JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 12-18

RADIATION BIOLOGY

V.P. Fyodorov, O.P. Gundarova, N.V. Sgibneva, N.V. Maslov

Radiation-Induced and Age-Related Changes in Cerebellar Neurons

N.N. Burdenko State Medical Academy, Voronezh, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To explore the changes in the structural and functional organization of the cerebellar cortex neurons throughout the period of post-radiation in comparison with the age adsjusted control.

Material and methods: White male rats (120 animals) irradiated on the Hizatron 60Co γ-rays single dose of 0.1; 0.2; 0.5 and 1.0 Gy with a dose rate of 0.5 Gy/h. Material taken away by one day, 6, 12 and 18 months after irradiation. The dynamics of tinctorial properties of neurons, their morphometric parameters, amount of protein, and nucleic acids examined.

Results: The correlation between different types of neurons in animals of biological control has changed throughout life and generally reflected their different functional status. By the end of the period of post-radiation, the number of decaying neurons was increased. In irradiated animals the decrease of the number of normochromic neurons at a dose of 0.1 Gy was found day after the irradiation. In 6 months, the greatest decrease in the number of normochromic neurons was observed at doses of 0.1 and 1.0 Gy due to the increase of nerve cells with destructive changes. At the end of post-radiation period, the number of nerve cells corresponded to the age adjusted control, and to the increase of the number of destructive cells at a dose of 0.5 Gy. Within the life span of both the control and irradiated animals, the stochastic variation of morphometric parameters of all components of neurons was observed, especially in their bodies and in the cytoplasm, and to a lesser extent in the nucleus and nucleolus. The protein content in nerve cells, nuclear DNA, post- phase changed RNA nucleoli has been reduced at the end of the observation, and the RNA in the cytoplasm of neurons has decreased slightly.

Conclusion: The nervous system has certain sensitivity to the radiation factor. Revealed changes are reversible and, under certain conditions can cause various forms of alternative or adaptive changes. All kinds of changes occurred in both the control and experimental groups are differentin percentage only.

Key words: neurons, cerebellum, ionizing radiation, nejromorfologikal effects

REFERENCES

  1. Gundarova O.P., Fedorov V.P., Afanas'ev R.V. Otsenka psikhonevrologicheskogo statusa likvidatorov radiatsionnykh avarii. Voronezh: «Nauchnaya kniga». 2012. 232 p. (In Russ.).
  2. Gus'kova A.K. Osnovnye itogi i istochniki oshibok v ustanovlenii radiatsionnogo etiopatogeneza nevrologicheskikh sindromov i simptomov. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2007. No. 12. P. 66–70. (In Russ.).
  3. Torubarov F.S., Blagoveshchenskaya V.V., Chesalin P.V. Sostoyanie nervnoi sistemy u postradavshikh pri avarii na Chernobyl'skoi atomnoi elektrostantsii. Zhurnal nevropatologii i psikhiatrii im. S.S. Korsakova. 1989. Vol. 89. No. 2. P. 48–52. (In Russ.).
  4. Torubarov F.S., Zvereva Z.F. Nevrologicheskie aspekty ostroi luchevoi bolezni cheloveka (klinicheskie nablyudeniya). Moscow: FMBTs im. A.I. Burnazyana. 2009. 208 p. (In Russ.).
  5. Ushakov I.B., Arlashchenko N.I., Soldatov S.K. Ekologiya cheloveka posle Chernobyl'skoi katastrofy: radiatsionnyi ekologicheskii stress i zdorov'e cheloveka. Voronezh: VGU. 2001. 723 p. (In Russ.).
  6. Bekhtereva N.P. Zdorovyi i bol'noi mozg cheloveka. Leningrad: Nauka. 1988. 262 p. (In Russ.).
  7. Grigor'ev Yu.G. Somaticheskie effekty khronicheskogo gamma-oblucheniya. Moscow: Energoatomizdat. 1986. 195 p. (In Russ.).
  8. Sevan'kaev A.V., Dedenkov A.N. Aktual'nye problemy sovremennoi radiobiologii v svete otsenki i prognozirovaniya posledstvii avarii na Chernobyl'skoi AES. Radiobiologiya. 1990. Vol. 30. No. 5. P. 579–583. (In Russ.).
  9. Fedorov V.P., Petrov A.V., Stepanyan N.A. Ekologicheskaya neiromorfologiya. Klassifikatsiya tipovykh form morfologicheskoi izmenchivosti TsNS pri deistvii antropogennykh faktorov. Zhurnal teor. i prakt. meditsiny. 2003. Vol. 1. No. 1. P. 62–66. (In Russ.).
  10. Ushakov I.B., Fedorov V.P., Zuev V.G. Neiromorfologicheskie effekty elektromagnitnykh izluchenii. Voronezh, Tsentral'no-Chernozemnoe knizhnoe publ. 2007. 287 p. (In Russ.).
  11. Maslov N.V., Fedorov V.P., Afanas'ev R.V. Morfofunktsional'noe sostoyanie temennoi kory pri deistvii malykh doz ioniziruyushchego izlucheniya. Voronezh: «Nauchnaya kniga». 2012.228 p. (In Russ.).
  12. Sgibneva N.V., Fedorov V.P. Morfofunktsional'noe sostoyanie sensomotornoi kory posle malykh radiatsionnykh vozdeistvii. Voronezh: «Nauchnaya kniga». 2013. 252 p. (In Russ.).
  13. Fedorenko B.S. Morfologicheskie i tsitogeneticheskie narusheniya u krys, nakhodyashchikhsya v usloviyakh povyshennogo radiatsionnogo fona na protyazhenii dlitel'nogo vremeni. Aviakosm. i ekolog. meditsina. 2002. Vol. 36. No. 1. P. 21–22. (In Russ.).
  14. Karpov V.N., Ushakov I.B., Davydov B.I. Effektivnaya doza kak razdrazhayushchee vozdeistvie pri fraktsionirovannom γ-obluchenii. Radiobiologiya. 1990. Vol. 30. No. 1. P. 107–112. (In Russ.).
  15. Aleksanin S.S. Osobennosti funktsional'nogo sostoyaniya tsentral'noi nervnoi sistemy u uchastnikov likvidatsii posledstvii avarii na Chernobyl'skoi AES. Medical Radiology and Radiation Safety. 2007. Vol. 52. No. 5. P. 5–11. (In Russ.).

