation for Radiation-Induced Brachial Plexopath. Medical Radiology and Radiation Safety. 2016;61(5):80-4. Russian.
Radiology and Radiation Safety. 2016. Vol. 61. No. 5. P. 59-64
RADIATION PHYSICS, TECHNOLOGY AND DOSIMETRY
S.E. Ulianenko1, A.N. Soloviev1,2, V.M. Lityaev1, V.V. Fedorov1, S.N. Koryakin1
Monte-Carlo Simulation of Photon and Proton Capture Therapy with Gold Compounds
1. A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Institute for High Energy Physics, Protvino, Russia
ABSTRACT
Purpose: Theoretical and numerical simulation using Monte-Carlo method to assess the proof-of-concept mechanism of photon and proton capture therapy with gold compounds and solutions.
Material and methods: The simulation of photon capture therapy is done with MCNP code, the proton capture therapy using Geant4 framework and our own developed software methods C++ and Python. Both simulations carried with tissue-equivalent phantom. The number of additional simulations was required to find the theoretical mechanism of proton capture therapy.
Results: The 10 mg per 1 g Au-based tissue compound resulted in doubling the absorbed dose value mainly due to interaction γ-quanta with electron shells of atoms and induced cascade of electrons. The 1 mg per 1 g Au-based tissue compound for the proton capture therapy may result in qualitive changes in absorbed dose distribution, resulted in 15 % few dose for 50 MeV proton, 15 % higher dose for 150-250 MeV protons and same dose for 100 MeV protons. The additional experiments and simulations may be further required for proper investigation of such effects. And also with a proton energy increase there is a decrease of number of elastic collisions with gold compounds, which demonstrates significant reduction of the reaction cross section.
Conclusion: The Au-based solutions may be kindly introduced into clinical practice for the photon capture therapy, on the other side, the proton capture therapy are yet to be implemented under both the physical interaction models improve as well as qualitive assessment of radiobiology effect.
Key words: Monte-Carlo method, photon capture therapy, proton capture therapy, gold compounds
REFERENSES
- Ul'yanenko S.E., Koryakin S.N. Neitron-zakhvatnaya terapiya. Aktual'nye problemy i vozmozhnye podkhody k perspektivam razvitiya meditsinskoi tekhnologii. Germaniya: Palmarium Academic Publishing Palmarium. 2012. 104 p. (In Russ.).
- Kaprin A.D., Starinskii V.V., Aleksandrova L.M. et al. Razvitie onkologicheskoi pomoshchi v Rossiiskoi Federatsii v svete vypolneniya gosudarstvennykh programm. Ross. med. zhurnal. No. 21. Р. 4-9. (In Russ.).
- Sheino I.N., Izhevskii P.V., Lipengol'ts A.A. Obosnovanie printsipa foton-zakhvatnoi terapii zlokachestvennykh novoobrazovanii. Saratovskii nauchno-med. zhurnal. 2013. Vol. 9. No. 4. Р. 878-891. (In Russ.).
- Darenskaya N.G., Dobrynina O.A., Nasonova T.A. et al. Ispol'zovanie gadolinii-soderzhashchego preparata dlya povysheniya effektivnosti rentgenovskogo oblucheniya pri lechenii eksperimental'nykh opukholei. Radiology and Radiation Safety. Vol. 51. No. 4. Р. 5-11. (In Russ.).
- Koryakin S.N., Yadrovskaya V.A., Beketov E.E. et al. Volhe study of hyaluronic acid compounds for neutron capture and photon activation therapies. Central Eur. J. Biol. 2014. Vol. 9. No. 10. Р. 922-930.
- Rahman W., Ackerly Vol., He C. et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed.: Nanotechnol., Biol., Med. 2009. 5. No. 2. P. 136-142.
- Polf J., Bronk L., Driessen W. et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Lett. 2011. Vol. 98. No. 19. P. 193702-1-193702-3.
- X-5 Monte Carlo Voleam. MCNP - A General N-Particle Volransport Code, Version 5. Vol. I: Overview and Volheory, LA-UR-03-1987. 2005.
- Shchegol'kov I.V., Sheino I.N., Khokhlov V.F. et al. Modelirovanie raspredelenii pogloshchennoi dozy metodom Monte-Karlo v tekhnologii foton-zakhvatnoi terapii. Med. fizika. No. 4. Р. 12-16.
- ICRU 44. Volissue Substitutes in Radiation Dosimetry and Measurement. 1989.
- Agostinelli S., Allison J., Amako K. et al. Geant4 - a simulation toolkit. Nucl. Meth. Phys. Res. 2003. Vol. 506. No. 3. P. 250-303.
- Allison J., Amako K., Araujo H. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006. Vol. 53. No. 1. Р. 270-278.
- Brun R., Rademakers F. ROOT - An object oriented data analysis framework. Proc. AIHENP’96 Workshop, Lausanne, Sep. 1996. Nucl. Instr. Meth. Phys. Res. 1997. 389. No. 1-2. P. 81-86.
- Metropolis N., Bibins R., Storm M. et al. Monte Carlo calculations on intranuclear cascades. Low-energy studies. Phys. Rev. 1958. Vol. 110. No. 1. P. 185-203.
- Titarenko Yu. E., Shvedov O.V., Batyaev V.F. et al. Experimental and Computer Simulations Study of Radionuclide Production in Heavy Materials Irradiated by Intermediate Energy Protons. Nucl. Experiment. 1999. nucl-ex/9908012 LA-UR-99-4489.
- Khokhlov V.F., Izhevskii P.V., Kulakov V.N. et al. Farmakokineticheskaya otsenka preparatov dlya binarnoi luchevoi terapii v ramkakh skriningovogo issledovaniya. Ros. bioter. zhurnal. Vol. 8, No. 1. P. 25-25. (In Russ.).
- Cherepanov A.A., Lipengol'ts A.A., Nasonova T.A. et al. Uvelichenie protivoopukholevogo effekta rentgenovskogo oblucheniya pri pomoshchi gadolinii soderzhashchego preparata na primere myshei s transplantiruemoi melanomoi B16F10. Med. fizika. No. 3. Р. 66-69. (In Russ.).
- Koryakin S.N., Ul'yanenko S.E., Yadrovskaya V.A. et al. Otsenka kontsentratsii zolota v opukholi i okruzhayushchikh tkanyakh laboratornykh zhivotnykh dlya zadach foton-zakhvatnoi terapii. Trudy regional'nogo konkursa proektov fundamental'nykh nauchnykh issledovanii. 2015. Vyp. 20. Р. 190-194. (In Russ.).
- Davydov M.I., Golanov A.V., Kanaev S.V. et al. Analiz sostoyaniya i kontseptsiya modernizatsii radiatsionnoi onkologii i meditsinskoi fiziki v Rossii. Vopr. onkol. Vol. 59. No. 5. Р. 529-538. (In Russ.).
- Khmelevskii E.V., Kharchenko V.P. et al. Metod protonno-fotonnoi luchevoi terapii lokalizovannogo raka predstatel'noi zhelezy. Rossiiskii onkologicheskii zhurnal. No. 6. Р. 13-16. (In Russ.).
For citation: Ulianenko SE, Soloviev AN, Lityaev VM, Fedorov VV, Koryakin SN. Monte-Carlo Simulation of Photon and Proton Capture Therapy with Gold Compounds. Medical Radiology and Radiation Safety. 2016;61(5):59-64. Russian.