For citation: Fyodorov VP, Gundarova OP, Sgibneva NV, Maslov NV. Radiation-Induced and Age-Related Changes in Cerebellar Neurons.. Medical Radiology and Radiation Safety. 2015;60(4):12-8. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 5-11

RADIATION BIOLOGY

S.V. Osovets

Revisiting the Theory of Radiation Injury and Recovery

Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk region, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To develop an alternative approach (regarding the Blair-Davidson theory) to quantitative description of radiation injury and recovery processes based on common radiobiological patterns typical for deterministic effects.

Results: Based on quantitative patterns of deterministic effects a new distribution of recovery potential (U) following a whole body irradiation of mammals was estimated:

where T was a duration of exposure, T1/2 was a half recovery period during an exposure. U value ranged from 0 to 1 with T value ranging from 0 to T1/2. An equation of a residual dose De (absolute injury) at double external gamma exposure was derived:

where D was a dose from the first exposure event, t was a time interval between two sequential radiation exposures, t 1/2 was a half recovery period after the irradiation. A suggested relation between De and t was based on the assumption of the similarity of mathematical representations of recovery processes during irradiation and postirradiation periods. Additionally, a new relationship between a median dose D50 and duration of exposure T was obtained:

where θand θ1 were parameters of the mathematical model. The estimated relationships were tested using experimental data on acute X-ray irradiation of mice.

Conclusions: Based on the development of fundamental mathematical models used for quantitative description of deterministic effects, an alternative approach to modeling the processes of mammalian radiation injury and recovery was stated and considerably advanced compared to the original Blair-Davidson theory. Mathematical representations of recovery processes at external whole body exposure were shown to be similar, but the recovery rate for irradiation period differed from that for post-irradiation one. New distributions and equations were derived to provide an adequate description of the above mentioned ionizing radiation health effects in mammals. Further development of the theory is needed to practically apply it to radiology, radiobiology and radiation safety.

Key words: Blair-Davidson theory, radiation injury and recovery, external gamma-ray exposure, deterministic effects, mathematical models

REFERENCES

  1. Blair H.A. A formulation of the injury, life span, dose relations for ionizing radiations. 1 - Application to the mouse. 2 - Application to the guinea pig, rat, dog. University of Rochester. Atomic Energy Commission Report UR-206, UR-207. 1952.
  2. Djevidson G.O. Biologicheskie posledstvija obshhego gamma-obluchenija cheloveka. Moscow: Atomizdat. 1960. 108 p. (In Russ.).
  3. Korogodin V.I. Problemy postradiacionnogo vosstanovlenija. Moscow: Atomizdat. 1966. (In Russ.).
  4. Akoev I.G. Problemy postluchevogo vosstanovlenija. Moscow: Atomizdat. 1970. 368 p. (In Russ.).
  5. Akoev I.G., Maksimov G.K., Malyshev V.M. Luchevoe porazhenie mlekopitajushhih i statisticheskoe modelirovanie. Moscow: Atomizdat. 1972. 97 p. (In Russ.).
  6. Teoreticheskie predposylki i modeli processov radiacionnogo porazhenija sistem organizma. Pushhino: Institut biologicheskoj fiziki AN SSSR. 1975. 182 p. (In Russ.).
  7. Grigor'ev Ju.G., Popov V.I., Shafirkin A.V. et al. Somaticheskie jeffekty hronicheskogo gamma-obluchenija. Moscow: Jenergoatomizdat. 1986. 200 p. (In Russ.).
  8. Jarmonenko S.P., Vajnson A.A. Radiobiologija cheloveka i zhivotnyh. Moscow: Vyssh. shk. 2004. 549 p. (In Russ.).
  9. Petin V.G., Kim J.K., Zhurakovskaya G.P., Rassokhina A.V. Mathematical description of synergistic interaction of UV-light and hyperthermia for yeast cell. J. Photochem. Photobiol. B: Biol. 2000. Vol. 55. P. 74-79.
  10. Petin V.G., Kim J.K., Zhurakovskaya G.P., Dergacheva I.P. Some general regularities of synergistic interaction of hyperthermia with various physical and chemical inactivating agents. Int. J. Hyperthermia. 2002. Vol. 18. P. 40-49.
  11. Petin V.G., Kim J.K. Survival and recovery of yeast cells after combined treatment with ionizing radiation and hea. Radiat. Res. 2004. Vol. 161. P. 132-139.
  12. Petin V.G., Zhurakovskaja G.P., Komarova L.N. Radiobiologicheskie osnovy sinergicheskih vzaimodejstvij v biosfere. Moscow: GEOS. 2012. 219 p. (In Russ.).
  13. Teoreticheskie osnovy radiacionnoj mediciny. Moscow: AT. 2004. Vol. 1. 992 p. (In Russ.).
  14. Radiacionnye porazhenija cheloveka. Moscow: AT. 2001. Vol. 2. 432 p. (In Russ.).
  15. Osovec S.V. Osnovnye kolichestvennye harakteristiki i ogranichenija pri modelirovanii determinirovannyh radiobiologicheskih jeffektov. V sb.: «Istochniki i jeffekty obluchenija rabotnikov PO «MAJaK» i naselenija, prozhivajushhego v zone vlijanijapredprijatija, ch. 4». JuUrIBF. Cheljabinskij Dom pechati. 2012. P. 142-152. (In Russ.).
  16. Osovec S.V. Matematicheskoe modelirovanie zavisimosti mediannoj dozy ot moshhnosti izluchenija. Tezisy dokladov nauchno-tehnicheskoj konferencii «Dni nauki-99». Ozersk: OTI MIFI. 1999. Vol. 2. P. 88-90. (In Russ.).
  17. Osovec S.V., Skott B.R. Modelirovanie zavisimosti medianoj dozy ot moshhnosti izluchenija. IV s#ezd po radiacionnym issledovanijam, Moskva, 20-24 nojabrja 2001 g. Tezisy dokladov. Moscow.:Rossijskii universitet druzhby narodov. 2001. Vol. IV. P. 772. (In Russ.).
  18. Osovec S.V. Faktor moshhnosti dozy v ocenke i modelirovanii determinirovannyh jeffektov pri vneshnem obluchenii. Medical Radiology and Radiation Safety. 2005. Vol. 50. No. 3. P. 37-46. (In Russ.).
  19. Scott B.R., Habn F.F., McClellan R.D., Seller F.A. Risk estimators for radiation-induced bone marrow syndrome lethality in human. Risk Anal. 1998. Vol. 8. P. 393-402.
  20. Risk from Deterministic Effects of Ionizing Radiation. National Radiological Protection Board. Chilton. Didcot. 1996. Vol. 7. No. 3. P. 1-31.
  21. Scott B.R., Lyzlow A.W., Osovets S.V. Evaluating the risk of death via the hematopoietic syndrome mode for prolonged exposure of nuclear workers to radiation at very low rates. Health Phys. 1998. Vol. 74. No. 5. P. 545-553.
  22. Tjazhelova V.G. O vremennoj posledovatel'nosti razvitija luchevoj patologii. V sb. «Teoreticheskie predposylki i modeli processov radiacionnogo porazhenija sistem organizma». Nauchnyj centr biol. issledovanij. Institut biol. fiziki. Pushhino. 1975. P. 136-149. (In Russ.).
  23. Jones T.D., Morris M.D., Young R.W. Dose rate models for human survival after exposure to ionizing radiation. In: Proceedings of ANS Topical Perspectives and Emergency Planning. Bethesda, M.D. Sept. 15-17, 1986. P. 64-68.
  24. Framework of Emergency Response Intervention and Countermeasure Criteria IAEA. Vienna. Austria. Jul. 2004. 103 p.
  25. Darenskaja N.G., Koznova L.B., Akoev I.G., Nevskaja G.F. Otnositel'naja biologicheskaja jeffektivnost' izluchenij. Faktor vremeni obluchenija. Moscow: Atomizdat. 1968. 375 p. (In Russ.).

For citation: Osovets SV. Revisiting the Theory of Radiation Injury and Recovery. Medical Radiology and Radiation Safety. 2015;60(4):5-11. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 5. P. 50-58

NUCLEAR MEDICINE

I.P. Aslanidis1, D.M.Pursanova1, O.V. Mukhortova1, A.V. Silchenkov1, O.B. Karyakin2, V.A. Biryukov2, V.I. Shirokorad3

Detection of Prostate Cancer Relapse with 11C-choline PET/CT in Patients after Radical Prostatectomy

1. A.N. Bakoulev Scientific Center for Cardiovascular Surgery, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia; 3. Moscow City Oncology Hospital No. 62, Moscow, Russia

ABSTRACT

Purpose: To evaluate the diagnostic impact of 11C-choline PET/CT in the detection of recurrent prostate cancer (PCa) in patients with biochemical relapse after radical prostatectomy and to assess the correlation between PSA levels and PET/CT detection rate of PCa relapse.

Methods and materials: 11C-choline PET/CT was performed in 58 patients (age range 50-79) with biochemical relapse after radical prostatectomy. Examinations were performed on PET/CT scanner (Biograph-64, Siemens) 10 min after injection of 11C-choline (700-950 MBq). The mean PSA value was 2.25 ± 2.87 (0.22-17.8) ng/ml. Patients were divided into three groups according to PSA level: ≤ 2 ng/ml, 2 to 9 ng/ml and ≥ 9 ng/ml.

Results: Overall, 11C-choline PET/CT detected PCa relapse in 18 of 58 patients (31 %). Positive PET/CT results were obtained in 8 of 39 patients (21 %) with PSA of ≤ 2 ng/ml, in 8 of 17 patients (47 %) with PSA of 2 to 9 ng/ml, and in 2 of 2 patients (100 %) with PSA of ≥ 9 ng/ml. Local relapse was detected in 55 % (10/18) patients. Both local and distant metastases were diagnosed in 28 % (5/18) cases: bone lesions (2), lymph nodes (2), lymph nodes and adrenal gland (1). Distant relapse was identified in 17 % (3/18) cases: bone (2) and lungs (1). PET/CT allowed to assess the efficacy of treatment in 25 % (10/40) PET-negative patients under hormone therapy at the scan time. However, PET/CT wasn’t able to localize the site of PCa recurrence in these hormone-sensitive patients what might have affected the overall detection rate.

Conclusion: 1) 11C-choline PET/CT was able to detect and correctly identify the site of PCa relapse in 46 % cases and therefore was useful in determining the further therapeutic approach. 2) Our data confirmed the strong correlation between PSA levels and 11C-choline PET/CT detection rate of PCa relapse (r = 0.9). 3) 11C-choline PET/CT has limited utility in localizing the site of PCa recurrence in some patients under hormone therapy.

Key words: prostate cancer recurrence, PET/CT, 11C-choline, PSA

REFERENCES

  1. Chissov V.I., Rusakov I.G. Zabolevaemost' rakom predstatel'noi zhelezy v Rossiiskoi Federatsii. Eksperim. i klin. urologiya. 2011. Vol. 3. No. 2. P. 6-7. (In Russ.).
  2. GLOBOCAN 2012 (IARC), Cancer Incidence and Mortality Worldwide, Section of Cancer Surveillance. Available from: http://globocan.iarc.fr/ (accessed: 21.03.2015).
  3. National Cancer Institute, Surveillance Epidemiology and End Results. SEER Stat Fact Sheets: Available from: http://seer.cancer.gov/statfacts/html/prost.html (accessed: 21.03.2015).
  4. Jemal A., Siegel R., Ward E. et al. Cancer statistics, 2008. CA Cancer J. Clin. 2008. Vol. 58. No. 2. P. 71-96.
  5. Freedland S.J., Presti J.C. Jr., Amling C.L. et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urol. 2003. Vol. 61. P. 736-741.
  6. Han M., Partin A.W., Zahurak M. et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol. 2003. Vol. 169. P. 517-23.
  7. Reske S.N., Blumstein N.M., Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2008. Vol. 35. No. 1. P. 9-17.
  8. National Collaborating Centre for Cancer. Managing relapse after radical treatment. In: Prostate cancer: diagnosis and treatment. NICE Ьinical Guidelines, Cardiff. 2008. No. 58. Ch. 5. P. 42-48.
  9. Cher M.L., Bianco F.J., Lam J.S. et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J. Urol. 1998. Vol. 160. No. 4. P. 1387-1391.
  10. Kane C.J., Amling C.L., Johnstone P.A. et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urol. 2003. Vol. 61. No. 3. P. 607-611.
  11. Olsson A.Y., Bjartell A., Lilja H., Lundwall A. Expression of prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) in ileum and other extraprostatic tissues. Int. J. Cancer. 2005. Vol. 113. No. 2. P. 290-297.
  12. Partin A.W., Pearson J.D., Landis P.K. et al. Evaluation of serum prostate-specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases. Urol. 1994. Vol. 43. No. 5. P. 649-659.
  13. Dotan Z.A., Bianco F.J., Jr. et al. Pattern of prostatespecific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. JCO. 2005. Vol. 23. No. 9. P. 1962-1968.
  14. Apolo A.B., Pandit-Taskar N., Morris M.J. Novel tracers and their development for the imaging of metastatic prostate cancer. J. Nucl. Med. 2008. Vol. 49. P. 2031-2041.
  15. Kataja V.V., Bergh J. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. Ann. Oncol. 2005. Vol. 16. Suppl. 1. P. 34-36.
  16. Heidenreich A., Bastian P.J., Bellmunt J. et al. Guidelines on prostate cancer. European Association of Urology. Arnhem. 2012.
  17. Salomon C.G., Flisak M.E., Olson M.C. et al. Radical prostatectomy: transrectal sonographic evaluation to assess for local recurrence. Radiology. 1993. Vol. 189. No. 3. P. 713-719.
  18. Deliveliotis C., Manousakas T., Chrisofos M. et al. Diagnostic efficacy of transrectal ultrasound-guided biopsy of the prostatic fossa in patients with rising PSA fol lowing radical prostatectomy. World J. Urol. 2007. Vol. 25. No. 3. P. 309-313.
  19. Beheshti M., Vali R., Waldenberger P. et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur. J. Nucl. Med. Mol. Imaging. 2008. Vol. 35. P. 1766-1774.
  20. Prostate-Specific Antigen Best Practice Statement: 2009 Update. Eur. Urol. 2012. Vol. 61. P. 8-10.
  21. Aslanidi I.P., Pursanova D.M., Mukhortova O.V. et al. Rol' PET/KT s 11C-kholinom v rannei diagnostike progressirovaniya raka predstatel'noi zhelezy. Medical Radiology and Radiation Safety. 2014. Vol. 59. No. 5. P. 37-54.
  22. Rybalov M., Breeuwsma A.J., Leliveld A.M. et al. Impact of total PSA, PSA doubling time and PSA velocity on detection rates of 11C-choline positron emission tomography in recurrent prostate cancer. World J. Urol. 2013. Vol. 31. No. 2. P. 319-323.
  23. Castellucci P., Fuccio C., Nanni C. et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J. Nucl. Med. 2009. Vol. 50. No. 9. P. 1394-400.
  24. Giovacchini G., Picchio M., Parra R.G. et al. Prostatespecific antigen velocity versus prostate specific antigen doubling time for prediction of 11C-choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin. Nucl. Med. 2012. Vol. 37. P. 325-331.
  25. Giovacchini G., Picchio M., Coradeschi E. et al. Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2010. Vol. 37. P. 301-309.
  26. Detti B., Scoccianti S., Franceschini D. et al. Predictive factors of [18F]-choline PET/CT in 170 patients with increasing PSA after primary radical treatment. J. Cancer Res. Oncol. 2013. Vol. 139. No. 3. P. 521-528.
  27. Krause B.J., Souvatzoglou M., Tuncel M. et al. The detection rate of [11C]choline PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2008. Vol. 35. P. 18-23.
  28. Schillaci O., Calabria F., Tavolozza M. et al. Influence of PSA, PSA velocity and PSA doublingtime on contrast-enhanced 18F-choline PET/CT detection rate in patients with rising PSA after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2012. Vol. 39. P. 589-596.
  29. Graute V., Jansen N., Ubleis C. et al. Relationship between PSA kinetics and [18F]fluoro-choline PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2012. Vol. 39. P. 271-282.
  30. Castellucci P., Fuccio C., Rubello D. et al. Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur. J. Nucl. Med. Mol. Imaging. 2011. Vol. 38. P. 55-63.
  31. Dolgushin B., Odzharova A.A., Mikhailov A.I. et al. PET/KT s 18F-ftorkholinom v rezhime dvukhetapnogo skanirovaniya pri biokhimicheskikh retsi-divakh raka predstatel'noi zhelezy. Onkourologiya. 2015. Vol. 11. No. 2. P. 46-54. (In Russ.).
  32. Fuccio C., Schiavina R., Castellucci P. et al. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur. J. Nucl. Med. Mol. Imaging. 2011. Vol. 38. P. 1985-1989.
  33. Moul J.W. Prostate specific antigen only progression of prostate cancer. J. Urol. 2000. Vol. 163. P. 1632-1642.
  34. Roberts S.G., Blute M.L., Bergstralh E.J. et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin. Proc. 2001. Vol. 76. P. 576-581.
  35. Giovacchini G., Picchio M., Scattoni V. et al. PSA doubling time for prediction of 11C choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2010. Vol. 37. P. 1106-1116.

For citation: Aslanidis IP, Pursanova DM, Mukhortova OV, Silchenkov AV, Karyakin OB, Biryukov VA, Shirokorad VI. Detection of Prostate Cancer Relapse with 11C-choline PET/CT in Patients after Radical Prostatectomy. Medical Radiology and Radiation Safety. 2015;60(5):50-8. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 5. P. 59-73

REVIEW

E.A. Dunaeva1, A.V. Boyko1, L.V. Demidova1, L.Z. Velher2, L.I. Korobkova2, A.U. Korobkova2, O.B. Dubovetskaya1, T.A. Teleous1

Conservative Methods of Prevention and Treatment of Radiation Complications in Patients with Malignant Neoplasms of Female Genital Organs

1. P.A. Herzen Research Oncological Institute, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. A.I. Evdokimov Moscow Stage University of Medicine and Dentistry, Moscow, Russia

CONTENTS

Radiation therapy of malignant tumors of the genitals, even with the use of modern equipment and radiotherapy capabilities, as well as, dosimetry planning leads to the development of pathological changes in the mucosa of the rectum, bladder and vagina in 20-80 % of patients. The main factors influenced on the occurrence and severity of radiation damage are: the value of single and total focal dose, the dose fractionation regimen, method of irradiation (remote, intracavitary, combined), the number of exposures (2, 4, 6 patch reference technique for remote RT), co-morbidities of annexa (rectosigmoid colon, bladder, vagina), radiomodifications (chemotherapy, hyperthermia), surgery on the pelvic organs and the initial state of the organism. In the treatment of local radiation damage generally used approach includes methods of general and local feedback. Among conservative methods of treatment of local radiation injuries physical impact factors, such as low-intensity laser radiation (LLLT) have recently become widely used. Creating optimal combinations of drugs (in the form of ointments, gels, sprays, suppositories, etc.) having a therapeutic effect on wound process are recognized as of promising. The advent of technology aimed (targeted) drug delivery using Kolegel gels suggests a significant impact on the state of tissues within the irradiation zone. Application of these hydrogel materials allowed marking good tolerance, high efficiency in the prevention of radiation reactions (as compared to standard procedures).

Key words: female sexual organs, conservative treatment, radiation complications, radiation rectitis, radiation cystitis, radiation mucousitis, review

REFERENCES

  1. Kaprin A.D., Starinskii V.V., Petrova G.V. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2013 godu. Moscow: MNIOI im. A. Gertsena. 2014. 235 p. (In Russ.).
  2. Beller U., Vaisonneuve P. et al. Carcinoma of the vulva. Int. J. Gynecol. Abstet. 25th Annual Report on the Results of Treatment in Gynecologic Cancer. 2003. Vol. 83. P. 7-27.
  3. Van der Zee J., Kleynen C.E., Nuyttens J.J., Ansink A.C. Hyperthermia to improve results in vaginal cancer. Radiother. Oncol.. 2008. Vol. 88. No. 2. P. 286-287.
  4. Halperin C., Perez A., Brady W. Radiation Oncology. 2010. 865 p.
  5. Kanaev S.V., Baranov S.B. Opyt ispol'zovaniya preparata «Tantum rosa» pri profilaktike i lechenii luchevykh rektitov i vaginitov u bol'nykh rakom matki i vlagalishcha. Voprosy onkologii. 2003. No. 2. P. 224-226. (In Russ.).
  6. Korolev S.V. Luchevaya diagnostika i kompleksnoe lechenie luchevykh tsistitov u onkologicheskikh bol'nykh. Moscow: diss. kand. med. nauk. 2009. 116 p. (In Russ.).
  7. Van Limbergen E. Nauchno-obosnovannye rekomendatsii po provedeniyu luchevoi terapii pri rake sheiki matki. Materialy Evropeiskoi shkoly onkologii «Sovremennye aspekty onkoginekologii». Moscow. 2009. P. 11-27.
  8. Kaprin A.D., Pasov V.V., Korolev S.V., Terekhov O.V. Prichiny razvitiya luchevykh tsistitov u bol'nykh, perenesshikh luchevuyu terapiyu po povodu zlokachestvennykh novoobrazovanii malogo taza. Onkourologiya. 2009. No. 1. P. 39-42. (In Russ.).
  9. Pasov V.V., Kurpesheva A.K., Terekhov O.V. Luchevye povrezhdeniya mochevogo puzyrya i kishechnika. V kn.: «Immunoterapiya. Rukovodstvo dlya vrachei». In: R.M. Khaitova, R.I. Atullakhanova (eds.). Moscow: GEOTAR-Media. 2011. P. 541-559. (In Russ.).
  10. Tararova E. A. Patogeneticheskie aspekty luchevogo tsistita. Moscow: diss. dokt. med. nauk. 2011. 96 p. (In Russ.).
  11. Zharikov A.A., Terekhov O.V. Onkologicheskaya zabolevaemost' organov malogo taza, luchevye povrezhdeniya i ikh diagnostika (obzor literatury). Radiatsiya i risk. 2013. Vol. 22. No. 3. P. 57-64. (In Russ.).
  12. Bardychev M.S. Luchevye povrezhdeniya. V kn.: «Luchevaya terapiya zlokachestvennykh novoobrazovanii». In: S. Kiselevoi (ed.). Moscow: Meditsina. 1996. P. 437-459. (In Russ.).
  13. Gabelov A.A., Kholin V.V., Lubenets E.N. Pozdnie luchevye povrezhdeniya pryamoi kishki. Metod. rekomendatsii Minzdrava SSSR. Leningrad. 1978. 18 p. (In Russ.).
  14. Stolyarova I.V., Vinokurov V.L. Problemy bol'nykh posle lecheniya raka sheiki matki (profilaktika i lechenie oslozhnenii). Prakticheskaya onkologiya. 2002. Vol. 3. No. 3. P. 220-227. (In Russ.).
  15. Skryabin G.N., Aleksandrov V.P., Koren'kov D.G., Nazarov T.N. Tsistity. Uchebnoe posobie. Petersburg. 2006. 127 p. (In Russ.).
  16. Chassagne D., Sismondi P., Horiot J.C. et al. A glossary for reporting complications of treatment in gynecological cancers. Radiother. Oncol. 1993. Vol. 26. P. 195-202.
  17. Cox J.D., Stetz J., Pajak T.F. Toxicity of the Radiation Therapy Oncology Group (RTO G) and the European Organization for Research And Treatment Of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995. Vol. 31. No. 5. P. 1341-1346.
  18. LENT SOMA tables. Radiother.Oncol. 1995. Vol. 28. P. 17-60.
  19. Luchevaya terapiya: uchebnik. T. 2. In: G.E. Trufanova, M.A. Asaturyana, G.M. Zharinova (eds.). Moscow: «GEOTAR-Media». 2010. 192 p. (In Russ.).
  20. Deehan C., Donogyue J.A. Biological equivalence of LDR and HDR brachytherapy. In Brachytherapy from Radium to Optimization. Ed. R.F. Mould, J.J. Battermann, A.A. Martinez, B.L. Spaiser. Netherlands. 1994. P. 19-37.
  21. Perez C.A. Radiation therapy morbility in carcinoma of uterine cervix: dosimetric and clinical correlation. Int. J. Radiation Oncol. Biol. Phys. 1999. Vol. 44. No. 4. P. 855-866.
  22. Demidova L.V. Radiomodifikatsiya v sochetannoi luchevoi terapii raka sheiki matki s ispol'zovaniem netraditsionnykh rezhimov fraktsionirovaniya i lekarstvennykh preparatov. Moscow: diss. dokt. med. nauk. 2006, 341 p. (In Russ.).
  23. Demidova L.V., Dunaeva E.A., Boiko A.V. et al. Oslozhneniya luchevoi terapii pri kombinirovannom lechenii bol'nykh rakom tela matki I stadii. Vestnik RONTs im. N.N. Blokhina RAMN. 2011. Vol. 22. No. 4. P. 39-45. (In Russ.).
  24. Pötter R., Haie-Meder C., Van Limbergen E. et al. Radiother. Oncol.. 2006. Vol. 78. P. 67-77.
  25. Ivanitskaya V.I. Oslozhneniya luchevoi terapii u onkologicheskikh bol'nykh. Kiev. 1989. 184 p. (In Russ.).
  26. Clark B., Souhami L., Roman T. et al. The prediction of late rectal complications in patients treated with high dose-rate brachytherapy for carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 1997. Vol. 38. No. 5. P. 989-993.
  27. Pan'shin G.A., Rybakov Yu.N., Bliznyukov O.P., Zotov V.K. K voprosu o mestnykh luchevykh povrezhdeniyakh pryamoi kishki u bol'nykh rakom sheiki matki (obzor). Vestnik RNTsRR. 2010. Vol. 2. No. 10. (In Russ.).
  28. Bardychev M.S., Katsalap S.N., Kurpesheva A.K. Diagnostika i lechenie mestnykh luchevykh povrezhdenii. Medical Radiology and Radiation Safety. 1992. Vol. 37. No. 11. P. 12-14. (In Russ.).
  29. Granov A.M., Vinokurov V.L. Luchevaya terapiya v onkoginekologii i onkourologii. St.Petersburg, Foliant. 2002. 352 p. (In Russ.).
  30. Bukharkin B.V., Davydov M.I., Karyakin O.B. et al. Klinicheskaya onkourologiya. Moscow. 2003. P. 24-26. (In Russ.).
  31. Rusanov A.O. Planirovanie vnutripolostnogo oblucheniya i prognozirovanie rezul'tatov luchevoi terapii bol'nykh rakom sheiki matki. Moscow: diss. kand. med. nauk. 2003. 160 p. (In Russ.).
  32. Maksimov S.Ya., Guseinov K.D. Kombinirovannoe lechenie raka sheiki matki. V kn.: «Prakticheskaya onkologiya: izbrannye lektsii». In S.A. Tyulyandina i V.M. Moiseenko (eds.). Saint Petersburg: Tsentr TOMM. 2004. P. 678-686. (In Russ.).
  33. Suwinski R., Sowa A., Rutkowski T. et al. Time factor in postoperative radiotherapy: a multivariate locoregional control analysis in 868 patients. Int. J. Radiat. Oncol. Phys. 2003. Vol. 56. No. 2. P. 399-412.
  34. Klimenko K.A., Tsallagova Z.S. Luchevye rektity pri kompleksnom lechenii raka organov malogo taza (obzor literatury). Vestnik RRNTsRR. 2014. Vol. 4. No. 14. Elektronnyi resurs. Available from: http://vestnik.rncrr.ru/vestnik/v14/papers/klimenko_14.htm. (In Russ.).
  35. Dawson L.A., Sharpe M.B. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet. 2006. Vol. 17. P. 848-859.
  36. Jhingran A., Eifel P., Ramirez P. Treatment of Locally Advanced Cervical Cancer. In: Gynecological Cancer. Ed. P. Eifel, D. Gershenson, J. Kavanagh. Springer. 2006. P. 87-125.
  37. Boiko A.V., Chernichenko A.V., Dar'yalova S.L. et al. Netraditsionnoe fraktsionirovanie dozy. Lektsiya. Materialy V Rossiiskoi onkologicheskoi konferentsii. 2001. P. 120-122. (In Russ.).
  38. Jacob R.A., Burri B.J. Oxidative damage and defence. Amer. J. Clin. Nutr. 1996. Vol. 63. No. 6. P. 995-990.
  39. V. Boiko, L.V. Demidova, E.A. Dunaeva, et al. Khimioluchevaya terapiya bol'nykh mestno-rasprostranennym rakom sheiki matki. Meditsinskaya tekhnologiya. Moscow. 2010. 13 p. (In Russ.).
  40. Sergeeva T.V. Modifikatsiya khimioluchevogo lecheniya zlokachestvennykh novoobrazovanii preparatami antioksidantnogo deistviya. Moscow: diss. kand. med. nauk. 1999. 157 p. (In Russ.).
  41. Zharikov G.M., Vinokurov V.L., Zaikin G.V. Luchevye povrezhdeniya pryamoi kishki i mochevogo puzyrya u bol'nykh rakom sheiki matki. Mir Meditsiny. 2000. No. 7-8. Available from: http://medi.ru/doc/8500710.htm. (In Russ.).
  42. Bardychev M.S. Lechenie mestnykh luchevykh povrezhdenii. Lechashchii vrach. 2003. No. 5. P. 78-79. (In Russ.).
  43. Hovdenak N., Fajardo L.F., Hauer-Jensen M. Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000. Vol. 48. P. 1111-1117.
  44. Khoseva E.N. Klinicheskie varianty, osobennosti techeniya i differentsirovannaya terapiya rannikh luchevykh reaktsii i povrezhdenii kozhi. Ekaterinburg: diss. kand. med. nauk. 2006. 116 p. (In Russ.).
  45. Goncharik I.I. Radiatsionnyi (luchevoi) kolit i enterit. Voennaya meditsina. 2010. No. 4. P. 119-121. (In Russ.).
  46. Roitberg G.E., Strutynskii A.V. Vnutrennie bolezni. Sistema organov pishchevareniya: uchebnoe posobie. Moscow: Med-press-inform. 2011. 560 p. (In Russ.).
  47. Burakovskaya V.A. Radiatsionnye (luchevye) porazheniya kishechnika. Gastroenterologiya. Sain Petersburg. 2013. No. 3-4. P. 18-24. (In Russ.).
  48. Chuikina N.A., Matyakin G.G., Chuprik-Malinovskaya T.P. et al. Aktovegin v profilaktike i lechenii luchevykh reaktsii i oslozhnenii u onkologicheskikh bol'nykh. Moscow. 1999, 56 p. (In Russ.).
  49. Bardychev M.S., Terekhov O.V., Belaya N.S. Terapevticheskaya effektivnost' gepona v lechenii luchevykh tsistitov. Lechashchii vrach. 2003. No. 10. P. 61-62. (In Russ.).
  50. Kan Ya.D. Urologicheskie oslozhneniya luchevoi terapii zlokachestvennykh novoobrazovanii organov taza. Moscow: diss. dokt. med. nauk. 1989. 233 p. (In Russ.).
  51. Kargaeva Z.S. Primenenie immobilizirovannogo tripsina dlya profilaktiki i lecheniya luchevykh reaktsii i oslozhnenii u onkoginekologicheskikh bol'nykh. Moscow: diss. kand. med. nauk. 2000, 130 p. (In Russ.).
  52. Terekhov O.V., Pasov V.V. Lechenie pozdnikh luchevykh povrezhdenii mochevogo puzyrya. Effektivnaya farmakoterapiya. Urologiya i nefrologiya. 2014. Vol. 32. No. 3. Available from: http://umedp.ru/articles/uro_3_2014/lechenie_pozdnikh_luchevykh_povrezhdeniy_mohevogo_puzyrya.html. (In Russ.).
  53. Zaderin V.P., Polyanichko M.F. Terapiya pozdnikh oslozhnenii luchevogo lecheniya bol'nykh zlokachestvennymi novoobrazovaniyami. Rostov-on-Don. 1985. P. 13-19. (In Russ.).
  54. Vel'sher L.Z., Matyakin E.G., Duditskaya T.K. Onkologiya. Moscow. 2009. 510 p. (In Russ.).
  55. Fil'kova E.M., Poleskova O.A., Kochnova Yu.S. et al. Sposoby povysheniya effektivnosti luchevoi terapii. Patent na izobretenie. 1997. 9 p. (In Russ.).
  56. Kharchenko V.P., Pan'shin G.A., Voznyi E.K. et al. Sposob profilaktiki mestnykh luchevykh reaktsii. Patent na izobretenie. 2004. 11 p. (In Russ.).
  57. Shipilova A.N., Titova V.A., Kreinina Yu.M. et al. Sistemnaya i lokal'naya ozonoterapiya v profilaktike oslozhnenii mnogokomponentnogo lecheniya zlokachestvennykh opukholei razlichnoi lokalizatsii. Vestnik RNTsRR. 2006. P. 7-14. (In Russ.).
  58. Zalesskii V.N. Molekulyarnye mekhanizmy lazernoi biostimulyatsii. Sb. nauchnykh trudov k 50-letiyu lazernoi meditsiny. Ukraina. 2010. P. 307-401. (In Russ.).
  59. Kabisov R.K., Boiko A.V., Sokolov V.V. et al. Sposob lecheniya onkologicheskikh bol'nykh. Patent na izobretenie RU (11) 2161054 (13) C2. Published: 2000.12.27. (In Russ.).
  60. Kaplina E.N., Vainberg Yu.P. Derinat - prirodnyi immunomodulyator dlya detei i vzroslykh. Ed. 3rd, corr. and suppl. Moscow: Nauchnaya kniga. 2007. 240 p. (In Russ.).
  61. Kurpesheva A.K., Pasov V.V., Terekhov O.V. et al. Otsenka effektivnosti lecheniya i perenosimosti gidrogelevykh materialov na osnove al'ginata natriya s derinatom (dezoksiribonukleatom natriya) «Koleteks-gel'-DNK» i s derinatom i lidokainom «Koleteks-gel'-DNK-L». Obninsk. 2007. P. 31-37. (In Russ.).
  62. Danilova M.A. Razrabotka tekhnologii polucheniya lechebnykh tekstil'nykh i gidrogelevykh materialov dlya luchevoi terapii onkologicheskikh zabolevanii. Moscow: diss. kand. tekhn. nauk. 2008. 202 p. (In Russ.).
  63. Korytova L.I., Oltarzhevskaya N.D., Sokurenko V.P. et al. Effektivnost' primeneniya nanogidrogelevykh materialov «Koleteks-gel'-DNK», «Koleteks-gel'-DNK-L». Bioterap. Journal. 2009. Vol. 8. No. 1. P. 20
  64. Napravlennaya dostavka lekarstvennykh preparatov pri lechenii onkologicheskikh bol'nykh. In A.V. Boiko, L.I. Korytovoi, N.D. Oltarzhevskoi (eds.). Moscow: MK. 2013. 200 p. (In Russ.).

For citation: Dunaeva EA, Boyko AV, Demidova LV, Velher LZ, Korobkova LI, Korobkova AU, Dubovetskaya OB, Teleous TA. Conservative Methods of Prevention and Treatment of Radiation Complications in Patients with Malignant Neoplasms of Female Genital Organs. Medical Radiology and Radiation Safety. 2015;60(5):59-73. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 5. P. 46-49

DIAGNOSTIC RADIOLODGY

I.S. Zaharov1, G.I. Kolpinskij1, G.A. Ushakova1, E.S. Kagan2

Use Three-Dimensional Bone Densitometry in Predicting the Risk of Osteoporotic Vertebral Fractures in Postmenopausal Women

1. Kemerovo State Medical Academy, Kemerovo, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Kemerovo State University, Kemerovo, Russia

ABSTRACT

Purpose: To develop a model for predicting osteoporotic vertebral fractures in women on the basis of three-dimensional bone densitometry.

Material and methods: The study included 282 women who are postmenopausal, 72 of which have suffered compression fractures of vertebral bodies. Three-dimensional densitometry II-IV of the lumbar vertebrae by quantitative computed tomography was carried out for all patients. Mineral density (BMD) of the trabecular and cortical bone, as well as, bilateral asymmetry indices BMD vertebral bodies were estimated. To process the results and create predictive models of fracture standard methods of binary logistic regression were used.

Results: Based on the results of three-dimensional bone densitometry the model of vertebral fractures in women prediction was developed. In the model developed the asymmetry index of trabecular bone BMD (p = 0.011) and then follow the leading indicators of trabecular bone BMD (p = 0.033), cortical bone BMD (p = 0.034) and the asymmetry index of cortical bone BMD (p = 0.044) are of the greatest significance. The area under the ROC-curve was 0.894 [0.855; 0.932], indicating that the ability to form highly predictive model. Final classification threshold was estimated as 0.371, and the sensitivity of the model - 77.8 %, specificity - 86.7 %. Based on the developed model, a low risk of vertebral fractures corresponds to the forecast probabilities was found below than 0.371, the average risk - predictive probability ranging from 0.371 to 0.5 and higher risk - higher 0.5.

ϼ/u>onclusion: The proposed method makes it possible to predict the probability of occurrence of osteoporotic fractures of the vertebrae with high confidence, which in turn could allow the timely prevention of this type of complications of osteoporosis.

Key words: osteoporosis, quantitative computed tomography, bone mineral density, binary logistic regression, prediction of fracture risk

REFERENCES

  1. Dhanwal D.K., Dennison E.M., Harvey N.C. et al. Epidemiology of hip fracture: worldwide geographic variation. Indian J. Orthop. 2011. Vol. 45. No. 1. P. 15-22.
  2. Zakharov I.S., Kolpinskii G.I., Ushakova G.A. et al. Rasprostranennost' osteopenicheskogo sindroma u zhenshchin v postmenopauze. Meditsina v Kuzbasse. 2014. Vol. XIII. No. 3. P. 32-36. (In Russ.).
  3. Benevolenskaya L.I. Rukovodstvo po osteoporozu. Moscow: BINOM. 2003. 524 p. (In Russ.).
  4. Kanis J.A., Oden A., Johansson H. et al. FRAX, a new tool for assessing fracture risk: clinical applications and intervention thresholds. Medicographia, 2010. Vol. 32. No. 1. P. 33-40.
  5. Nikitinskaya O.A., Toroptsova N.V. Otsenka riska perelomov s ispol'zovaniem modeli FRAX (retrospektivnoe desyatiletnee issledovanie). Al'manakh klin. meditsiny. 2014. No. 32. P. 50-55. (In Russ.).
  6. Tremollieres F.A., Pouilles J.M., Drewniak N. et al. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. JBMR. 2010. Vol. 25. No. 5. P. 1002-1009.
  7. Marshall D., Johnell O., Wedel H. Metaanalysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Brit. Med. J. 1996. Vol. 312. P. 1254-1259.
  8. Nguyen T., Sambrook P., Kelly P. et al. Prediction of osteoporotic fractures by postural instability and bone density. Brit. Med. J. 1993. Vol. 307. P. 1111-1115.
  9. Siris E.S. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. J. Amer. Med. Assoc. 2001. Vol. 286. No. 22. P. 2815-2822.
  10. Bansal S.C., Khandelwal N., Rai D.V. et al. Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine. J. Clin. Diagn. Res. 2011. Vol. 5. No. 4. P. 694-699.
  11. Bauer J.S., Virmani S., Mueller D.K. Quantitative CT to assess BMD as a diagnostic tool for osteoporosis and related fractures. Medica Mundi. 2010. Vol. 54. No. 2. P. 31-37.
  12. ACR-SPR-SSR practice parameter for the performance of quantitative computed tomography (QCT) bone densitometry. Available at: http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/QCT.pdf. Res. 32-2013, Amended 2014 (Res. 39).
  13. Eidlina E.M., D'yachkova G.V., D'yachkov K.A. Sovremennaya luchevaya diagnostika patologicheskikh perelomov pozvonochnika na fone osteoporoza. Genii ortopedii. 2012. No. 2. P. 38-43. (In Russ.).
  14. Li N., Li X.M., Xu L. et al. Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Intern. J. Endocrin. 2013, Mar. 27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23606843.
  15. Abdrakhmanova Zh.S. Kostnaya densitometriya i komp'yuternaya tomografiya v otsenke porogovykh znachenii mineral'noi plotnosti tel pozvonkov kak faktora riska ikh perelomov. Tomsk: Avtoref. diss. kand. med. nauk. 2006. 19 p. (In Russ.).
  16. Khalafyan A.A. Sovremennye statisticheskie metody meditsinskikh issledovanii. Moscow: Lenand. 2014. 320 p. (In Russ.).
  17. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982. Vol. 143. No. 1. P. 29-36.

For citation: Zaharov IS, Kolpinskij GI, Ushakova GA, Kagan ES. Use Three-Dimensional Bone Densitometry in Predicting the Risk of Osteoporotic Vertebral Fractures in Postmenopausal Women. Medical Radiology and Radiation Safety. 2015;60(5):46-9. Russian.

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2763485
Today
Yesterday
This week
Last week
This month
Last month
For all time
3850
2366
21869
18409
71228
75709
2763485

Forecast today
4896


Your IP:216.73.216.37